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This work is a sequel to our preceding work �Phys. Rev. B 77, 045319 �2008��. Here we compare pure-spin
and pseudospin dynamics using as an example a system of two quantum dots, a pair of localized conduction-
band electrons in an n-doped GaAs semiconductor. Pure-spin dynamics is obtained by tracing out the orbital
degrees of freedom, whereas pseudospin dynamics retains �as is conventional� an implicit coordinate depen-
dence. We show that magnetic field inhomogeneity and spin-orbit interaction result in a nonunitary evolution
in pure-spin dynamics, whereas these interactions contribute to the effective pseudospin Hamiltonian via terms
that are asymmetric in spin permutations, in particular, the Dzyaloshinskii-Moriya �DM� spin-orbit interaction.
We numerically investigate the nonunitary effects in the dynamics of the triplet-state population, purity, and

Lamb energy shift as a function of interdot distance and magnetic field difference �B� . The spin-orbit interac-

tion is found to produce effects of roughly 4 orders of magnitude smaller than those due to �B� in the pure-spin
model. We estimate the spin-orbit interaction magnitude in the DM-interaction term. Our estimate gives a
smaller value than that recently obtained by Kavokin �Phys. Rev. B 64, 075305 �2001��, who did not include
double-occupancy effects. We show that a necessary and sufficient condition for obtaining a universal set of
quantum logic gates, involving only two spins, in both pure-spin and pseudospin models is that the magnetic

field inhomogeneity �B� and the Heisenberg interaction are both nonvanishing. We also briefly analyze pure-
spin dynamics in the electron on liquid helium system recently proposed by Lyon �Phys. Rev. A 74, 052338
�2006��.
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I. INTRODUCTION

The spin degree of freedom of a localized particle, e.g., an
electron or nucleus, is a popular carrier of quantum informa-
tion. It serves as a qubit which can be manipulated in order
to accomplish a computational task. The spin of electrons
localized in quantum dots �QDs� or by donor atoms has been
the subject of extensive recent studies.1–15

Consider two electrons trapped in two sites, A and B, e.g.,
two QDs each containing one electron. The two-electron sys-
tem is fully described by the total wave function ��tot�,
which depends on the electrons’ coordinates r� and spin vari-
ables �. The two-electron spin density matrix, obtained by
tracing out the orbital degrees of freedom, �=Trr���tot���tot�,
fully describes the spin dynamics as long as one cannot or
does not wish to apply measurements that can separate or
localize electrons spatially; the only observable is then the
electron spin, s�= 1

2��, where �� are the Pauli spin one-half
matrices with �=x ,y ,z. Since the spin system is not
closed—there is a coupling to the electrons’ spatial degrees
of freedom—we observe open system effects, i.e., the spin
dynamics becomes, in general, nonunitary. We refer to this
dynamics as pure-spin dynamics.

In contrast, pseudospin dynamics is the standard case
where the electron spin observable is not free from coordi-
nate dependence but includes information about the elec-
tron’s localization orbital. In the pseudospin case, one de-
fines the electron spin operator as a bilinear combination of
electron annihilation and creation Fermi operators, cAs, cAs

† ,

in a localized orbital �A �s is a spin index and A is the QD
index�: sA

�= 1
2�ss�=1

2 cAs
† ����ss�cAs�, �=x ,y ,z. Then, the opera-

tors 	sA
�
� obey the usual su�2� commutation rules.

This paper is the sequel to our work in Ref. 16 �hence-
forth “Part I”�, where we derived an operator-sum represen-
tation as well as a master equation in the Lindblad and time-
convolutionless forms for the spin density matrix of a two-
electron system. In this sequel, we focus on a detailed
comparison of pure-spin and pseudospin dynamics. We are
interested, in particular, in how nonunitary effects in pure-
spin dynamics are translated into the corresponding unitary
ones in pseudospin dynamics and vice versa. We show that
as long as there is no magnetic field inhomogeneity, the pure-
spin dynamics is unitary, but in the presence of magnetic
field inhomogeneity, this dynamics is nonunitary.

The paper is organized as follows. We begin in Sec. II by
highlighting the differences and relationship between pseu-
dospin and pure-spin models. Section III provides a concrete
illustration in terms of a system of two QDs trapping one
electron each. In it, we examine the role of the different
interactions in both pseudospin and pure-spin dynamics. We
first derive the coordinate part of the Hamiltonian �Sec.
III A� and the form of the dipolar interaction �Sec. III B�. In
Secs. III C and III D, respectively, we then present calcula-
tions illustrating effects due to both external magnetic field
inhomogeneity and the spin-orbit interaction in the pure-spin
model. In Secs. III E and III F, we discuss universal quantum
gates in both pseudospin and pure-spin models. Section III G
presents our estimates for spin-orbit interaction effects in the
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pseudospin model and compares these estimates to the re-
sults of Ref. 17. We conclude in Sec. V.

Atomic units, �=e=me=1, 1 /c�1 /137, are used
throughout the paper unless stated otherwise.

II. PSEUDOSPIN VERSUS PURE-SPIN APPROACHES

In this section, we discuss the relation between the present
approach based on the spin density matrix and the pseu-
dospin effective Hamiltonian approach. The latter is usually
developed as a low-energy mapping within the Hubbard
model Hamiltonian of interacting electrons.9,11,18–23 We do
not follow the Hubbard model since it is highly simplified
and neglects many interactions that we would like to keep
here. For Hubbard model analyses in the quantum computa-
tion context, see, e.g., Ref. 9.

