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Decoherence-Free Subspaces for Quantum Computation
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Decoherence in quantum computers is formulated within the semigroup approach. The error genera-

tors are identified with the generators of a Lie algebra. This allows for a comprehensive description
which includes as a special case the frequently assumed spin-boson model. A generic condition is
presented for errorless quantum computation: decoherence-free subspaces are spanned by those states
which are annihilated by all the generators. It is shown that these subspaces are stable to perturbations
and, moreover, that universal quantum computation is possible within them. [S0031-9007(98)
07057-4]
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Decoherence remains the most important obstacle to
the exploitation of the speedup [1] promised by quantum
computers. To this end a remarkable theory of quantum
error correction codes (QECC) has recently been con-
structed [2], in which a logical quantum bit (qubit) is
encoded in the larger Hilbert space of several physical
qubits. This “active” error correction approach builds on
the assumption that the most probable errors are those
which occur independently to a few qubits during a rea-
sonable time interval. However, correlated errors, which
affect many or all qubits, may also be likely in some
experimental realizations, particularly when qubits are
physically close (for example, nuclear spins in a mole-
cule) [3]. Such situations motivate the present study of
an alternative “passive” error prevention scheme, in which
logical qubits are encoded within subspaces which do not
decohere because of reasons of symmetry. The existence
of such decoherence-free (DF) subspaces has been shown
by projection onto the symmetric subspace of multiple
copies of a quantum computer [4], and by use of a group-
theoretic argument [5]. Construction of these subspaces
has been performed explicitly for certain collective error
processes in the spin-boson model [6,7]. In this Letter
we formulate a general theory for decoherence in quan-
tum computation (QC) within the powerful semigroup ap-
proach [8,9], and show that this provides a rigorous and
comprehensive criterion for construction of DF subspaces
for an arbitrary Hamiltonian.
The semigroup approach.—The dynamics of a quan-

tum system S coupled to a bath B (which together form
a closed system) evolves unitarily under the Hamilton-
ian: ĤSB � Ĥ ≠ ÎB 1 ÎS ≠ ĤB 1 ĤI , where Ĥ, ĤB,
and ĤI are the system, bath, and interaction Hamilton-
ians, respectively. Î is the identity operator. In the semi-
group approach one shows that under the assumptions of
(i) Markovian dynamics, (ii) “complete positivity” [9],
and (iii) initial decoupling between the system and bath
[10], the following master equation provides the most
general form for the evolution of the system density

matrix r:
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�r� , (2)

LFa ,Fb
�r� � �Fa , rF
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The commutator involving H is the ordinary, unitary,
Heisenberg term. All the nonunitary, decohering dy-
namics is accounted for by LD . The time-independent
Hermitian coefficient matrix A � �aab� contains the in-
formation about the physical decoherence parameters
(lifetimes, longitudinal, or transverse relaxation times, and
various equilibrium parameters such as stationary polar-
ization or magnetization) [9].
The �F̂a�M

a�0 (F̂0 � Î) constitute a basis for the
vector space of bounded operators acting on H , the
N-dimensional system Hilbert space. This operator space
may be restricted—see the classification below. As such,
the set �F̂a�M

a�1 forms an M-dimensional Lie algebra
L , with an N 3 N (generally M # N2 2 1) matrix
representation �Fa�M

a�1 appearing in Eq. (2) (we omit
the hat symbol for matrices). Physically, the �F̂a�M

a�1
describe the various decoherence processes: in the QC
context they are the error generators. They are often
determined implicitly by the interaction Hamiltonian:

ĤI �
X

a

F̂a ≠ B̂a , (4)

where �B̂a� are bath operators (see Ref. [11] for
examples).
Decoherence of a quantum register.—Consider a quan-

tum computer made of K qubits. States in the corre-
sponding N � 2K -dimensional register Hilbert space H
are tensor products of single qubit states j´k�, ´k � 0, 1.
It is convenient to adopt the following classification of
decoherence models of interest, in terms of the above
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Lie-algebraic scheme: (i) “Total decoherence”: This pro-
vides the maximum possible complexity of error genera-
tion, in which combined errors from any number of qubits
are generated. As is well known, single-qubit errors can
be fully described by the three Pauli matrices [i.e., the
defining representation of the Lie algebra su(2)]. Thus
when j´k� are the eigenstates of the s z

