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We study single-qubit gates performed via stimulated Raman adiabatic passage on a spin qubit implemented
in a quantum-dot system in the presence of phonons. We analyze the interplay of various kinds of errors
resulting from the carrier-phonon interactionsincluding also the effects of spin-orbit couplingd as well as from
quantum jumps related to nonadiabaticity and calculate the fidelity as a function of the pulse parameters. We
give quantitative estimates for an InAs/GaAs system and identify the parameter values for which the error is
considerably minimized, even to values below 10−4 per operation.
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I. INTRODUCTION

Quantum dotssQDsd, among many other systems,1 are
considered to be promising candidates for implementation of
quantum information processing schemes. Due to their
atomiclike structure2 one can easily single out a subset of
states to encode the logical qubit values. In principle, these
systems provide for stable coherent memory if the informa-
tion is encoded into the long-living electron spin,3 which
motivated a spin-based proposal for quantum information
storage and processing.4 On the other hand, experimental
demonstrations of coherent control over the chargesorbitald
degrees of freedom5–9 and the recently performed two-qubit
gate based on a confined biexciton system10 prove the feasi-
bility of quantum coherent manipulation of carrier states on
picosecond time scales. It has been therefore proposed11 to
implement the qubit states as the vacuum and single-exciton
states in a QD, switched by resonant optical coupling and
providing the two-cubit conditional gating via inter-QD
dipole-dipole interaction.

Both the spin-based and the charge-based proposals suffer
from serious difficulties. The spin switching time in typical
structures is very long due to weak magnetic coupling. The
orbital degrees of freedom do not provide for long operation
times due to the finite exciton lifetime, usually of order of
1 ns.12,13 It seems therefore natural to seek for a scheme in
which the logical values are stored using spin states, while
the operations are performed via optical coupling to the
charge degrees of freedom,14,15 also using QD systems in
QED cavities.16,17

A promising solution, proposed recently,18 is to encode
the qubit states into spin states of an excess electron in a QD
and perform operations by employing stimulated Raman
adiabatic passagesSTIRAPd to a state localized spatially in a
neighboring dot.19 sAn alternative scheme not relying on the
auxiliary state has also been proposed.20d The STIRAP tech-
nique uses three laser fields that couple the two qubit states
as well as the auxiliary state to a fourth state, a charged
excitonsX−, or triond, composed of two electrons with oppo-
site spins and a hole. In the presence of laser fields with
slowly varying amplitudes, the system evolves adiabatically,
following the states of the interacting system of carriers and
electromagnetic fieldstrapped statesd. The driving fields may

be chosen in such a way that the trion state is never occupied
sin the ideal cased so that the scheme is not affected by the
decoherence resulting from its finite lifetime. It can be
shown21 that with properly chosen phases of the laser pulses
a predefined qubit superposition gets coupled and undergoes
an adiabatic transition to the second dot and back which
shifts its phase by a desired angle with respect to the other,
orthogonal superposition that remains decoupled from the
laser fields. This results in an arbitrary rotation of the qubit
state around an arbitrary axis on the qubit Bloch sphere.

The essential difference between atomic systems, where
such quantum-optical schemes are successfully applied,22

and solid state QD systems, where their implementation is
proposed, is the nature of the environment. In high-quality
samples at low temperatures the dominant coupling to the
external degrees of freedom is that involving lattice modes
sphononsd. The coupling mechanisms include interaction
with lattice polarizationflongitudinal opticalsLOd phononsg
and with piezoelectric fields induced by phonon-related
strain flongitudinal and transverse acousticsLA and TAd,
phononsg as well as the effective influence of strain-induced
band shift, described in terms of the deformation potential
coupling to LA phonons. Even restricted to acoustic
phonons, this kind of external bath shows various peculiari-
ties compared to models usually assumed in general
studies.23 Its low-frequency behavior depends on the cou-
pling mechanism and on the wave-function geometry and is
always super-Ohmic, i.e., its spectral density grows superlin-
early with frequency.24 Due to the localization of carrier
wave functions on a scale much larger than the lattice con-
stant, a high-frequency exponential cutoff in the effective
phonon spectral densities appears well below the Debye fre-
quency. Moreover, apart from the nondiagonal coupling
terms describing real transitions, there is usually a diagonal
coupling which leads to pure dephasing effects24,25 resulting
from the lattice relaxation after a fastscompared to phonon
frequenciesd change of the carrier state.25,26 Such an effect
manifests itself in optical experiments as a fast partial decay
of the signal coherence9,12 in excellent agreement with theo-
retical modeling assuming its phonon-related origin.27,28

The characteristic time scales of these intrinsically non-
Markovian pure dephasing processes are determined by the
localization sQD sized and are typically much shorter than
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any real phonon-induced transition process. More impor-
tantly, they overlap with the time scales proposed for optical
qubit control.11 It has been shown29 that the demand to avoid
these pure dephasing effects limits frombelow the gating
times, thus shrinking the time scale window defined, on the
other side, by the long-time decoherence processesse.g., the
exciton lifetimed.

In this paper we study the influence of the coupling to the
phonon degrees of freedom on the fidelity of the single-qubit
rotation via the STIRAP process21 implemented in a
double-QD structure.18 Even if the possible phonon-assisted
transitions to other states may be neglected, the diagonal
terms still give rise not only to pure dephasing effects but
also to transitions between the trapped carrier-field states.
The probability of these phonon-induced transitions becomes
very high if the spacing between the trapped energy levels
falls into the area of high phonon spectral density and the
overall error is roughly proportional to the process duration.
Such high error rates are critical for quantum computation
schemes where extremely high fidelity is requiredse.g., er-
rors not higher than,10−4 per gate are allowed for two-
qubit operationsd in order to provide for scalable devices
including quantum error correction schemes. We discuss how
these strong decoherence processes may be avoided by either
decreasing the trapped level separationslow-frequency re-
gime, exploiting the super-Ohmic behavior of spectral den-
sitiesd or increasing it beyond the cutoffshigh-frequency re-
gimed. We show that in both cases one encounters a trade-off
situation, due to the opposite requirements for phonon-
induced jumpssshort durationd and for the fundamental adia-
baticity condition and pure dephasingsslow operationd. In
the low-frequency regime, avoiding phonon-induced transi-
tions contradicts the condition for avoiding nonadiabatic
jumps between the trapped states, which may be overcome
only by considerably extending the process duration. In the
high-frequency case, there is a competition between the pure
dephasing and the phonon-induced transitions that is over-
come by increasing the trapped state splitting, taking advan-
tage of the particular structure of the phonon spectral density
for a double-dot structure.

The paper is organized as follows. In the next Sec. II we
present the general derivation of the phonon-induced error
for an arbitrary system evolution. Section III describes the
model of the specific system discussed in the paper and de-
rives the carrier-phonon coupling relevant for our discussion.
Section IV provides a description of the STIRAP qubit rota-
tion procedure for completeness and necessary reference. In
the central Sec. V, the results of Sec. II are applied to the
STIRAP procedure described in Sec. IV with the phonon
perturbation derived in Sec. III. This section contains also
some general discussion. In Sec. VI we present the results for
specific pulse shapes in order to get some quantitative esti-
mates for an InAs/GaAs QD system. Finally, Sec. VII sum-
marizes and concludes the paper. In addition, some technical
details and further analysis, including the effect of the spin-
orbit coupling, are presented in the Appendixes.

II. PHONON-INDUCED DECOHERENCE: GENERAL
THEORY

The subject of this paper is the optically induced dynam-
ics in a quantum-dot structure coupled to a phonon bath. In

this section we derive the equations for the reduced density
matrix of the carrier subsystem in the leading order in the
phonon coupling, assuming that the unperturbedsideald evo-
lution of the noninteracting system, described by the unitary
evolution operator

U0std = UCstd ^ e−iHpht/" s1d

is knownssee also Ref. 30d. Here,UC is the evolution opera-
tor for the carrier subsystem coupled to the external light
field in absence of carrier-phonon interaction andHph is the
free-phonon Hamiltonian. The relevant carrier states in the
quantum dot are assumed to form a discrete setunl, n
=0,1,2, . . ., and thephonons are described by destruction
and creation operatorsbk and bk

† referring to bulk phonon
modes with wave vectork.

The interaction between the carriers and the phonon
modes is written in the general form

V = o
nn8

Snn8 ^ Rnn8, s2d

whereSnn8=Sn8n
† = unlkn8u act in the Hilbert space of the car-

rier subsystem and

Rnn8 = Rn8n
† = o

k
Fnn8skdsbk + b−k

† d, s3d

with Fnn8skd=Fn8n
* s−kd, affect only the phonon environment.