A. Pseudospin effective Hamiltonian

In order to keep the present treatment as simple as pos-
sible, we restrict ourselves to the two-orbital approximation
used in Part I; inclusion of excited-state orbitals is straight-
forward. Consider the four single-occupancy basis states
	�s1 ,�ti , i=1,2 ,3
, where �s1 is a singlet wave function
with two electrons localized on different QDs, A and B,
while �ti are the corresponding triplet wave functions. The
two double-occupancy states 	�s2 ,�s3
 describe two elec-
trons in a singlet state, localized on the same QD, A or B.
The total wave function �tot�t� in this basis set takes the
form

�tot�t� = �
i=1

3

�asi�t��si + ati�t��ti� ,

where the complex amplitudes 	asi�t� ,ati�t�
 define, respec-
tively, the singlet- and triplet-state populations. In the total
Hilbert space, the state is defined by 11 real parameters �12
real parameters defining 	asi�t� ,ati�t�
 minus a normalization
condition�. The unitary evolution in the total Hilbert space is
described by

��as�t��
�at�t��


 = exp�− iHt���as�0��
�at�0��


 ,

where H is the total two-electron system Hamiltonian.
Since these basis states are orthonormal, projection opera-

tors into the corresponding subspaces can be written as

P = ��s1���s1� + �
i=1

3

��ti���ti� ,

Q = ��s2���s2� + ��s3���s3� , �1�

where Q projects onto the double-occupancy states. Then,
using the method of projection operators, one obtains the
Schrödinger �eigenvalue� equation projected into the P sub-
space,

�Heff�E� − E�P� = 0, �2�

where

Heff�E� = PHP + PHQ
1

E − QHQ
QHP . �3�

Observe that Eq. �2� is exact but nonlinear and has six solu-
tions.

Due to interelectron repulsion, the double-occupancy
states are usually much more energetic than the singly occu-
pied ones if the electrons are well localized in QDs. We
consider the low-energy physics described by Eq. �2�, where
the total energy E is near the energies of singly occupied
states. In general, Heff is not a Hamiltonian since it is a
function of the energy E. However, if the energy gap be-
tween the P and Q states is large enough, one can expand
and approximate

Heff�E� = Heff�Ē� + �
n=1

	

PHQ
�Ē − E�n

�Ē − QHQ�n+1
QHP

= Heff�Ē� + Heff
�1��Ē��Ē − E� + O��Ē − E�2�

� Heff�Ē� + Heff
�1��Ē��Ē − E� , �4�

where Ē is the average energy in the P subspace and

Heff
�1��Ē�= PHQ�Ē−QHQ�−2QHP. Keeping terms up to the

first order in Eq. �4�, the nonlinear Eq. �2� can be reduced to
a generalized linear equation problem,

	Heff�Ē� + Heff
�1��Ē�Ē − �1 + Heff

�1��Ē��E�P� = 0. �5�

Solving Eq. �5�, we obtain four low-energy solutions; the
two high-energy, double-occupancy solutions are lost in this
approximation. Therefore, in the low-energy, pseudospin ap-
proximation, the state is described by seven real parameters.

In the following, we assume Heff
�1��Ē��0 for simplicity.

The effective Hamiltonian Eq. �4� can be recast into a pseu-
dospin form. Using Eq. �1�, we have

Heff = Hss��s1���s1� + �
i,j=1

3

Hij
tt ��ti���tj�

+ �
i=1

3

�Hi
st��s1���ti� + Hi

ts��ti���s1�� , �6�

where

Hss = ��s1�Heff�Ē���s1�, Hij
tt = ��ti�Heff�Ē���tj� ,

Hi
st = ��s1�Heff�Ē���ti�, Hi

ts = �Hi
st�*. �7�

In the second quantization representation, the P-subspace ba-
sis vectors take the form

��s1� = 1
�2

�cA↑
† cB↓

† − cA↓
† cB↑

† ��0� = 1
�2

��↑�A � �↓�B − �↓�A � �↑�B� ,

��t1� = cA↑
† cB↑

† �0� = �↑�A � �↑�B,

��t2� = 1
�2

�cA↑
† cB↓

† + cA↓
† cB↑

† ��0� = 1
�2

��↑�A � �↓�B + �↓�A � �↑�B� ,

��t3� = cA↓
† cB↓

† �0� = �↓�A � �↓�B, �8�
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where we introduced pseudospin states �s��, s= ↑ ,↓, �
=A ,B, localized near the A and B sites �the term pseudospin
emphasizes the fact that these are not really spin states since
they depend on the electron orbital degrees of freedom�.
Equation �8� establishes a one-to-one correspondence be-
tween four basis states 	�s1 ,�ti , i=1,2 ,3
 and four tensor-
product pseudospin states �s�� � �s��
, where s ,s�= ↑ ,↓,
� ,
=A ,B. Then, relabeling the pseudospin states as �0,1�
= �↑ , ↓ � and introducing the pseudospin Pauli and identity
operators,

�x = �0��1� + �1��0� ,

�y = − i��0��1� − �1��0�� ,

�z = �0��0� − �1��1� ,

I = �0��0� + �1��1� , �9�

where we temporarily dropped the subscripts A and B, one
easily finds that

��s1���s1� = S, ��ti���tj� = Tij ,

��s1���ti� = Ki. �10�

Here the pseudospin operators S and Tij are defined as

S = 1
4 I − s�A · s�B, T11 = 1

4 I + 1
2Sz + sAzsBz,

T22 = 1
4 I + sAxsBx + sAysBy − sAzsBz,

T33 = 1
4 I − 1

2Sz + sAzsBz,

T12 = 1
�2� 1

2S+ + Js�, T23 = 1
�2� 1

2S+ − Js� ,

T13 = sAxsBx − sAysBy + i�sAxsBy + sBxsAy� ,

T = 3
4 I + s�A · s�B, T21 = T12

† ,

T31 = T13
† , T32 = T23

† , �11�

where

Js = sAzsBx + sAxsBz + i�sAzsBy + sAysBz� ,

S� = Sx � iSy, S� = s�A + s�B,

and K is defined as

K1 = −
i

2�2
	�J�as�x − i�J�as�y
, K2 =

i

2
�J�as�z,

K3 =
i

2�2
	�J�as�x + i�J�as�y
 , �12�

where J�as= �s�B−s�A�S��. In fact, Eqs. �11� and �12� can be
obtained from the corresponding ones in Part I if the pure-
spin operators s�1,2 are replaced, respectively, by the pseu-

dospin ones, s�A,B. We reproduce these formulas here in order
to make the presentation as self-contained as possible.