k Pauli matrix, a
single qubit can either undergo a phase-flip (s z

k), a bit-
flip (sx

k ), or both (s
y
k ). Taking into account also the

possibility of no single-qubit error, there are four possi-
bilities per qubit, so that the maximal total number of
combined errors on K qubits is M � 4K 2 1, if we dis-
regard the case of zero overall errors. The Lie algebra
su�N� has N2 2 1 generators, so the corresponding M
tensor products of Pauli matrices �F̂a� form the defining
representation of L � su�2K �. (ii) “Independent qubit
decoherence”: In this, the ideal starting point for QECC,
we have the much simpler case of merely one indepen-
dent error per qubit, with all other qubits unaffected.
There clearly are 3K such errors, each formed by tak-
ing the tensor product of a single Pauli matrix on one
qubit with the identity on all the rest. Since errors on
different qubits commute, this leads to a representation
of the Lie algebra L � ©

K
k�1suk�2�. (iii) “Collective

decoherence”: One could also consider the extreme case
of all qubits undergoing the same decoherence process
simultaneously [7], i.e., assuming full permutation in-
variance of the qubits. There are then just three pos-
sible errors and L � su�2�. (iv) “Cluster decoherence”:
Situations intermediate between the above three cases fol-
low when the register can be partitioned into clusters k of
K 0 qubits, with collective decoherence taking place within
each cluster, but the clusters decohering independently.
This leads to L � ©

K�K 0

k�1 suk�2�. Lastly, a very interest-
ing case (dealt with in detail below) arises when a symme-
try (e.g., permutation invariance) is broken perturbatively.
Conditions for decoherence-free dynamics.—Within

the extremes delineated by the above categorization, a
particularly interesting question is the following: what are
necessary and sufficient conditions for the existence of a
generic DF subspace? By generic (as opposed to general),
we mean that one should (a) avoid fine tuning of the noise
parameters characterizing the decoherence processes,
and (b) avoid a dependence on initial conditions. Suppose
that �ji��N0

i�1 is a basis for an N0-dimensional invariant DF
subspace H̃ # H . In this basis, we may express states
as the density matrix

r̃ �
N0X

i,j�1
r̃ijji� �jj . (5)

Consider the action of the error generators on the basis
states: F̂aji� �

PN0
j�1 ca

ijjj�. The DF dynamics condition
is LD� r̃� � 0, so that by Eq. (1) the dynamics is purely
unitary in the subspace H̃ . Consider then Eq. (2): con-
dition (a) above implies that each of the terms LFa ,Fb

� r̃�

should vanish separately ; a, b. A straightforward cal-
culation yields

LFa ,Fb
� r̃� �

N0X

ij,mn�1
r̃ij�2c

b�
jm ca

injn� �mj

2 cb�
mnca

injm� �jj 2 c
b�
jm ca

nmji� �nj� . (6)

To satisfy condition (b) above, each of the terms in
parentheses must vanish separately. This can be achieved
only if there is just one projection operator jn� �mj in
each term. The least restrictive choice leading to this is
ca

in � ca
i din. Equation (6) then becomes

LFa ,Fb
� r̃� �

N0X

ij�1
r̃ijji� �jj �2c

b�
j ca

i 2 c
b�
i ca

i 2 c
b�
j ca

j � .

(7)

Assumingca
i fi 0 then yields caj

cai
1

c�
bi

c�
bj

� 2. This has
to hold in particular for a � b. With z � caj�cai , we
then obtain z 1 1�z� � 2, which has the unique solution
z � 1. This implies that cai must be independent of
i and therefore that F̂aji� � caji�, ; a. As a result,
we conclude that �F̂a , F̂b� ji� � 0. If L is semisimple
(has no Abelian invariant subalgebra) [12] then the
commutator can be expressed in terms of nonvanishing
structure constants f

g
a,b of the Lie algebra: �F̂a , F̂b� �PM

g�1 f
g
a,bF̂g . We then arrive at the condition on the

structure constants
MX

g�1
f

g
a,bcg � 0 ; a, b . (8)