We assume that at the initial time −t0 the system is in the
product state

%s− t0d = r0 ^ rT, r0 = uc0lkc0u, s4d

whereuc0l is a certain state of the carrier subsystem andrT is
the thermal equilibrium distribution of phonon modes. Physi-
cally, this is justified by the existence of two distinct time
scales: the long one for the carrier decoherencese.g., about
1 ns ground-state exciton lifetime12,13d and the short one for
the reservoir relaxations1 ps pure dephasing time12,24,26d.

The starting point is the evolution equation for the density
matrix of the total system in the interaction picture with re-
spect to the externally driven evolutionU0 in the second-
order Born approximation with respect to the carrier-phonon
interaction31

%̃std = %̃s− t0d +
1

i"
E

−t0

t

dtfVstd,%s− t0dg

−
1

"2E
−t0

t

dtE
−t0

t

dt8†Vstd,fVst8d,%s− t0dg‡, s5d

where

%̃std = U0
†std%stdU0std, Vstd = U0

†stdVU0std.

The reduced density matrix of the carrier subsystem is

rstd = UCstdr̃stdUC
†std, r̃std = fTrR%̃stdg,

where the trace is taken over the reservoir degrees of free-
dom. Note that in this paper the symbol% always refers to a
density matrix in the full carrier-phonon Hilbert space while
r refers to reduced density matrices in either the phonon or
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the carrier subsystem. The firstszeroth-orderd term in Eq.s5d
obviously yields

rs0dstd = UCstduc0lkc0uUC
†std = uc0stdlkc0stdu. s6d

The second term vanishes, since it contains the thermal av-
erage of an odd number of phonon operators. The third
ssecond-orderd term describes the leading phonon correction
to the dynamics of the carrier subsystem,

r̃s2dstd = −
1

"2E
−t0

t

dtE
−t0

t

dt8TrR†Vstd,fVst8d,%s− t0dg‡.

s7d

The first of the four terms resulting from expanding the
commutators in Eq.s7d is −Qtr0, where

Qt =
1

"2o
nn8

o
mm8

E
−t0

t

dtE
−t0

t

dt8Snn8stdSmm8st8d

3kRnn8st − t8dRmm8l.

The operatorsS and R are transformed into the interaction
picture in the usual way,

Snn8std = U0
†stdSnn8U0std, Rnn8std = U0

†stdRnn8U0std,

and kÔl=TrRfÔrTg denotes the thermal averagesobviously
fU0std ,rTg=0d. Using the symmetry of the operatorsSnn8 and
Rnn8 the second term may be written as −r0Qt

†. In a similar

manner, the two other terms may be combined toF̂tfr0g,
where

F̂tfrg =
1

"2o
nn8

o
mm8

E
−t0

t

dtE
−t0

t

dt8Snn8st8drSmm8std

3kRmm8st − t8dRnn8l.

In terms of the new Hermitian operators

At = Qt + Qt
†, ht =

1

2i
sQt − Qt

†d, s8d

the perturbation to the density matrix at the final timet fEq.
s7dg may be written as

r̃s2dstd = − ifht,r0g −
1

2
hAt,r0j + F̂tfr0g. s9d

The first term is a Hamiltonian correction which does not
lead to irreversible effects and in principle may be compen-
sated for by an appropriate modification of the control
HamiltonianHC. The other two terms describe processes of
entangling the system with the reservoir, leading to the loss
of coherence of the carrier state.

Introducing the spectral density of the reservoir,

Rnn8,mm8svd =
1

2p"2 E dtkRnn8stdRmm8le
ivt, s10d

one may write

F̂tfrg = o
nn8

o
mm8

E dv Rnn8,mm8svdYmm8svdrYn8n
† svd

s11d

where the frequency-dependent operators have been intro-
duced,

Ynn8svd =E
−t0

t

Snn8stdeivtdt. s12d

Using Eq.s10d one has also

Qt = o
nn8

o
mm8

E dvE
−t0

t

dtE
−t0

t

dt8Qst − t8d

3 Snn8stdSmm8st8dRnn8,mm8svde−ivst−t8d.

Next, representing the Heaviside function as

Qstd = − eivtE dv8

2pi

e−iv8t

v8 − v + i0+ ,

we write

Qt = − o
nn8

o
mm8

E dv Rnn8,mm8svd E dv8

2pi

Yn8n
† sv8dYmm8sv8d

v8 − v + i0+

= − o
nn8

o
mm8

E dv Rnn8,mm8svd E dv8

2pi
Yn8n

† sv8dYmm8sv8d

3F− ipdsv8 − vd + P 1

v8 − v
G ,

whereP denotes the principal value.
Hence, the two Hermitian operators defined in Eq.s8d

take the forms

At = o
nn8

o
mm8

E dv Rnn8,mm8svdYn8n
† svdYmm8svd s13d

and

ht = o
nn8

o
mm8

E dv Rnn8,mm8svdPE dv8

2p

Yn8n
† sv8dYmm8sv8d

v8 − v
.

s14d

In the following, we will be interested in the system state at
the final timet= +t0, after all the pulses have been switched
off.

In the quantum information processing context it is cus-
tomary to quantify the quality of the operation in terms of the
fidelity, which is a measure of the overlap between the de-
sired sunperturbedd state and the actual final state,F
=TrfUCstdr0UC

†stdrstdg. The error is then defined as the fidel-
ity loss d=1−F. From Eqs.s6d and s9d one has
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d = − kc0ur̃s2duc0l

= o
nn8mm8

E dv Rnn8,mm8svd 3 kc0uYn8n
† svdP'Ymm8svduc0l,

s15d

whereP' is the projector on the orthogonal complement of
uc0l in the carrier space. In this order the unitary correction
generated byht does not contribute to the error.

The calculation presented above requires two input com-
ponents: the specific form of the interaction potentialfEq.
s2dg for a given problem and the unperturbed time evolution
fEq. s1dg. These two necessary elements are derived for our
qubit system in the two following sections.

III. THE QUBIT SYSTEM AND ITS INTERACTION
WITH PHONONS

In the following part of the paper, the general theory will
be applied to a specific system of two quantum dots contain-
ing one excess electron and coupled to the trion state in order
to perform an arbitrary rotation in the qubit space by means
of the STIRAP. Here we formulate the model of this system
and derive the Hamiltonian describing its interaction with the
phonon environment.

The Hamiltonian describing this system and its coupling
to lattice modes may be written as

H = HC + Hph + V. s16d

The first term is the STIRAP Hamiltonian including both the
qubit states and the control fields. The implementation18 de-
fines the qubit by twosy-spin eigenstates of a single excess
electron in one of the QDss“large”d from a vertically stacked
pair. In order to perform a general single-qubit rotation be-
tween the two qubit statesu0l and u1l an auxiliary stateu2l is
used,21 in which the electron is shifted to the second
s“small”d dot and has the same spin orientation as inu0l. All
these three states are coupled to a fourth stateu3l, a charged
excitonstriond state, by laser beamsV0,V1,V2, respectively.
The Hamiltonian for such a system in the rotating-wave ap-
proximationsRWAd is

HC = o
n

enunlknu + o
n=0

2

"Vnstdseisvnt−dndunlk3u + H.c.d,

s17d

where en are the energies of the corresponding states, the
slowly varying pulse envelopesVnstd are real and positive,
vn are the corresponding laser frequencies, and anddn are
the phases of the pulses. This Hamiltonian induces the uni-
tary evolution described in the previous section by the op-
eratorUC fEq. s1dg.

In order to achieve Raman coupling, the frequenciesvn of
the laser beams must be chosen such that the detunings from
the corresponding dipole transition energiese3−en are the
same for all the three couplings. Therefore, we putvn
=e3/"−en/"−D, n=0,1,2,whereD, the common detuning,
is one of the parameters to be tuned for optimal performance.

In the rotating frame, defined byuñl=eisvnt−d0dunl, n=0,1,2,
the RWA Hamiltonians17d may be written

HC = "Du3lk3u +
1

2o
n=0

2

"Vnstdse−i d̃nuñlk3u + ei d̃nu3lkñud,

s18d

whered̃n=dn−d0 sonly the relative phase of the pulses mat-
tersd.

The second term describes the free-phonon evolution,

Hph = o "vkbk
†bk,

wherebk
†, bk are phonon creation and annihilation operators

swith respect to the crystal ground stated. Throughout the
paper, the phonon branch index will be implicit ink, unless it
is explicitly written. Together withHC fEq. s17dg, the above
phonon Hamiltonian describes the known, unperturbed evo-
lution of the system, given by Eq.s1d.