As is seen from Eqs. �11� and �12�, the first line of Eq. �6�
is symmetric with respect to spin permutations �A↔B�,
while the second one is asymmetric representing, in particu-
lar, the Dzyaloshinskii-Moriya �DM�-type interaction
term.24,25 Notice that these asymmetric �in spin permuta-
tions� terms cancel out of unitary spin dynamics after aver-
aging over orbital degrees of freedom, as demonstrated in
Part I. However, they do not completely disappear but rather
are converted into the corresponding nonunitary terms plus
the Lamb shift term as will be seen in the next subsection.
From the symmetric part of the Hamiltonian Eq. �6�, using
Eq. �11�, one can derive the isotropic Heisenberg exchange
interaction term,

HH = JHs�A · s�B, �13�

where the Heisenberg exchange interaction constant JH

= 1
3�iHii

tt −Hss; in contrast, as was demonstrated in Part I, the
Heisenberg interaction term does not affect the unitary evo-
lution of the spin density matrix except for the Lamb energy
shift. In Sec. III C, we demonstrate numerically the effects of
the Heisenberg interaction on both the Lamb energy shift and
the nonunitary part of the spin density matrix evolution.

Observe that the asymmetric part of the Hamiltonian Eq.
�6� is proportional to the singlet-triplet subspace interaction
matrix Hi

st, which is responsible for the coupling between
singlet and triplet states. As will be demonstrated in Sec. III,

the nonzero coupling between these states is due to B� -field
spatial inhomogeneity �i.e., it cannot arise due to the homo-
geneous component of the external magnetic field�, as well
as due to the spin-orbit interaction.

B. Spin density matrix

In Part I, we derived the Lindblad-type master equation
for the spin density matrix,

���t�
�t

= − i�H̃�
tt,��t�� + L����t�� ,

H̃�
tt = �

ij
�Htt +

1

2
P�


ij
Tij = Htt +

1

2
P�,

L����t�� =
1

2�
ij

�
��ij��Ki,��t�K j
†� + �Ki��t�,K j

†�� , �14�

where the first and second terms describe, respectively, uni-

tary and nonunitary contributions to the evolution. H̃�
tt is an

effective pure-spin Hamiltonian which includes the Lamb
shift term, 1

2P�; the pure-spin operators Tij and Ki are de-
fined by Eqs. �11� and �12� where s�A,B→s�1,2. The index �
= 	s , t ,m
 specifies which initial state ��0�, singlet s, triplet t,
or a mixed one m, is taken.

As mentioned in Part I, all the matrix functions in Eq.
�14� as well as the pseudospin Hamiltonian Eq. �6� are ex-
pressible in terms of H matrix elements,
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H = �Hss Hst

Hts Htt 
 ,

Hij
�
 = ���i�H��
j�, �,
 = s,t, i, j = 1,2,3. �15�

In the following example, we consider the triplet case for
which we have


�
T = i�Q� − Q�

†� ,

P� = Q� + Q�
† , �16�

where

Q� = �
k

exp�− i�kt�Hts��esk��esk�R��0� + �esk��etk��

���
k

exp�− i�kt���etk��esk�R��0� + �etk��etk��
−1
.

�17�

Here, R��0� is a correlation matrix, which establishes an ini-
tial correlation between the singlet and triplet amplitudes,

as�0� = R��0�at�0� �18�

�in the triplet case, we have R�=t�0��0; in the mixed case,
where both as�0��0 and at�0��0, R�=m�0��0; for the sin-
glet case, see Part I� and �k, �esk�, and �etk� are solutions to the
eigenvalue problem,

�Hss Hst

Hts Htt 
��esk�
�etk�


 = �k��esk�
�etk�


, k = 1, . . . ,6. �19�

III. EXAMPLE: SYSTEM OF TWO QUANTUM DOTS

In this section, we investigate the role of different inter-
actions in the calculation of the H matrix. Let us consider a
system of two electrons trapped at sites r�A and r�B �r�A,B are
radius vectors of the centers of QDs in the z=0 plane� cre-
ated by a system of charged electrodes in a semiconductor
heterostructure so that the electrons are confined in the z=0
plane or a system of localized conduction-band electrons in
n-doped GaAs, as in our calculation example. The hetero-
structure trapping potential,

Vtr�z,r�� = V��z� + VA�r�� + VB�r�� , �20�

is separable in the in-plane and out-of-plane directions;
V��z� and VA,B�r�� are the trapping potentials in the z direc-
tion and in the z=0 plane around r�A,B, respectively. If the

electron system is placed in a constant magnetic field B� 0

directed along the z axis �with vector potential A� 0= 1
2 �r�

�B� 0��, then the in-plane motion, in a superposition of the
in-plane confining oscillatory potential and a perpendicular
magnetic field, is described by the Fock-Darwin �FD�
states.26 Approximating the confining potential by a qua-
dratic one,

VA,B�r�� � 1
2�A,B

2 �r� − r�A,B�2, �21�

we can take as basis “atomic” orbitals the ground-state func-
tions

�A,B�z,r�� = �0�z�RA,B
FD ��r� − r�A,B�� , �22�

where the out-of-plane motion in the z direction is “frozen”
in the ground state �0�z� in the potential V��z�, and the
ground FD state is

RA,B
FD =

1
�2�lA,B

exp�−
r2

4lA,B
2 
 ,

lA,B =
lc

�4 1 + 4�A,B
2 /�c

2
, lc =� c

B0
. �23�

Here, lA,B is the effective length scale, equal to the magnetic
length lc in the absence of the confining potential, �A,B�0;
�c=B0 /c is the cyclotron frequency.