Now, it is known that the structure constants themselves
define the M-dimensional “adjoint” matrix representation
of L [12]: �ad�F̂a��g,b � f

g
a,b . Since the generators of

the Lie algebra are linearly independent, so must be the
matrices of the adjoint representation. One can readily
show that this is inconsistent with Eq. (8) unless all
cg � 0. We have thus proved [13]:
Theorem 1.—A necessary and sufficient condition

for generic decoherence-free dynamics �LD�r̃� � 0� in
a subspace H̃ � Span��ji��N0

i�1� of the register Hilbert
space, is that all basis states ji� are degenerate eigenstates
of all the error generators �F̂a�: F̂aji� � caji�, ; a; or, if
L is semisimple, that all ji� are annihilated by all �F̂a�:

F̂a ji� � 0 ; a, i . (9)

Equivalently, the DF subspace is spanned by those states
transforming according to the one-dimensional irreducible
representations (irreps) of the Lie group with algebra
L . Those states are singlets. The size of the DF code
provided by this subspace is its dimension N0, which can
be used to further encode log2�N0� logical qubits.
Note also that by Eq. (4): ĤI ji� ≠ jb� � 0, where jb�

is any bath state. Theorem 1 thus not only reduces the
identification of DF subspaces to a standard problem in
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representation theory of Lie algebras, but also has the ex-
pected physical interpretation, namely that the DF states
are those that are annihilated by the interaction Hamilton-
ian. (Note that this is only a necessary condition.)
Effect of the system Hamiltonian.—While r̃, by con-

struction, is unaffected by the error generators, the ab-
sence of decoherence may still be spoiled by the system
Hamiltonian itself. To see this explicitly, consider the
mixed-state fidelity:

F�t� � Tr�r�0�r�t�� � Tr�r�0� exp�Lt� �r�0��� , (10)

which is a natural measure of the decay of quantum coher-
ence due to coupling of the system with the environment.
In ideal quantum computation, one would like to have
F�t� � 1, corresponding to perfect, noiseless memory. In
reality F�t� � 1 2 e, e . 0. A formal power expansion
yields

F�t� �
X̀

n�0

tn

n!
Tr� r�0� �L�n�r�0��� �

X̀

n�0

1
n!

µ
t

tn

∂n

,

(11)

where the “decoherence times” are

tn � �Tr�r�0� �L�n�r�0�� ��21�n.

In particular, the first order decoherence rate is

1
t1

� Tr�r�0�L�r�0��� . (12)

SinceTr�r�Ĥ, r�� � 0 (by cyclic permutation), it thus
follows from Eq. (1) that 1�t1 � 0 for r̃. However, as is
easily checked, generally 1�t2 fi 0 because Ĥ may cause
transitions outside of H̃ . Therefore, the full dynamics in
H̃ , including the effect of the system Hamiltonian, is DF
to first order.
Effect of symmetry breaking perturbations.—Suppose

we have identified the DF subspace for the Lie algebra
L underlying LD . Let us consider the effect of adding
new error generators �Ĝp�P

p�1 which perturbatively break
the symmetry, i.e., which do not belong to L . We
assume that the �Ĝp� are due to an additional interaction
Hamiltonian Ĥ

0
I which can be identified as appearing with

a small parameter e in the full system-bath Hamiltonian:
ĤSB � Ĥ 1 ĤB 1 ĤI 1 eĤ

0
I . Then the new terms

added to LD are

L0D�r̃� �
MX

a�1

PX

p�1
�aap LFa ,eGp �r̃� 1 a�

ap LeGp ,Fa
� r̃��

1
PX

p,q�1
apq LeGp ,eGq �r̃� . (13)

Under the assumption e ø 1 we may neglect the last term
since it is O�e2�. As for the terms in the double sum,
Far̃ � r̃F

y
a � 0 by Eqs. (5) and (9). Expanding out the

remaining terms leaves

L0D� r̃� � e
MX

a�1

PX

p�1
aa,pr̃G

y
pFa 1 H.c. (14)

While this will generally take the singlet states outside of
the DF subspace, this effect is also readily seen to be only
of second order, because the first-order decoherence time
[Eq. (12)] is now given by