The final term is the carrier-phonon interaction. Since the
adiabaticity inherent in the STIRAP procedure excludes the
possibility of inducing high-frequency dynamics and also all
the trapped state splittings should be at most of several meV
sto avoid crossing with excited carrier statesd, the discussion
will be restricted to acoustic phonons. The Hamiltonian de-
scribing the electron-phonon interaction in the coordinate
representation is

V = o
k

vke
ik·rsbk + b−k

† d, s19d

wherer denotes the electron coordinatesa similar contribu-
tion appears for holesd. The coupling constants for the lon-
gitudinal and transverse phonon branches are,
respectively,32,33

vk
sld =Î "

2rcVnvlskdFsk − i
de

«0«s
Mlsk̂dG s20ad

and

vk
st1,t2d = − iÎ "

2rcVnvtskd
de

«0«s
Mt1,t2

sk̂dFnn8skd, s20bd

where l ,t1,t2 refer to the longitudinal and two transverse
acoustic phonon branches. Heree denotes the electron
charge,rc is the crystal density,Vn is the normalization vol-
ume of the phonon system,vl,t are the phonon frequencies,d
is the piezoelectric constant,«0 is the vacuum dielectric con-
stant,«s is the static relative dielectric constant, ands is the
deformation potential constant for electrons. The functions
Ms depend on the orientation of the phonon wave vector.33

For the zinc-blende structure they are given by

Mssk̂d = 2fk̂xk̂ysês,kdz + k̂yk̂zsês,kdx + k̂zk̂xsês,kdyg, s21d

wherek̂=k /k and ês,k is the unit polarization vector for the
wave vectork and polarizations.

In the basis of the confined states relevant for the STIRAP
process the carrier-phonon interaction Hamiltonians19d
reads
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V = o
n,n8=0

3

unlkn8uo
k

fnn8skdsbk + b−k
† d, s22d

where, for single-electron states,fnn8skd=vkFnn8skd with the
form factorsFnn8skd depending on the wave function geom-
etry and given by

Fnn8skd =E d3r Cn
*srdeik·rCn8srd, s23d

whereCnsrd is the envelope wave function of the electron.
The coupling constantsfnn8skd include all the coupling
mechanisms relevant for a given phonon branch and have the
symmetryfnn8skd= fn8n

* s−kd.
We will assume that the two spin states used to encodeu0l

andu1l correspond to the same orbital wave functions so that
the couplings f00skd and f11skd are equal. The couplings
f01skd, f10skd, f12skd, and f21skd vanish since the spin orien-
tation in the stateu1l differs from that in u0l and u2l sthe
effects of the spin-orbit coupling are discussed separately
belowd. Moreover, it is assumed that there is no overlap of
wave functions between the statesu0l and u2l, so that also
f02skd and f20skd vanish.

An important point is that, since the electron resides nor-
mally in the large dot, at the initial moment the lattice is
relaxed to the corresponding minimums“dressing” of the
electron in the coherent deformation fieldd. This may be ac-
counted for by defining the modes with respect to this shifted
equilibrium, so that the ground state of the interacting system
corresponds to the new phonon vacuum, i.e., by transforming
to new phonon operatorsbk according to

bk = bk +
f00
* skd
vk

. s24d

Upon transformation to these new modes the interaction
reads

V = o
n=2,3

unlknuo
k

Fnnskdsbk + b−k
† d

+ Fo
n=0

2

unlk3uo
k

fn3skdsbk + b−k
† d + H.c.G ,

where Fnnskd= fnnskd− f00skd. Moreover, the carrier Hamil-
tonian undergoes a renormalization which is, however, ines-
sential for our discussion. In the rotating frame the above
interaction Hamiltonian reads

V = o
n=2,3

uñlkñuo
k

Fnnskdsbk + b−k
† d

+ Fo
n=0

2

uñlk3uo
k

Fn3skdsbk + b−k
† d + H.c.G , s25d

where Fn3skd= fn3skde−isvnt−d0d. This Hamiltonian is of the
form s2d with Snn8= unlkn8u andRnn8=okFnn8skdsbk+b−kd. The
spectral densitiesfEq. s10dg have the explicit form

Rnn8,mm8svd =
1

"2o
k

Fnn8skdFm8m
* skd

3 fsnk + 1ddsv − vkd + nkdsv + vkdg,

s26d

wherenk are phonon occupation numbers. Note that not all
possible couplings appearing in the general form of Eq.s2d
are present in our case. It is clear from Eq.s25d that the
phonons influence the dynamics only when a transfer from
the large dot to a spatially different carrier statessmall dot or
trion stated occurs.

The interaction potential given by Eq.s25d will be used in
the calculation of phonon-induced decoherence according to
the general theory of Sec. II. First, however, one has to de-
scribe the unperturbed evolution which is the second neces-
sary ingredient of the calculation. This is done in the follow-
ing section.

IV. THE STIRAP PROCEDURE FOR A SINGLE-QUBIT
ROTATION

In this section we present the formal description21,22of the
stimulated Raman adiabatic passage without external pertur-
bation. Along with the results of the previous section this
will allow us to use the general theory of Sec. II for the
description of phonon-induced dephasing.

The system is modeled by the Hamiltonian given by Eq.
s18d. The envelopes of the first two pulses,V0,1, are chosen
proportional to each other so that they may be written as

V0std = V01stdcosx, V1std = V01stdsinx,

with a certain parameterxP s0,p /2d defining the fixed ratio
of the pulse intensities. In terms of the new basis states

uBl = cosxu0̃l + e−i d̃1 sinxu1̃l,

uDl = − sinxu0̃l + e−i d̃1 cosxu1̃l,

the Hamiltonians18d now reads

HC = "Du3lk3u +
"

2
V01stdsuBlk3u + u3lkBud

+
"

2
V2stdse−i d̃2u2̃lk3u + ei d̃2u3lk2̃ud. s27d

Thus, the parametersx andd̃1 define two orthogonal states in
the qubit space. The laser pulses affect only one of these
states, the coupledsbrightd stateuBl, while the other orthogo-
nal combinationuDl remains unaffected.

At a fixed timet, the Hamiltonians27d has the eigenstates

ua0l = cosuuBl − e−i d̃2 sinuu2̃l, s28ad

ua−l = cosfsei d̃2 sinuuBl + cosuu2̃ld − ei d̃2 sinfu3l,

s28bd

ua+l = sinfssinuuBl + e−i d̃2 cosuu2̃ld + cosfu3l, s28cd

where
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tanu =
V01

V2
, sinf =

1
Î2
S1 −

D

ÎD2 + V01
2 + V2

2D1/2

.

The corresponding eigenvalues are"l0,±, where

l0 = 0, l± =
D ± ÎD2 + V01

2 + V2
2

2
. s29d

The system evolution is realized by an adiabatic change
of the pulse amplitudesssee Fig. 1; in this application, the
detuning remains constantd. Initially sat the time −t0d, both
pulses are switched off, and hencef=0; thenV2 is switched
on first, and hence alsou=0. Therefore,ua0l coincides with
uBl and ua−l with u2l. During an adiabatic evolution of the
parameters, the states move along the corresponding spectral

branches. During the first passage,d̃2=0 andu is changed
from 0 to p /2. At the end of this stage, when the pulses are

switched off sf=0d, the electron is in the state −u2̃l. The
second passage takesu back fromp /2 to 0. Now, however,

d̃2Þ0 so that the adiabatically followed system state is

ei d̃2ua0l and the final state isei d̃2uBl. Note that the desired
system evolution relies on the angleu determined by the
ratio V01/V2 sthe so-called mixing angled, while the absolute
value of these pulse amplitudes remains a free parameter that
may be used for optimization against decoherence effects.

The evolution operator corresponding to this procedure

may be writtensin the basisuBl, u2̃l, u3ld

UCstd

=1ei d̃2cosu e−iL−+i d̃2cosfsinu e−iL+ sinf sinu

− sinu e−iL− cosf cosu e−isd̃2+L+d sinf cosu

0 − e−iL−+i d̃2sinf e−iL+ cosf
2 ,

s30d

where u ,f ,l± are slowly varying functions of time,d̃2=0
for t,0, and

L±std =E
0

t

dtl±std.

As shown in Ref. 21, the phase shift of the bright state
resulting from the procedure described above is equivalent to
the rotation in the qubit spaceu0l, u1l around the axis deter-

mined byx and by the relative phased̃1 betweenV0 andV1.

The rotation angle is equal to thed̃2 phase of the second
pulse sequence. The characteristic feature of the STIRAP is
that no special form of the pulses is required. Thus, from the
point of view of the unperturbed evolution, the detuningD
and the pulse envelopesV01,2 are to a large extent arbitrary.
This freedom may be used for minimizing the perturbing
effects of the environment.