The orbitals �Eq. �22�� must be orthogonalized. One way
to do this is a simple Gram-Schmidt orthogonalization pro-
cedure:

�̃A = �A,

�̃B =
1

�1 − S2
��B − S�A� , �24�

where the overlap matrix element SAB=SBA=S= ��A ��B� can
be calculated analytically,

S =
2lAlB

lA
2 + lB

2 exp�−
rAB

2

4�lA
2 + lB

2�

 . �25�

For appropriate values of system parameters such as the in-
terdot distance rAB and the external magnetic field B0, the
overlap becomes exponentially small.

The other more symmetric way is to make a transition to
the “molecular” or two-centered orbitals by prediagonalizing

the coordinate part of Pauli’s nonrelativistic Hamiltonian ĥc,
which describes the electron’s motion in a superposition of
the trapping potential and magnetic fields:

�̃A = cAA�A + cAB�B,

�̃B = cBA�A + cBB�B,

��̃i��̃ j� = �ij, i, j = A,B ,

��̃i�ĥc��̃ j� = �i�ij, i, j = A,B . �26�

The two-state eigenvalue problem Eq. �26� is solved analyti-
cally in terms of atomic orbital matrix elements: hij

= ��i � ĥc �� j�.
In general, given the molecular Eq. �26� or “half-

molecular” Eq. �24� basis choices, one cannot ascribe a spin
to a particular QD, since an electron in a molecular orbital
belongs to both QDs.

The total Hamiltonian contains both coordinate and spin-
dependent terms. First, we consider the coordinate part of the
Hamiltonian in the �̃A,B basis set.
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A. Coordinate part of the Hamiltonian

In view of the orthogonality of the singlet and triplet spin
wave functions, the spin-independent part of the Hamiltonian
does not contribute to the singlet-triplet coupling, Hc

st=Hc
ts

=0, whereas for the singlet-singlet and triplet-triplet Hamil-
tonians, we get

Hc
ss = 	Hcij

ss 
i,j=1
3 , Hcij

ss = Hcji
ss*

Hc11
ss = h̃AA + h̃BB + ṽee�AB;AB� + ṽee�AB;BA� ,

Hc12
ss = �2�h̃BA + ṽee�AB;AA�� ,

Hc13
ss = �2�h̃AB + ṽee�AB;BB�� ,

Hc22
ss = 2h̃AA + ṽee�AA;AA�, Hc23

ss = ṽee�AA;BB� ,

Hc33
ss = 2h̃BB + ṽee�BB;BB�; �27�

where

Hc
tt = �tI ,

�t = h̃AA + h̃BB + ṽee�AB;AB� − ṽee�AB;BA� , �28�

where

h̃ij = ��̃i�ĥc��̃ j�, i, j = A,B ,

ṽee�ij ;kl� = ��̃i�1��̃ j�2��
1

�r12
��̃k�1��̃l�2�� ,

i, j,k,l = A,B , �29�

with h̃ij =�i�ij for molecular orbitals and ṽee being the inter-
electron electrostatic interaction matrix elements. The matrix
Hc

ss is diagonally dominated if the overlap S�1; Hc11
ss is the

singlet energy of the singly occupied state, whereas Hc22
ss and

Hc33
ss are energies of doubly occupied states if one neglects

the coupling between single- and double-occupancy states.
Observe that the Heisenberg constant JH=�t−�s, where �s is
the lowest eigenvalue of the matrix Hc

ss. The matrix elements

h̃ij and ṽee�ij ;kl� can be trivially expressed in terms of the
corresponding matrix elements hij and vee�ij ;kl�, where the

orthonormalized states �̃i are replaced by �i using the rela-
tions in Eq. �24� or �26�.

B. Dipole spin-spin interaction

In the total spin representation, the dipole spin-spin inter-
action can be rewritten as27

Vdip =
1.45

2
meV�S2r12

2 − 3�S� · r�12�2

r12
5 −

8�

3
�S2 −

3

2

��r�12�� .

�30�

Since S� �
s�=0 and f t�r�1=r�2�=0, where �
s� and f t are singlet-
state spin and triplet-state coordinate wave functions, we

have Hdip
st =Hdip

ts =0 and a nonzero contribution to Hdip
ss comes

only from the contact term:

�Hdip
ss �ij = �1.45�2��� meV�fsi���r�12��fsj�

= 1.09� meV�d11 d12 d13

d12 d22
1
2d11

d13
1
2d11 d33

� , �31�

where � is an effective constant of the interaction that con-
fines electrons in the z plane and

d11 = 2��̃A
2 ��̃B

2� =
1

lA
2 + lB

2 exp�−
rAB

2

2�lA
2 + lB

2�

 ,

d12 = �2��̃A
3 ��̃B� = �2

lB/lA

3lB
2 + lA

2 exp�−
3

4

rAB
2

3lB
2 + lA

2 
 ,

d13 = �2��̃A��̃B
3� = �2

lA/lB

3lA
2 + lB

2 exp�−
3

4

rAB
2

3lA
2 + lB

2 
 ,

d22 = ��̃A
2 ��̃A

2� =
1

4lA
2 , d33 = ��̃B

2 ��̃B
2� =

1

4lB
2 . �32�

The magnetic dipole contribution to the triplet-triplet inter-
action Hamiltonian can be written as