1
t1

� e
PX

p�1
�aa,p Tr�r̃�0�r̃�0�Gy

pFa�

1 a�
a,p Tr� r̃�0�Fy

aGpr̃�0��� � 0 , (15)

by cyclic permutation under the first trace. The higher
order decoherence times, tn, clearly involve en and can
thus be made negligible. Therefore we have proved that
the DF subspace is stable to first order under a symmetry
breaking perturbation.
This property is very promising from a quantum

computational perspective, since one should be able to
apply standard QECC techniques to correct errors which
then occur within the DF subspace. Of particular concern
are errors which take states out of the DF subspace;
these are analogs of amplitude damping errors, which
abstractly model, for example, scattering and spontaneous
emission processes. Such errors can be corrected by
simple codes [14], for example, by taking the DF singlet
states as the computational basis states, and combining
them into QEC codewords. Provided that Ĥ

0
I causes

independent errors on different singlet states, we can
conclude from the threshold theorem [15,16] that as long
as e is sufficiently small, the QECC encoding will render
quantum computation within H̃ robust against these
errors. Typical estimates of the threshold error probability
range from 1026 to 1023 [16] and are extremely difficult
to achieve in practice. The error probability is usually
proportional to e2. However, within H̃ , the error
probability is reduced to e4. Thus, QC within a DF
subspace has potentially significant advantages.
The dimension of DF subspaces: the size of codes.—As

shown in Ref. [7] for the spin-boson model, in the limit
of collective decoherence [i.e., when L � su�2�] the size
of the DF subspace is

N0
K¿1
! K 2

3
2
log2 K . (16)

The encoding efficiencyN0�K is thus asymptotically
unity. However, in the opposite limit of independent
qubit decoherence, L � ©

K
k�1suk�2�, which is addressed

by QECC, there does not exist a DF subspace [17]. The
size of the code obtained in the intermediate cases of
cluster decoherence can be estimated from Eq. (16) by
replacing K by K 0 (the number of qubits per cluster),
as long as K 0 & K . However, the most interesting
situation arises in the perturbative scenario. Imagine
a case of collective decoherence symmetry which is
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perturbatively broken by small independent couplings
between individual qubits and the bath. As long as the
symmetry-breaking inhomogeneities are not too strong,
we can conclude that, to first order, the exponentially
large DF subspace is still available.
Universal quantum computation.—Our discussion so

far has centered on the preservation of quantum memory.
To complete it we still need to show that universal quan-
tum computation can actually be performed in the DF sub-
space. As is well known, the controlled-NOT operation,
together with arbitrary single qubit rotations, can gener-
ate any unitary operation [18]. The corresponding unitary
operations are implemented by a driving Hamiltonian Ĥd ,
which contains experimentally manipulable, time varying
parameters, together with the system Hamiltonian Ĥ.
We now give an example of universal 1- and 2-qubit

operators acting on a four-dimensional singlet subspace.
Let ji�, 0 # i # 3 be singlet states. These four states span
2 encoded qubits jq1�, jq2� where q1q2 (with qj � 0, 1)
is the binary representation of i. A controlled-NOT
gate can be constructed from a Hamiltonian represented
in the encoded basis by the following combination of
projection operators: Ĥ

cnot
12 � c�t� �j11� �10j 1 j10� �11j�.

Here c�t� is a time-dependent classical control pa-
rameter. Upon exponentiation this yields the familiar
conditional unitary operator form. Single encoded-qubit
rotations can be constructed from, e.g., Ĥ

rot
2 � n0�t� 3

�j01� �00j 1 j00� �01j 1 j11� �10j 1 j10� �11j�. The gen-
eralization to larger singlet space systems is straightfor-
ward: one constructs the appropriate projection operators
on the singlet states. By construction the resulting gates
will leave the dynamics DF. Thus, in principle, universal
DF-QC is possible within the singlet subspace. The main
experimental challenge will involve implementation of
the corresponding operations on the physical qubits. In
addition, one should expect the actual implementation to
involve some of the amplitude damping errors discussed
above, i.e., some Ĥd operations will take the singlets
out of the DF subspace. However, as long as QECC is
invoked, our previous arguments show that DF-QC is still
possible.
It was shown how decoherence in QC can be described

very generally in terms of the semigroup approach. The
usual QC “error generators” were identified with the
generators of a Lie algebra, whose identity depends on
the pertinent decoherence process. Without reference to
a specific system-bath interaction model, we derived the
generic condition for DF subspaces: these are spanned by
those states which are annihilated by all the error genera-
tors. We showed further that the DF subspaces are stable
to first order under symmetry breaking perturbations,
which allowed us to extend their utility by application of
QECC. Finally, we showed that the DF subspaces support
universal quantum computation.
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