Ideally, the stateu2l is only occupied during gating, while
the stateu3l is never occupied. This is true under the assump-
tion that the evolution is perfectly adiabatic. However, any
change of parameters can never be infinitely slow and the
probability of a jump fromua0l to one of the two other states
ua±l remains finite. In the lowest order, the corresponding
probability amplitudes are34

c±std =E
−t0

t

dtka±stduċstdlexpF− iE
t

t

l±st8ddt8G ,

wherecstd is the state evolving adiabatically from the initial
one. Let us write the general initial state in the form

uc0l = cos
q

2
uBl − eiw sin

q

2
uDl. s31d

The qubit rotation21 is performed by two well-separated,
mirror-symmetric pulse sequences differing only by a phase.
Thus, using the explicit formulass28ad–s28cd one may write

c±std = cos
q

2
e−iL±stdfc̃± − c̃±

* g, s32d

where

c̃± =E
−`

`

dtFsinfstd
cosfstd Gu̇stdeiL±std, s33d

with sinfstd, cosfstd corresponding to1 and 2, respec-
tively, and the integral involving only one pulse sequence. If
the evolution induced by the pulse sequence is symmetric
with respect to a certain timet1 sthe time around which the
pulse sequence arrivesd the amplitudes33d may be written in
the form c̃±= ieiL±st1duc̃±u.

FIG. 1. sad An example of pulse shapesssolidd and the resulting
structure of the dressed levelssdashedd. The arrows show the
phonon-assisted transitions, as described in Sec. V:s1d the pure
dephasing effect;s2d, s3d the transitions between the trapped states.

sbd The evolution of the functionsu̇ sdashedd and sin 2u ssolidd for
the pulse sequence shown insad.
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In order to discuss the general properties of the nonadia-
batic jump amplitudes, let us write the evolution ofu in the
form

ustd = ũS t − t1
t0

D , s34d

where ũ is a function of unit width, so thatt0 is the time
scale of the evolution ofu. sThe total duration of the gate,
including two pulse sequences, is roughly an order of mag-
nitude longer.d If the functionsfstd andl±std change slowly
aroundt= t1, then

uc̃±u < Fsinfst1d
cosfst1d Gg0ft0l±st1dg,

where

g0sxd =E du ũ8sudeiux

is a function of unit width, with a fixed value atx=0 and
vanishing forx@1 shere the prime denotes the derivative
with respect to the argumentud. Hence, the nonadiabatic
jump amplitudess32d are small when

ul±u @ 1/t0, s35d

which is the standard adiabaticity condition.
It is interesting to note that for symmetric pulses the final

transition probabilitiess32d vanish for L±st1d=sn+1/2dp.
This fact is due to destructive interference of the jump am-
plitudes during the first and the second pulse sequences. Al-
though it might be tempting to exploit this cancellation and
perform a successful passage for times and laser beam pa-
rameters that do not satisfy the conditions35d, such a proce-
dure requires a detailed knowledge of the excitonic dipole
moments and a precise control over the laser beam proper-
ties. Moreover, the cancellation takes place only in the final
state, while during the process the other states are occupied,
which leads to the nonvanishing occupation of theX− state
and to decoherence, contrary to the original motivation of
this qubit implementation. In order to avoid these effects, the
envelopes of the transition probabilities should be used as the
actual bound to the nonadiabatic-jump-related error.

V. INTERACTION WITH THE PHONON BATH DURING
THE STIRAP PROCESS IN A QD SYSTEM

In this section we apply the general theory from Sec. II to
the qubit rotation performed via a STIRAP process, as de-
scribed in Sec. IV, implemented in a double-QD system.

In the Hamiltonians25d, the only nonvanishing nondiago-
nal coupling isFn3skd. Let us note, however, that for this
coupling one has, according to Eq.s12d,

Yn3svd = o
mm8

E dt eifsv−vndt+d̃ngUCnm
* UC3m8um̃lkm̃8u,

whereUCnm are the elements of the evolution operators30d,
varying at most with frequencies,l±. It is therefore clear

that this function is peaked aroundv<−vn, i.e., at the opti-
cal frequencies which are many orders of magnitude higher
than any phonon frequencies present inRnn8,mm8svd fEq.
s10dg. Thus, interband nondiagonal phonon couplings do not
contribute tos15d. This is consistent with the rotating-wave
approximation and may also be understood by noting that the
second Born approximation accounts for processes that may
be represented as a series of emission and absorption pro-
cesses involving arbitrarily many photons but only one pho-
non. Each photon process takes the system from the states 0,
1, 2 to 3 with the exchange of a large energy while a nondi-
agonal phonon process produces the same state change but
with negligible energy exchange. Thus, energy can never be
conserved in a process involving the interband phonon term.

Since the adiabatic evolutionUC does not transfer qubit
states into u3l, UC

† u3l remains orthogonal touBl. Hence,
Y33svd does not contribute to Eq.s15d and we may write

d =E dv
Rsvd
v2 Ssvd, Rsvd ; R22,22svd, s36d

with

Ssvd = v2o
n

zkc0uY22
† svducnlz2 = o

n

usnsvdu2, s37d

where the sum runs over a complete set of statesucnl or-
thogonal touc0l.

For the initial states31d, using the explicit evolution op-
erator s30d, the contributions from the three statesucnl
=sin 1

2quBl+eiwcos1
2quDl , u2l , u3l are, respectively,

s1svd = −
v

2
sinqÈ`

dt e−ivt sin2 ustd, s38d

s2,3svd = −
v

2
cos

q

2
È`

dt e−ivt

3 Fcosfstd
sinfstd Gsin 2ustde−iL7std−i d̃2. s39d

These three contributions correspond to transitions indicated
graphically in Fig. 1.

Following the argument that led to Eq.s32d, these func-
tions may be written in the form

usnsvdu = 2unsqdRefs̃isvdg,

whereu1= 1
2sinq, u2,3=cossq /2d, and

s̃1svd = i E dt e−ivt sin 2ustdu̇std = ie−ivt1us̃1svdu, s40ad

s̃2,3svd = −
v

2
E dt e−ifvt+L7std−d̃2gFcosfstd

sinfstd Gsin 2ustd

= e−ifvt1+L7st1d+d̃2/2gus̃2,3svd s40bd

where the integrals are now over one pulse sequence and the
final equalities hold for symmetric pulse sequences.
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Using the representations34d of the system evolution and

denoting the Fourier transform ofũ8 sin 2ũ by g1sxd we find
us̃1svdu=g1svt0d. Sincet1@t0 and us1svdu2 is integrated with
the slowly varying spectral density, the oscillating terms do
not contribute and one may write

us1svdu2 <
1

2
sin2 qug1svt0du2.

Hence, the functions1svd is centered atv=0 and broad-
ened by a factor 1/t0 due to the time dependence. It is re-
sponsible for the pure dephasing effect.29 The resulting error,
according to Eq.s36d, will grow with broadening ofs1svd,
i.e., with decreasing process duration. Hence, similarly to the
fundamental conditions35d, it always favors slow operation.
However, it is independent of the trapped level splittings and
reflects only the low-frequency properties of the spectral
densitysat a given temperatured. ForRsvd<R0vn, nù3, this
pure dephasing error at the temperatureT is

dsPDd , 5R0t0
−sn−1d, kBT ! "/t0,

R0
kBT

"
t0

−sn−2d, kBT @ "/t0.6 s41d

It should be noted that the crossover from the low- to high-
temperature behavior is governed only by the pulse duration
sirrespective of the system parametersd and for durations of
the order of 10 ps it takes place atT,0.1 K.

By a similar argument, the two other functions may be
approximately written as

us2,3svdu2 <
svt0d2

2
cos2

q

2
Fcos2 f

sin2 f
Gg2

2fsv + l7dt0g,

where g2sxd is the Fourier transform of sin 2ũsud. These
functions have a similar 1/t0 broadening but are also shifted
to the spectral positionv=−l±. They describe the error re-
sulting from phonon-assisted transitions between the trapped
statesua0,±l ssee Appendix B for further support to this inter-
pretationd. In view of the conditions35d, this shift must be
larger than the broadening and for rough estimates the latter
may be neglectedsif the spectral density varies slowly on the
scale of this broadening; the role of oscillations in the spec-
tral density is discussed belowd. Hence, one may writedstrd

=d+
strd+d−

strd, where

d7
strd =E dv

Rsvd
v2 us2,3svdu2 < Rs− l7d E dvUs2,3svd

v
U2

.

s42d

The error is therefore proportional to

d±
strd , Rsl±dt0. s43d

Thus, for a fixed spectrum of the trapped states this error
grows linearly in timesin the leading orderd, which is a usual
characteristic of real transition processes.

In order to maximize the fidelity of the coherent opera-
tion, one must find the trade-off between the errors caused by
phonon-assisted transitionss43d, which favor short process
durations, and the other two restrictions, related to pure

dephasings41d and to the general adiabaticity conditions35d
both increasing for fast evolution. As can be seen from the
orders of magnitude of the spectral characteristics determin-
ing the errorfFig. 2 and Eq.s36dg, in general, the fidelity
may be strongly decreased. However, contrary to the simple
excitonic qubit case,29 the STIRAP procedure in a QD sys-
tem provides two ways to avoid these limitations.