Hdip
tt = 0.36 meV� t̄0 − 3

�2
t̄1
* − 3t̄2

*

− 3
�2

t̄1 − 2t̄0
3
�2

t̄1
*

− 3t̄2
3
�2

t̄1 t̄0

� , �33�

where ti, i=0,1 ,2, are dipole tensor operators,

t0 =
1 − 3 cos2 �12

r12
3 ,

t1 =
sin 2�12 exp�i�12�

r12
3 ,

t2 =
sin2 �12 exp�2i�12�

r12
3 , �34�

with �r12,�12,�12� being spherical coordinates of the inter-
electron radius vector r�12=r�1−r�2; the bar over ti denotes av-
eraging over the triplet coordinate wave function:

t̄i =� � d3r�1d3r�2�f t�r�1,r�2��2ti�r�1,r�2� . �35�

Taking into account the fact that the electrons are expo-
nentially localized at sites r�A and r�B in the f t state, a good
approximation to t̄i is to approximate the function ti by a
constant value at those points where f t�r�1 ,r�2� is localized,
thus obtaining the estimate
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Hdip
tt =

0.36

rAB
3 meV� 1 0 − 3

0 − 2 0

− 3 0 1
� . �36�

In order to further improve the estimate, the function ti�r�1 ,r�2�
can be expanded in a Taylor series around the localization
points and the remaining integrals in the expansion terms be
calculated analytically. From Eq. �36�, we find the estimate
Hdip

tt ��0.36 /rAB
3 � meV�5.0�10−8 meV at rAB=100 Å.

C. B� -field interaction in the pure-spin model

For the magnetic field, one gets

Htt�B� � = �Bavz Bav
− 0

Bav
+ 0 Bav

−

0 Bav
+ − Bavz

� , �37�

where

B� av = 1
2 ���̃A�B� ��̃A� + ��̃B�B� ��̃B�� ,

Bav
� = 1

�2
�Bavx � iBavy� . �38�

Using Eqs. �11� and �37�, one derives the Zeeman inter-

action Hamiltonian of the total spin S� with the magnetic field

B� av:

Htt�B� � = �
ij=1

3

Hij
tt�B� �Tij = B� av · S� . �39�

Similarly, for the singlet-triplet matrix, we have

Hst�B� � = �
1

2�2
�B+ − 1

2�Bz − 1
2�2

�B−

1
2�B+ − 1

�2
�Bz − 1

2�B−

− 1
2�B−* 1

�2
�Bz

* 1
2�B+* � , �40�

where

�B� = ��̃B�B� ��̃B� − ��̃A�B� ��̃A� ,

�B� = �Bx � i�By ,

�B� = ��̃A�B� ��̃B�, �B� = �Bx � i�By . �41�

If the B� field is homogeneous, from Eq. �41�, we obtain

�B� =�B� =0 and Hst�B� �=0. In this case, the spin dynamics is

unitary and is described by the Zeeman Hamiltonian Htt�B� �
�Eq. �39��; the spin-spin dipole interaction Hdip

tt is too small
and can usually be safely neglected.

Let us consider modifications due the to B� -field inhomo-
geneity in the pure-spin model. Neglecting contributions
from the double-occupancy states within the first-order per-
turbation approximation in the singlet-triplet interaction Hst,
we find the following for the nonunitary term in Eq. �14�,

Lt =
1

2�
ij

�
t�ij��Ki,�K j
†� + �Ki�,K j

†��

=
sin�JHt�

JH
��K,�K†� + �K�,K†�� , �42�

where

K = �
i

H1i
st �B� �Ki = −

i

4
�B� · J�as �43�

and

J�as = �s�2 − s�1 � S�� = 2�s�2 � s�1� + i�s�2 − s�1� �44�

is an asymmetric spin operator containing both linear and
bilinear parts. Observe that Lt=0 at the “swap” times tn
=�n /JH, n=0,1 , . . ..

Similarly, for the Lamb shift in Eq. �14�, we have

Lt =
1

2�
ij

�Pt�ijKi
†K j =

1 − cos�JHt�
JH

K†K . �45�

Observe that Lt and Lt are quadratic in the difference field

�B� . Besides, notice that the magnetic field due to spin-orbit

coupling does not contribute to the difference field �B� so=0

but contributes to the �B� so field that is present in the coupling
between the triplet states and the double-occupancy, singlet

states in Eq. �40�. If the external magnetic field B� ex is homo-
geneous, then the singlet-triplet state coupling comes only
from the spin-orbit interaction. Since the double-occupancy
states should be involved in the dynamics in order to obtain
nonzero spin-orbit interaction effects, these effects are ex-
pected to be especially small, proportional to �Bso

2 , in the
pure-spin model. An estimate of these spin-orbit effects will
be given in a numerical example in the next section.

Clearly, there is an important qualitative difference be-
tween pure-spin and pseudospin models. In the former, the
singlet-triplet state coupling is a second order effect, while in
the latter, this coupling is of first order in Hst �cf. Eqs. �42�
and �6��. Thus, in pure-spin models, effects due to B� -field
inhomogeneity should be especially �quadratically� small as
compared to the corresponding pseudospin model effects. In

case of negligible B� -field inhomogeneity, as follows from
Eq. �40�, the pure-spin dynamics is unitary and is governed
by the spin Hamiltonian Htt.

Let us now consider a simple numerical example for the

nonunitary effects due to the difference field �B� for an elec-
tron localized on a donor impurity in an n-doped GaAs semi-
conductor. To simplify numerics, we assume that Hss

=diag��s1 ,�s2 ,�s3� is diagonal and the singlet-triplet cou-

pling field �B� has only a nonzero z component, �Bz. Then,
the corresponding eigenvalue problem �Eq. �19�� can be re-
duced to a biquadratic polynomial equation which could, in
principle, be solved exactly. If we neglect the exponentially
small coupling field �Bz, proportional to the overlap S, the
biquadratic equation reduces to a quadratic one and we find
the following for the nonunitary term:
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Lt =
� sin �t

JH
2 + 1

2�Bz
2�1 + cos �t�

��K,�K†� + �K�,K†�� ,

K = −
i

4
�Bz · Jasz �46�

and the Lamb shift:

Lt =
JH�1 − cos �t�

JH
2 + 1

2�Bz
2�1 + cos �t�

K†K , �47�

where �=�JH
2 +�Bz

2. In the limit of small magnetic field in-
homogeneity, ��Bz /JH � �1, �→ �JH� and Eqs. �46� and �47�
go over into Eqs. �42� and �45�, respectively. Equation �47�
describes the Lamb energy shift of the triplet state �S
=1,MS=0� due to the coupling between singlet and triplet
states induced by the magnetic field inhomogeneity �Bz. At
the magnetic field geometry we have chosen, there is no
coupling between �S=1,MS= �1� and �S=1,MS=0� states.

In Figs. 1–3, we show the results of calculations for the
triplet-state population, purity, and Lamb shift energy, re-
spectively, as a function of time at a fixed interdot separation

�rAB=400 Å� and different �Bz. For the Heisenberg interac-
tion constant JH, we used an asymptotically correct
expression28–30 obtained for hydrogenlike centers in GaAs
�note that our JH=�t−�s is related to the exchange integral J
in Ref. 28 via JH=−2J�. Initially, the system is assumed to be
in the �S=1,MS=0� state. As can be seen from Fig. 1, there is
a redistribution between singlet- and triplet-state populations
due to the singlet-triplet subspace coupling. At ��Bz /JH�
�0.1, the probability of redistribution is negligible and the
time evolution is basically unitary. With increasing �Bz, this
probability redistribution is seen to be more pronounced,
time evolution becomes nonunitary �Fig. 2� and �at�t��2 can
drop to the value JH

2 /�2 at t=�n /� ,n=1,3 , . . .. Observe that
the nonunitary dynamics reveals repetitions in time, and at
moments of maximal �minimal� singlet-triplet state probabil-
ity redistribution, we find maximal �minimal� Lamb energy
shifts �Fig. 3�. Thus, the nonunitary effects observed are not
irreversible and they do not result in a real decoherence pro-
cess. We do not have a real, external, and infinite “bath” in
our two-electron model, coupling to which would result in
irreversible decoherence effects in the spin system. In Figs. 4
and 5, we demonstrate the dependence of triplet-state popu-
lation and Lamb energy shifts on the interdot distance rAB at
a fixed �Bz=0.05 T.

FIG. 1. �Color online� The triplet-state population of electrons in shallow QD centers in GaAs as a function of time at different magnetic
field differences �Bz=0.01,0.025,0.05,0.075,0.1,0.2 T, normalized to the Heisenberg exchange JH constant. Initially, the system is in the
triplet state �S=1,MS=0�. The distance between QDs is 400 Å.
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D. Spin-orbit interaction in pure-spin model

In this subsection, we estimate the nonunitary effects in
the pure-spin model due to spin-orbit interaction. For sim-
plicity, we assume that the external magnetic field is homo-
geneous and directed along the z axis, with Boz being its z

component. Since �B� so is a pure imaginary field �its compo-
nents are matrix elements between the real states �̃A and �̃B
of an odd vector function of the momentum operator, both in
vacuum and in the bulk of semiconductors that lack inver-
sion symmetry, Dresselhaus fields,31 as well as in hetero-
structure zinc blendes, Rashba fields32� we have

��Bso
��* = − �Bso

�, �Bsoz
* = − �Bsoz. �48�

Using these relationships, the singlet-triplet spin-orbit
coupling can be written as

Hst�B� so� = � 0 0 0
1
2�Bso

+ − 1
�2

�Bsoz − 1
2�Bso

−

1
2�Bso

+ − 1
�2

�Bsoz − 1
2�Bso

− � . �49�

The couplings between double-occupancy, singlet and
triplet states are seen to be the same. We assume that Hss

=diag��s ,�do ,�do�, where �s and �do are the singlet- and
double-occupancy state energies, and Htt=diag��t+ ,�t ,�t−�,
where �t is a triplet-state energy and �t�=�t�B0z. Within

these approximations, the 6�6 eigenvalue problem Eq. �19�
is then reduced to computing the roots of the biquadratic
equation33

E4 + a3E3 + a2E2 + a1E + a0 = 0, �50�

where

a3 = − �
i=1

4

�i, a2 = �
i�j

�i� j − �
�=x,y,z

��Bso��2,

a1 = − �
i�j�k

�i� j�k + ���Bsoz�2 +
1

2
���Bsox�2 + ��Bsoy�2�


���2 + �4� + ���Bsox�2 + ��Bsoy�2��3,

a0 = �
i=1

4

�i − ��Bsoz�2�2�4 −
1

2
���Bsox�2 + ��Bsoy�2��3��2 + �4� ,

�1 = �s, �2 = �t+, �3 = �t, �4 = �t−.

For hydrogenlike centers, one can estimate the energies
�do and �t as follows. The ground energy of two well sepa-
rated hydrogen atoms is E2H�−27.2 eV. Using the scaling
factor KGaAs=m* /�2�4.6�10−4 for GaAs, one can estimate
�t�KGaAsE2H=−12.6 meV. �do is located higher than �t due

FIG. 2. �Color online� The purity p�t�=Tr �2�t� for the same parameters as in Fig. 1.
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to mainly interelectron repulsion ṽee�AA ;AA� so that �do

−�t= ṽee�AA ;AA��12.6 meV.
If �Bso��0, �=x ,y ,z, the roots of Eq. �50� Ei are equal

to �i, i=1, . . . ,4. The two other roots are E5=�do and E6
=�s. The corresponding eigenvectors are

�ek� = dk�0,1,1,−
�Bso

−

Ek − �2
,
�2�Bsoz

Ek − �3
,

�Bso
+

Ek − �4

T

,

k = 1, . . . ,4,

�e5� = 1
�2

�0,1,− 1,0,0,0�T,

�e6� = �1,0,0,0,0,0�T, �51�

where

dk = �2 + ���Bsox�2 + ��Bsoy�2�� 1

�Ek − �2�2 +
1

�Ek − �4�2

+

2��Bsoz�2

�Ek − �3�2
−1/2

.