First, due to the super-Ohmic properties of the phonon
spectral densityRsvd,vn, nù2, all error contributions may
in principle be minimized by locating the trapped levelsl± in
the low-frequency sector and decreasing them while simul-
taneously increasing the gate durationt0.

Second, the values ofl± may be chosen sufficiently far
beyond the cutoff frequency. The contribution from the
phonon-induced transitions and nonadiabaticity effects may
then be arbitrarily small and the error is limited by the pure
dephasing effect, restricting the possible gate speedup. How-
ever, one should keep in mind that in the high-frequency
domain there may be additional reservoir excitationssinclud-
ing two-phonon processesd that are not accounted for in this
model.

The error effects discussed here originate from the inter-
action between phonons and the orbital degrees of freedom
used to operate the qubit. On the other hand, for a spin qubit
one expects some contribution to the decoherence induced
by the spin-orbitsSOd coupling. The electron confined in a
quantum dot does not interact with other carriers so that, in
contrast to higher-dimensional systems,35–37dephasing of the

FIG. 2. sad The functions usnsvdu2 describing the phonon-
induced errorssfor pulses as in Fig. 1d and the total spectral density
of the phonon reservoirRsvd at T=0 ssolidd and 5 K sdashedd for
the model InAs/GaAs systemsTable Id. The inset shows the exact
shape of one of the spectral features.sbd The contributions to the
spectral density atT=0: deformation potential coupling to LA
phononsssolidd and piezoelectric coupling to TAsdashedd and LA
sdash-dottedd phonons. Inset: high-frequency behavior with the two
bounds defined in Appendix A.

ROSZAK et al. PHYSICAL REVIEW B 71, 195333s2005d

195333-8



electron spin requires interaction with phonons38 or nuclei.39

In Appendix C we analyze the former channel. We show
there that the Markovian decay of spin states in our system is
very slow and leads to negligible error over the times rel-
evant for the qubit operations. On the other hand, non-
Markovian SO-related effects induce transitions between the
same states as direct phonon coupling but are many orders of
magnitude weaker due to the very small SO-induced phonon
coupling resulting from relatively large energy separation of
the orbital states. Thus, the SO-related effects do not affect
the discussion presented here.

VI. QUANTITATIVE RESULTS FOR A MODEL PULSE
SEQUENCE

In this section we calculate the errors for a STIRAP op-
eration on a single qubit performed with specific pulse
shapes. In order to get quantitative estimates and to identify
the key error-inducing mechanisms in various regimes of op-
eration we use the material parameters and QD characteris-
tics for an InAs/GaAs system which is frequently used as the
“typical” system for the proposed qubit implementations.
The system parameters are collected in Table I.

It is known that the STIRAP procedure is rather insensi-
tive to the exact pulse shape. In order to simplify the discus-
sion, we choose the pulse sequence

V01,2std = VenvstdF1 7 Î1 − e−fst ± t1d/t0g2

2
G1/2

,

which results in a very simple form for the time dependence
of the mixing angle,

sin 2u = e−s1/2dfst ± t1d/t0g2, u̇ <
1

2t0
e−s1/pdfst ± t1d/t0g2.

The envelopeVenvstd may be any function approximately
constant aroundt1. For the numerical calculations we take

Venvstd = V
1 + a

1 + a coshfst ± t1d/t1g
,

with a=10−4, t1=0.4t0 sFig. 1 corresponds to this pulse
choiced. V2 is proportional to the total power of the three
pulses. The constantV, along with D, must be tuned for
minimizing the decoherence effect.

For such a pulse sequence one finds explicitly from Eqs.
s32d and s33d

uc±u2 = 4p cos2
q

2
Fsin2 f

cos2 f
Gsin2fL±st1dge−2sl±t0d2

ø 4p cos2
q

2
Fsin2 f

cos2 f
Ge−2sl±t0d2,

where the envelope of the oscillations has been taken as the
safe bound to the error, in accordance with the discussion in
Sec. IV. For the purpose of analytical estimates the values of
f=fst1d andl±=l±st1d are assumed constant. The resulting
error is equal to the sum of the two transition probabilities
uc±u2 and depends on the initial states31d, since c±
=c±sq ,wd. The nonadiabatic jump error averaged over the
initial states is

dsnad =
1

4p
E dwE dq sinqfuc+sq,wdu2 + uc−sq,wdu2g

= 2pfsin2 fe−2sl−t0d2 + cos2 fe−2sl+t0d2g. s44d

The spectral functionssisvd relevant for the phonon-
induced dephasing are

TABLE I. The GaAs material parameters and QD system parameters used in the calculationssafter Refs.
40 and 41d.

Electron effective mass m* 0.067me

Static dielectric constant es 13.2

Piezoelectric constant d 0.16 C/m2

Longitudinal sound speed cl 5600 m/s

Transverse sound speed ct 2800 m/s

Deformation potential for electrons s −8.0 eV

Density rc 5360 kg/m3

Landé factor g −0.44

Spin-orbit coupling constants

Rashba a 0

Dresselhaus b 1 nm/ps

Level separation "v0 46 meV

Electron wave-function widths

in-plane l' 5.0 nm

z direction lz 1.5 nm

Dot separation D 6.0 nm
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us1svdu2 =
1

2
sin2q

p2

2 + p
sin2svt1de−fp/s2+pdgsvt0d2 s45d

and

us2,3svdu2 = 2p cos2
q

2
svt0d2cos2fvt1 + L7st1dg

3 Fcos2 f

sin2 f
Ge−sv + l7d2t0

2
. s46d

The total error is calculated as the sum of the nonadiabatic
jump probabilitys44d and the phonon-induced contributions
given by s36d and s37d with the spectral functionss45d and
s46d. The phonon spectral density corresponding to our
model double-dot InAs/GaAs system is derived and dis-
cussed in Appendix A and plotted in Fig. 2.

The resulting error, averaged oversq ,wd as in Eq.s44d, as
a function of the pulse intensity parameterV and detuningD
for a fixed process durationt0 is shown in Fig. 3. The non-
trivial interplay of the three error contributions discussed
above together with the oscillating high-frequency tail of the
phonon density of statesRsvd fsee inset in Fig. 2sbdg leads to
an intricate parameter dependence of the total error. There
are clearly several parameter combinations for which the er-
ror becomes small. With the help of the formulass29d one
finds that the areas0ad corresponds tol− in the low-
frequency region, while ins0bd l+ is small andl− shifted
beyond the phonon cut-off. The valleyss1d, s2d… correspond
to l− positioned at one of the minima in the high-frequency
tail of Rsvd and l+ shifted beyond the thermal cutoff for
phonon-absorption processes, i.e.,"l+*kBT. For T=0 the
absorption processes are not allowed at all and these areas
are not separated from thes0bd region.

The detailed analysis of the error value along thes0ad
valley at various temperaturesfFig. 4sadg shows that atT

Þ0 the dependence is not monotonic. The absolute mini-
mum always corresponds to very lowV and D, for which
both trapped statesl± lie in the low-frequency region. At
high frequencies, the error values reach a plateau after pass-
ing sat T.0d through a second, very shallow minimumsdue
to the subtle interplay of the error contributions weighted by
the parameter-dependent sinf and cosf factorsd. In be-
tween, there is either a monotonoic increasesat T→0d or a
transition through a local maximum, as thel+ state crosses
the frequency sector with high spectral density for phonon
absorptionscf. Fig. 2d. Figure 4sbd shows the interplay be-
tween different error contributions when the Rabi frequency
V is changed for a fixed detuningD. In this range of param-
eters, for the specific system under study, the pure dephasing
contribution turns out to be small compared to the errors
related to real phonon-induced transitions and to nonadia-
batic jumps which create a trade-off situation with one or
two well-defined parameter sets corresponding to the mini-
mal errors.

The above results show that for a fixed pulse durationt0
the error values are bounded from below, precluding a per-
fect operation for any parameter values. However, due to the
super-Ohmic behavior of all the contributions to the phonon
spectral densitysat low frequenciesd, the total error is de-
creased when the process time grows and the trapped level
splittings decrease. The minimum error achievable for differ-
ent process durations at various temperatures is plotted in
Figs. 5sad and 5sbd and the corresponding laser beam param-
eters are shown in Figs. 5scd and 5sdd. Both the values at the
global minimum fFigs. 5sad and 5scdg and at the shallow
local minimumfFigs. 5sbd and 5sddg are shown. In order to
allow for any subtle interplay of parameters, for eacht0 the

FIG. 3. The dependence of log10 d on the pulse parametersD
andV at T=0 and 1 K fort0=50 ps. Numbers refer to the param-
eter regimes discussed in the text.