Notice that the above formulas are not valid in the degen-
erate case: B0z=0 and �2=�3=�4=�t. In this case, the biqua-
dratic Eq. �50� reduces to two quadratic ones, two roots of

which are degenerate, E1=E2=�t. Formally, one gets singu-
larities in Eq. �51� at E1=E2=�t. Therefore, the simpler, de-
generate case should be analyzed separately and the corre-
sponding formulas �not shown here� can be derived.

Let us now find the spin-orbit field,

�B� so = ��̃A�B� so�p����̃B� � ��A�B� so�p����B�

=� dr��A��r� − R� ��B� so�− i�r���B�r�

= B� so�− i�R�� � dr��A��r� − R� ���B�r� = B� so�− i�R��S�R� ,

�52�

where B� so�p�� is an odd function of the momentum operator

p� =−i�r� and R� =r�AB. In particular, in zinc-blende semicon-

ductors such as GaAs, B� so is cubic in the components of
p� :31,34

Bso� = Asop��p

2 − p�

2� ,

�,
,� = 	cyclic permutations of x,y,z
 ,

FIG. 3. �Color online� The Lamb shift energy as a function of time for the same parameters as in Fig. 1.
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Aso = �so�m*�2m*Eg�−1, �53�

where m* is the effective mass of the electron, Eg is the band
gap �m*�0.072, Eg�1.43 eV for GaAs�, and px, py, pz are
components of the momentum along the cubic axes �100�,
�010�, and �001�, respectively. The dimensionless coefficient
�so=0.07 for GaAs. From Eqs. �52� and �53� we obtain

Bso� = iAso

R��R

2 − R�

2�
R3 �S��R� −

3

R
S��R� +

3

R2S��R�� .

�54�

The overlap integral35 S�r=R /aB�= �1+r+r2 /3�exp�−r�
for hydrogenlike centers �aB�92 Å for GaAs� and Eq. �54�
reduces to

Bsox = i�0.83 meV�sin � cos ��sin2 � sin2 � − cos2 ��

��−
1

3

r2 exp�− r� , �55�

where �R ,� ,�� are spherical coordinates of the vector R� ,

with other components being obtained by cyclic interchange
of indices.

In Figs. 6 and 7, we display the time dependence of the
triplet-state population and the purity, which is induced by
the spin-orbit interaction �Eq. �55�� at a fixed orientation ��
=� /4,�=� /3� and different rAB in the range of 200–500 Å.
Observe that the maximal redistribution of singlet-triplet
probability occurs at 2�t / ��do−�t�=0.5 and the spin-orbit in-
teraction effect diminishes as rAB increases. The maximal
singlet-state probability achieved at rAB=200 Å is seen to be
quite small, �10−5. As compared to the nonunitary effects

induced by B� -field inhomogeneity, the spin-orbit effects are
on average 4 orders of magnitude smaller. The angular de-
pendence of the population of triplet states on the interdot
radius-vector orientation at a fixed rAB=200 Å is illustrated
in Fig. 8.

E. B� -field interaction in the pseudospin model

Using Eqs. �37� and �40�, the effective Hamiltonian ma-
trix Eq. �6� in the basis 	�s1 ,�ti , i=1,2 ,3
 can be rewritten
as

FIG. 4. �Color online� Triplet-state population dependence on interdot separations rAB=300, 350, 400, 450, 500, and 600 Å at a fixed
�Bz=0.05 T.
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Heff =�
�s

1
2�2

�B+ − 1
2�Bz − 1

2�2
�B−

1
2�2

�B− �t + Bavz Bav
− 0

− 1
2�Bz Bav

+ �t Bav
−

− 1
2�2

�B+ 0 Bav
+ �t − Bavz

� ,

�56�

where, for simplicity, we neglected contributions from the
double-occupancy states �the resolvent term in Eq. �3��. Al-
ternatively, in the pseudospin representation, we get

Heff = �1

4
�s +

3

4
�s
I + JHs�A · s�B + B� av · �s�A + s�B� +

�B�

2
· �s�A

− s�B� = �1

4
�s +

3

4
�t
I + JHs�A · s�B + B� A · s�A + B� B · s�A,

�57�

where B� A=B� av+�B� /2 and B� B=B� av−�B� /2 are the local mag-
netic fields at sites A and B, respectively. The term JHs�A ·s�B is

the familiar Heisenberg interaction. In matrix form, Eq. �57�
can be rewritten as

Heff =�
�1

1
2BA

− 0 0

BA
+ �2

1
2JH 0

0 1
2JH �3

1
2BB

−

0 0 1
2BB

+ �4

� ,

�1 = �t + 1
2BAz, �2 = �t − 1

2 �JH + BAz� ,

�3 = �t − 1
2 �JH − BBz�, �4 = �t − 1

2BBz, �58�

where BA,B
� =BA,Bx� iBA,By.