FIG. 4. sad The dependence of the error for growing detuning
with l−=const, along thes0ad minimum in Fig. 3sbd The total error
ssolidd and the individual contributions: nonadiabatic jumps
sdashedd, phonon-assisted real transitionssdottedd, and pure dephas-
ing sdash-dottedd for a section of the parameter space.
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full minimization with respect to bothD and V was per-
formed. As expected, the error decreases for longer pulse
durations, but the decrease is only polynomialsd,1/t0 at
higher temperatures andt0*10 psd. Therefore, rather long
pulse durations are necessary to reduce the error consider-
ably. Moreover, the optimization is obtained for rather un-
usually small parameter valuesfFig. 5scd and 5sddg and is
very sensitive to their precision. Still another restriction is
that in this low-frequency regime the optimum is searched
for against the nonadiabatic jump error and is reached for
t0l± *1. As soon ast0 becomes comparable to the trion
radiative lifetime s,1 nsd, the optimal value ofl± falls
within the broadening of theu3l state, disabling the adiabatic
passage.

The parameter dependence of the error in thes0bd area is
in a way analogous. Here, however, it isul−u that must be
shifted far beyond the positive-frequency cutoff. Even at
zero temperature, the positive-frequency part of the spectral
density extends to relatively high frequenciesfwith oscilla-
tions manifesting themselves as local minima in Fig. 3sbdg.
Therefore, this parameter regime is always less favorable
than the previous one.

In view of the limited possibility of fidelity optimization
in the low-frequency region for reasonable process durations,
it is interesting to study the high-frequency parameter range.
In contrast to the previous case, the values ofV andD may
now seem unusually high, but the results of Fig. 3 show that
by increasing the splitting between the trapped state energies
the error may in principle be reduced to arbitrarily low val-
ues.

Figure 6 shows the error along thes1d ands2d areassFig.
3d for fixed pulse duration at various temperatures, as well as
the contributions to the error in one case. The trapped states
are now split by several meV, so that the nonadiabatic error
is negligiblesexcept for subpicosecond pulsesd. However, the
speeding up of the dynamics is limited by the pure dephasing

contribution. On the other hand, extending the pulse duration
is unfavorable due to the phonon-assisted transitions. The
interplay of these two contributions for a given pulse dura-
tion, temperature, andl− yields a series of minima, corre-
sponding tol+ traveling across the oscillations ofRsvd, as
shown in Fig. 6. Note that at low temperatures only one
minimum exists, belonging actually to thes0bd parameter
area, but at higher temperatures the absolute minimum shifts
to the high-frequency region.

The minimum value reached depends on the pulse dura-
tion, with a certain optimal trade-off which depends, how-
ever, on the chosen value ofl− and decreases substantially
for subsequent minima of the spectral density. The resulting
minimum value, obtained by numerical minimization with
respect toV andD for a range of pulse durations, is shown in
Figs. 7sad and 7sbd. The individual contributions shown in
Fig. 7sad show that pure dephasing indeed limits the fidelity
for short pulses but in the optimal duration range the non-
monotonict0 dependence of the error is determined exclu-
sively by the phonon-assisted transition contribution. This

FIG. 5. sad, sbd The minimal achievable error as a function of the
process duration corresponding to the optimal pulse parameters
with both l± in the low-frequency areasad and with l+ in the
high-frequency areasbd sfor T=0 the plateau value forD→` is
shownd. scd, sdd The optimal pulse parameterssdetuning and Rabi
frequencyd realizing the minimal error for these two configurations.
The legend insdd applies to bothscd and sdd.

FIG. 6. The error as a function ofV for l−=const, along thes1d
sad ands2d sbd areas in Fig. 3. Insad the individual contributions to
the error atT=5 K are also shown: nonadiabatic jumpssdashedd,
phonon-assisted real transitionssdottedd, and pure dephasing
sdash-dottedd.

FIG. 7. sad, sbd The minimal achievable error as a function of the
process duration corresponding to the optimal pulse parameters
with both l± in the high-frequency parameter areass1d sad and s2d
sbd and the optimal pulse parameterssdetuning and Rabi frequencyd
realizing the minimal error for these two configurationsscd, sdd. In
sad the contributions to the error atT=1 K are shown: nonadiabatic
jumps sdashedd, phonon-assisted real transitionssdottedd, and pure
dephasingsdash-dottedd.

PHONON-INDUCED DECOHERENCE FOR A QUANTUM-… PHYSICAL REVIEW B 71, 195333s2005d

195333-11



astonishing effect is in fact due to the relatively narrow mini-
mum ofRsvd in which ul−u is placed. For short pulses,s3svd
becomes broadspure dephasing broadening of thel− leveld,
increasing the overlap withRsvd. For larget0, the linear
increase ofd due to long process duration becomes dominat-
ing, leading to a minimum at a certain point.

VII. CONCLUSIONS

We have studied the fidelity of the coherent operation on
a QD spin qubit rotated by a stimulated Raman adiabatic
passage to a neighboring dot and back. We have shown that,
in addition to the usual limitation of the speed of an adiabatic
process, the presence of the phonon reservoir imposes two
further restrictions: The transfer must be slow in order to
minimize the pure dephasing effect but it should not take too
long in order to avoid transitions between the trapped carrier-
light states. The general formalism was applied to an
InAs/GaAs self-assembled system of typical size. It turns
out that for most values of pulse parametersspulse intensities
and detuningd in the meV range the error is high enough to
totally prevent the coherent operation. However, there are
also narrow parameter areas where the fidelity is consider-
ably higher.

The super-Ohmic characteristics of the spectral density
associated with the phonon reservoir admit minimization of
the total error by increasing the duration of the process while
simultaneously decreasing the trapped level energies. How-
ever, the pulse durations necessary for a considerable reduc-
tion of the error in this low-frequency regime are of the order
of hundreds of picoseconds, which leads to nanosecond over-
all gate durationssfull sequence of two pairs of pulsesd.
Moreover, the resulting trapped state energies become ex-
tremely small, approaching the typical lifetime broadening of
the trion state used for the Raman coupling.

It is found that the qubit operation may be performed with
much higher fidelity if the trapped states are pushed beyond
the cutoff of the effectively coupled phonon modes. An ad-
ditional advantage comes from the oscillatory structure of
the phonon spectral density for a double-dot system. In this
way the error atT=0 may be reduced to the value of,10−3

and well below 10−4 for trapped state energy splittings of 4
and 8 meV, respectivelysfor the system geometry assumed
hered. The latter values lie in the spectral region where the
acoustic phonon effects dominate the decoherence, well be-
low any spectral featuressLO phonons, higher exciton statesd
not included in the discussion. It is remarkable that such low
error values are achieved with pulse durations of the order of
10 ps which, compared to the long electron spin decoherence
time, even up to tens of milliseconds,42 opens a broad time
window for a large number of gating operations.

We have analyzed also the errors related to the spin-orbit
coupling. It turns out that these effects are negligible in the
present implementation.

These optimistic conclusions are somewhat limited by the
strong temperature dependence of phonon occupation, espe-
cially in the low-frequency regime, leading to a fast increase
of the error at nonzero temperatures. Indeed, in some cases
the minimal error may grow even by an order of magnitude
as soon as the temperature reaches 1 K.

The strong dependence of the phonon-related error on the
material parameters and system geometry opens some possi-
bility of system engineering and optimization. For example,
the high-frequency asymptotics of the phonon spectral den-
sity is governed by the QD height: higher dots assure a faster
decay. On the other hand, in the low-frequency sector the
phonon spectral density scales with the square of the interdot
distance, favoring rather flat structures. Also increasing the
lateral size reduces the phonon coupling but, at the same
time, lowers the excited states, restricting the high-frequency
range of operation. This shows that finding the optimum may
be nontrivial and may depend on the frequency sector chosen
for the qubit operation. It should be noted that the high-
frequency spectral density is dominated by the deformation
potential coupling which is present in any semiconductor
system but in the low-frequency domain the piezoelectric
effects dominate. This might suggest using nonpiezoelectric
materials.

Let us note also that the single-qubit error calculated in
this paper gives also an estimate of the two-qubit operation if
the latter is performed using dipole coupling between the
auxiliary states in the STIRAP scheme.18
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APPENDIX A: PHONON COUPLINGS AND SPECTRAL
DENSITIES

In this appendix we derive the spectral density of the pho-
non reservoirR22svd and study its properties for low and
high frequencies.

The phonon coupling constantsF22skd= f22skd− f00skd
have the same structure as the original constantsfEq. s20ad
and s20bdg with the form factor replaced byFskd=F22skd
−F00skd. Let FL,Sskd denote the form factors, calculated ac-
cording to Eq.s23d, for the ground-state electronic wave
function in the largesLd and smallsSd dots. Assuming that
the dots are stacked along thez axis at the distanceD, one
has

Fskd = eiDkz/2FSskd − e−iDkz/2FLskd.

The long-wavelength properties of the coupling constants do
not depend on the wave-function geometry. Indeed,FS,Lskd
=1+Osk2d andFskd= iDkz+Osk3d.

The coupling constants for arbitraryk depend obviously
on the specific form of the wave functions. For simplicity, we
assume Gaussian wave functions,

CL,Ssrd = N expF−
1

2
S r'

l'L,S
D2

−
1

2
S z

lzL,S
DG . sA1d

Then
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FS,Lskd = e−fsk'l'L,Sd/2g2e−fskzlzL,Sd/2g2.

Allowing for a small difference between the dot sizes we
write l'L,S

2 = l'
2 ± 1

2Dsl'
2 d, lzL,S

2 = lz
2± 1

2Dslz
2d, so that

Fskd < e−sk'l'/2d2e−skzlz/2d2F2i sin
Dkz

2

+
k'

2 Dsl'
2 d + kz

2Dslz
2d

4
cos

Dkz

2
G .

Hence, the size difference brings only a small correction and
will be neglected.

Assuming isotropic phonon dispersions, the spectral den-
sity Rsvd=R22,22svd fEq. s10dg may be written as

Rsvd =
V

s2pd3o
s
E dk k2fsnk + 1ddsv − vkd

+ nkdsv + vkdg
1

"2 E cosuduE dwuF22
ssdskdu2.

In this Appendix, the anglesu andw denote the orientation of
the k vector. The LA phonons are coupled via both piezo-
electric and deformation potential interactions. However, due
to different inversion symmetry the mixed terms vanish upon
angle integration and the two terms contribute independently.

The deformation potential term is

RsDPdsvd = R0
sDPdv5fnBsvd + 1gf sDPdsvd,

where

R0
sDPd =

1

3s2pd2

D2se
2

"rccl
7

and the functionf sDPdsvd is defined as

f sDPdsvd =
3

2
E

−p/2

p/2

du cosu
4 sin2fsDv/2cldsinug

sDv/2cld2

3 expF−
1

2
Svl'

cl
D2Scos2 u +

lz
2

l'
2 sin2 uDG ,

sA2d

so thatf sDPdsvd→1 asv→0.
For the piezoelectric contributions we choose the phonon

polarizations

êl,k ; k̂ = scosu cosw,cosu sinw,sinud,

êt1,k = s− sinw,cosw,0d,

êt2,k = ssinu cosw,sinu sinw,− cosud;

then the functionsMs fEq. s21dg are

Ml =
3

2
sin 2u cosu sin 2w,

Mt1 = sin 2u cos 2w,

Mt2 = s3 sin2 u − 1dcosu sin 2w.

The corresponding terms in the spectral density are

RsPdsvd = o
s

R0
sP,sdv3fnBsvd + 1gf sP,sdsvd, sA3d

where

R0
sP,sd =

1

2"rcs2pd3cs
5msSedD

e0es
D2

,

f sP,sdsvd =
1

ms
E

−p/2

p/2

du cosu Ms
2sud

4 sin2fsDv/2cldsinug
sDv/2cld2

3 expF−
1

2
Svl'

cl
D2Scos2 u +

lz
2

l'
2 sin2 uDG .

f sP,sdsvd→1 asv→0, and

Ms
2sud =E dw Ms

2su,wd, ms =E du cosu sin2 u Ms
2sud.

The specific values areml =mt1
=16p /35, mt2

=16p /105.
Thus, the low-frequency behavior of the individual contribu-
tions to the spectral density is,v3 and,v5 for the piezo-
electric and deformation potential coupling, respectively.

The behavior in the high-frequency limit is determined by
the coupling to phonons with wave vectors in the strongest
confinement direction, i.e., along thez axis. The piezoelectric
coupling in this direction is suppressed by the geometrical
factorsMs and the corresponding contributions to the spec-
tral function decrease rapidly. Moreover, the frequencies of
TA phonons are relatively low and the piezoelectric coupling
to LA phonons is much weaker. The frequencies of LA
phonons reach much higher values, e.g., over 20 meV for
GaAs, and their dispersion remains approximately isotropic
and linear up to several meV.41 Expanding the integral into
an asymptotic series one finds an upper estimate forsA2d,

f sDPdsvd &
12cl

4

D2sl'
2 − lz

2d
1

v4e−s1/2dslzv/cld
2
.

In the vicinity of the pointsvn=4npcl /D, the following
lower bound approximately holds:

f sDPdsvd *
3cl

6

sl'
2 − lz

2d3

1

v6e−s1/2dslzv/cld
2

sA4d

fsee Fig. 2sbdg. The oscillatory behavior of the spectral den-
sity for large frequencies follows from the fact that the pre-
dominant contribution in this sector comes from phonons
along the strongest-confinement direction, leading to a pro-
nounced destructive interference of interaction amplitudes in
the double-dot structure aligned along this direction.

APPENDIX B: TRANSITIONS BETWEEN THE TRAPPED
STATES: FERMI GOLDEN RULE

In this appendix we show that the errord7
strd fEq. s42dg

may be interpreted, in terms of the Fermi golden rulesFGRd,
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as resulting from transitions between the trapped states of the
confined electron in the external driving fieldftransitionss2d
and s3d in Fig. 1g.

Inserting the definitions40bd into Eq.s42d and performing
the frequency integrationsfor l± ,f<constd we get

d7
strd < cos2

q

2

p

2
Rs− l7dFcos2 f

sin2 f
G E dt sin2 2ustd.

sB1d

Let us now consider the probability of phonon absorption
or emission leading to a transition from the stateua0l to ua±l.
The duration of a single absorption or emission process is of
the order of the inverse phonon frequencysi.e., trapped level
spacingd. Hence, in view of the adiabaticity conditions35d
this process is fast compared to the characteristic time scale
of the system evolution. Therefore, it is reasonable to calcu-
late the FGR probability for absorption or emission at fixed
values of the system parameters and include the time depen-
dence related to the STIRAP passage only at the level of the
rate equations. Assuming the initial states31d, taking the
matrix element of the phonon coupling Hamiltonians25d be-
tween the trapped statess28ad–s28cd, and applying the FGR
in the standard form, one finds for the transition probability

w7std =
2p

"

1

4
cos2

q

2
Fcos2 f

sin2 f
Gsin2 2ustdo

k
uFskdu2

3 fds"l7 − "vkdnk + ds"l7 + "vkdsnk + 1dg

=
p

2
cos2

q

2
Fcos2 f

sin2 f
Gsin2 2ustdRs− l7d.

Solving the rate equation for the jump probability with the
above time-dependent ratewstd we find the error probability
for the whole process duration:

d7
strd = 1 − expF−E

−`

`

w7stddtG . sB2d

For small error values this reduces to Eq.sB1d. However, it
gives also an estimate for the error beyond the applicability
of the perturbative treatment.

APPENDIX C: SPIN-FLIP EFFECTS DUE TO SPIN-ORBIT
COUPLING

In the present appendix, we discuss the additional error
due to the presence of spin-orbit coupling for the electron.
We will show that each of the spin-conserving dephasing
channels discussed in the main body of the paper is accom-
panied by a spin-flip channel which is, however, several or-
ders of magnitude weaker in a self-assembled system. There
is, moreover, an additional error related to a spin-flip transi-
tion in the small dot but it is also extremely small.

We start the quantitative analysis by adding the spin-orbit
coupling to the qubit Hamiltonian in Eq.s16d,

HC = Hd + HZ + HSO+ HLstd.

HereHd=p2/ s2m*d+Usrd, wherem* is the electron effective
mass and Usrd is the confinement potential;HZ

=s1/2dgmBBsy is the Zeeman energysg is the effective
Landé factor,mB is the Bohr magneton, andsy is the Pauli
matrix; the magnetic field is oriented alongyd, HLstd de-
scribes the coupling to the control laser field andHSO=bs
−pxsx+pysyd+aspxsy−pysxd is the spin-orbit term com-
posed of the Rashba and Dresselhaus coupling with the con-
stantsa andb, respectively.

Following Ref. 38, we look for the unitary transformation
eS that eliminates the spin-orbit coupling from the stationary
HamiltonianH1=Hd+HZ+HSO. To the leading order in the
SO coupling one has

eSH1e
−S= Hd + HZ + HSO+ fS,Hd + HZg.

For the harmonic confinementUsrd=s1/2dm*v0
2sx2+y2d

+s1/2dm*vz
2z2, vz@v0, the SO coupling is perturbatively

eliminated with the choice

S= i
gmBB

s"vd2sbpx + apyd + ¯ ,

where we omitted an irrelevant position-dependent part.
Upon the canonical transformation, the electron-phonon

Hamiltonian s19d becomes, in the leading order in the SO

coupling,Ṽ=V+Vs, where the additional term is

Vs = fS,Vg = i
gmBB

s"vd2o
k

"sbkx + akydvke
ik·rsbk + b−k

† dsz,

where vk are defined by Eqs.s20ad and s20bd. Within the
reduced subspace spanned by the relevant states, this opera-
tor has nonvanishing elements only between those states that
have overlapping wave functions and oppositesy spins.
Thus, one has

Vs = o
k

fFs
sSdskdsu0lk1ue−iEZt/" + H.c.d

+ Fs
sLdskdsu2lk28ue−iEZt/" + H.c.dgsbk + b−k

† d,

whereEZ=gmBB is the Zeeman energy splitting,u28l is the
state in the “small” dot with flipped spin, and

Fs
sS,Ldskd = Fs

sS,Ld*s− kd = i
gmBB

s"vd2"sbkx + akydvkFS,Lskde±ikzD/2,

sC1d

with the form factors given by Eq.sA1d.
Upon the phonon equilibrium shift given by Eq.s24d, the

above interaction Hamiltonian produces a small spin-
dependent renormalization of the qubit Hamiltonian. More
importantly, the canonical transformation implicitly performs
a transition to the eigenstates of the full Hamiltonian includ-
ing the SO term. These states may couple to the control field
in a different manner from the original states, which is re-
flected in the present formalism by the correction terms re-

sulting from the transformationH̃Lstd=eSHLstde−S=HLstd
+HL

s1dstd+¯. The feasibility of the STIRAP process in the
presence of such spin-dependent terms is a separate problem,
far beyond the scope of the present paper. Here we assume
that the control field can be appropriately modified so that
the new states may be evolved according to the same STI-
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RAP transfer as the original ones. The weakness of the spin-
dependent phonon effects, as discussed below, suggests that
also these SO corrections might be of minor importance.

The SO contribution to the error may be written, in anal-
ogy to Eqs.s15d and s36d, as

ds =E dv RssvdSssvd, sC2d

where

Sssvd = v2o
n

zkcnuYssvduc0lz2, sC3d

with

Yssvd =E
−t0

t0

dt eivtUC
†stdsu0lk1ue−iEZt/"

+ u2lk28ue−iEZt/" + H.c.dUCstd.

The summation in Eq.sC3d now involves all the statesucnl
orthogonal touc0l, including u28l.

Similarly as in Appendix A, we find the low-frequency
expressions for the spectral densitiesfEq. s10dg correspond-
ing to the SO couplingsC1d via the two different coupling
channels

Rs
sDPdsvd = Rs0

sDPdv5fnBsvd + 1g, sC4d

where

Rs0
sDPd =

1

12p2

sgmBBd2

s"v0d4

"se
2

rccl
7sa2 + b2d,

and

Rs
sP,sdsvd = Rs0

sP,sdv3fnBsvd + 1g, sC5d

where

Rs0
sP,sd =

gs

p2

sgmBBd2

s"v0d4

"

rccs
5S de

e0es
D2

sa2 + b2d,

with gl =1/35,gt1
=gt2

=2/105. In the frequency range typi-
cal for the Zeeman energies in GaAs at moderate magnetic
fields s,0.1 meVd the piezoelectric coupling to transverse
modes dominates.

In the high-frequency region, where the deformation po-
tential coupling dominates, we find the asymptotic estimate

Rs
sDPdsvd =

1

4p2

sgmBBd2

s"v0d4

"se
2

rccl
3sa2 + b2d

3 fnBsvd + 1ge−s1/2dsvlz/cld
2 v

sl'
2 − lz

2d2 . sC6d

The spectral functionSssvd, pertaining to the driven evo-
lution of the system, depends in a complicated way on the
performed qubit rotation and on the initial state. In order to
reduce the complexity, we restrict the discussion to ap /2
qubit rotation around thesx axis, i.e.,x=p /4, d1=0. We
parametrize the general initial qubit state in the forms31d
and calculate the spin-flip contributions to the error averaged
over the Bloch sphere of initial states. We will restrict the

discussion to the most interesting high-frequency regime of
operation, where the following hierarchy of time scales may
be assumed:t0@" /EZ@ t1@t0.

Under these simplifying assumptions and neglecting
terms proportional toEZt0 the first contribution to the spec-
tral functionSssvd fEq. sC3dg is

zk0uYssvdu1lz2 <
2p

3
s2t0 − 2t1dfdsv + EZ/"d + dsv − EZ/"dg

+
1

v2us1svduav
2 ,

where “av” denotes averaging over the Bloch sphere of ini-
tial states, as in Eq.s44d. The first contribution leads to the
MarkoviansFermi golden ruled spin-flip probability over the
time 2t0−2t1 during which the electron is located in the first
s“large”d dot, up to the factor 1/3 resulting from averaging
of the spin-flip rates for various superposition states. The
probability of such a process in a self-assembled quantum
dot is extremely low due to large confinement energy. In-
deed, the spin-flip rate pertaining to this contribution is, ac-
cording to Eq.sC2d,

w =
2p

3
fRssEZ/"d + Rss− EZ/"dg

<
1

3

16

105p
SgmBB

"v0
D4

kBT
1

"2rcct
2S de

«0«s
D2

sa2 + b2d

= 1.03 10−4 s−1, sC7d

where we used the low-frequency formulasC5d for the spec-
tral densitysthe piezoelectric coupling to transverse phonons
dominates in this sectord, substituted the Zeeman energyEZ
=gmBB, and assumed thatkBT.EZ. The final value corre-
sponds toT=1 K andB=1 T.

The other term describes an additional contribution to the
spin-flip transition closely related to the pure dephasing ef-
fect fEq. s41dg. Since the low-frequency behavior of the
spectral densities for direct and SO-induced processesfEqs.
sA3d and sC5dg is the same, the ratio between the SO effect
and the direct pure dephasing is

ds
s1d

dsPDd =
Rs0

sP,td

R0
sP,td =

"2sa2 + b2d
D2

sgmBBd2

s"v0d4 = 1.73 10−12,

where we included again only the dominating contribution
from the piezoelectric coupling to transverse phonons. It is
clear that the SO-related process is negligible compared to
the pure dephasing.

Under the same assumptions as above, we have for the
two other SO-induced contributions

zk2,3uYsvduc0lzav
2 =

1

v2us2,3svdu2.

As discussed in Sec. V, the functionss2,3svd are relatively
sharply peaked aroundv=−l7. Since the latter values are
large, we use the high-frequency asymptotics for the spectral
densitysnow the deformation potential coupling to longitu-
dinal phonons dominatesd and the ratio between the SO-
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related process and the transitions described in Sec. V may
be written as

ds
s2,3d

ds2,3d =
Rs

sDPds− l7d
RsDPds− l7d

=
sgmBBd2

s"v0d4

"2

D2cl
2l7

2 sl'
2 − lz

2dsa2 + b2d,

where we used the asymptotic formulasA4d since the opti-
mal pulse parameters correspond tol7 in a local minimum
of the spectral density. For the parameter area 1fcf. Fig. 3g,
i.e., l−=12 ps−1, one finds

ds
s2d

ds2d = 1.83 10−10.

Again, the SO-related process is many orders of magnitude
weaker than the transition discussed in the paper.

Apart from these contributions there is another one, to the
spin-flipped stateu28l in the small dot. This process is not
possible in the absence of SO coupling. The relevant spectral
function is

zk28uYsvduc0lzav
2 = 2

sin2fsv − EZ/"dt1 + gsvdg
sv − EZ/"d2 h2sv − EZ/"d,

where we denoted

E dt cosustd u̇stdeivt = eigsvdhsvd.

One has for the STIRAP transfergs0d=0, hs0d=−1. The
width of hsvd is of the order of 1/t0. For large t1 slong

dwelling time in the small dotd, this yields the spin-flip tran-
sition rate according to the Fermi golden rule, analogous to
Eq. sC7d up to an averaging-related factor. For typical dwell-
ing times,100 ps this would produce a negligible contribu-
tion to the error of order of 10−14 for B,1 T, T,1 K. How-
ever, under the assumptions made above the FGR is not
applicable; instead one may approximate

zk28uYsvduc0lzav
2 <

1

v2h2svd.

Using the low-frequency and high-temperature approxima-
tion to Rs

sP,tdsvd one finds

ds
s28d , fRs0

sP,t1d + Rs0
sP,t2dg

kBT

"

1

t0
, 10−14,

at B,1 T, T,1 K. Note that under the conditions assumed
here, the dominating contribution comes from the dynamical
effect characterized by the inverse pulse duration 1/t0.

In conclusion, the Markovian spin-flip rate for a self-
assembled QD with typical level separation is very long
while dynamical effects involving the SO coupling remain in
a fixed relation to those induced by direct phonon coupling
and are negligible in comparison to them.
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