The Hamiltonian Eq. �56� generates a unitary evolution,

Ueff�t� = exp�− itHeff� , �59�

in C4. At a fixed set of parameters �s, �t, B� A, and B� B, the
propagator Ueff�t� does not provide a universal set of unitary
gates in C4. Any unitary transformation U�U�4� can be rep-

FIG. 5. �Color online� Lamb energy shift dependence on interdot distances rAB=300, 350, 400, 450, 500, and 600 Å at a fixed �Bz

=0.05 T.
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resented as a product of a phase factor exp�i��, where � is a
real parameter, and a unitary transformation US�SU�4�.
Any transformation US is determined by M =42−1=15 inde-
pendent real parameters ��1 , . . . ,�15� so that

US��1, . . . ,�M� = exp�− i�
i=1

M

�iFi
 , �60�

where the set of generators 	Fi
 is an orthonormalized trace-
less, Hermitian matrix set that forms a Lie algebra su�4� �Fi

form a complete basis in a real M-dimensional vector space;
they are analogs of Pauli matrices, ��, �=x ,y ,z, in su�2�,
see, e.g., Ref. 36�. From the representation Eq. �60�, it fol-
lows immediately that Ueff,S�t�=exp�−it� 1

4�s+ 3
4�t��Ueff�t�

cannot match an arbitrary US because the number of inde-
pendent parameters in Eq. �56� is at most 8—fewer than the
number of �i. This can also be understood from the fact that
the form of the Hamiltonian matrix �Eq. �56�� is not generic.
In particular, the matrix is sparse, i.e., the entries �2,4� and
�4,2� are zeros.

However, compositions of unitary transformation Eq. �59�
taken at different sets of parameters can provide a universal
set of unitary gates in C4. A well-known example of universal

gates is provided by the Heisenberg interaction �at JH�0�
with single-spin addressing �at �B� �0�.1

From Eq. �56�, it follows that a necessary and sufficient
condition for obtaining a universal set of gates on two spins
is to have an inhomogeneity in the magnetic field �B� �0
�the source of inhomogeneity can be different; it can be ei-
ther strongly localized magnetic fields or g-factor engi-
neered� and the Heisenberg interaction, JH�0. The reason is

that when �B� =0, the Hamiltonian Eq. �56� and the corre-
sponding unitary transformations take a block-diagonal form,
with singlet-triplet entries being zeros, while when JH=0, the
Hamiltonian form Eq. �58� will have zero off-diagonal block
matrices. Clearly, even a composition of such unitary trans-
formations taken at different sets of parameters, either

�s ,�t ,B� A=B� B or �s=�t ,B� A ,B� B, will be in a block-diagonal
form and it cannot reproduce an arbitrary unitary transforma-
tion. Note that when one allows for encoding a qubit into
three or more spins, the Heisenberg interaction alone is uni-
versal in the pseudospin model,37,38 and Heisenberg along
with an inhomogeneous magnetic field is universal for an
encoding of a single qubit into a pair of spins.39

Moreover, it should be noted that in the homogeneous
magnetic field case, unitary transformations restricted to the
triplet subspace will not provide a universal set of gates. To

FIG. 6. �Color online� Triplet-state population dependence on spin-orbit interaction as a function of time at different interdot separations
rAB and fixed orientation of the interdot radius vector r�AB ��=� /4,�=� /3� �see text�. The initial triplet-state population is taken to be equal.
The external magnetic field B0z=0.5 T.
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prove this statement, let us consider a composition of two
unitary transformations in the triplet subspace:

exp�− it1Htt�B� 1��exp�− it2Htt�B� 2��

= exp�− i�t1 + t2�Heff
tt �

= exp�− i�t1 + t2��t − it1Htt�B� 1� − it2Htt�B� 2�

−
t1t2

2
�Htt�B� 1�,Htt�B� 2�� + ¯ � , �61�

where on the right-hand side, we used the Campbell-
Hausdorff formula.40 From Eq. �37�, one obtains

�Htt�B� 1�,Htt�B� 2�� = i�2Bz B− 0

B+ 0 B−

0 B+ − 2Bz
� , �62�

where B� = �B� 1�B� 2� and B�=B� x� iB� y. Since the higher-
order terms in the Campbell-Hausdorff formula consist of

nested commutators between Htt�B� 1� and Htt�B� 2�, we find
that the effective Hamiltonian Heff

tt corresponding to the
product of two unitary transformations will still have a
sparse form, with the �1,3� and �3,1� entries being zeros.

F. Is it possible to obtain a universal set of gates
in the pure-spin model?

Simultaneously, we have just proved that in the pure-spin
model, in the case of a homogeneous magnetic field, unitary
transformations in the triplet subspace will not provide a

universal set of gates. On the other hand, at �B� �0, we have
already shown that the evolution of the spin density matrix is
nonunitary. Let us assume that we have a nonunitary gate L1
so that ��t1�=L1�t1���0�. How could one define a composi-
tion of two nonunitary gates, L2L1? In order to do this un-
ambiguously, L2 should obey a compatibility condition with
the initial state �because a nonunitary L gate is not totally
independent of the initial state, it includes some sort of cor-
relation information encoded in the initial state�, that is, a
correlation Rm�t1� established between as�t1� and at�t1� am-
plitudes at t= t1 should be included in the definition of the
corresponding dynamics generator operators in L2. Equation
�17�, where the left-hand side and Hts should be replaced by
Rm�t1� and the identity matrix, respectively, provides a rela-
tionship between Rm�t1� and Rm�0�. If the correlation be-
tween the amplitudes at t=0 and t= t1 is the same, Rm�t1�
=Rm�0�, then we obviously have L1=L2=L and
L2�t2�L1�t1�=L�t1+ t2�.

In the total Hilbert space, the state is defined by 11 real
parameters. While in the reduced description the spin density

FIG. 7. �Color online� The purity in the presence of spin-orbit coupling. All parameters are the same as in Fig. 6.
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matrix is defined by five real parameters �for more on the
spin density matrix parametrization in terms of a, see Sec.
V�. Fixing a correlation in the initial state, as�0�
=Rm�0�at�0�, we have three complex equations between the
amplitudes as�0� and at�0�, which define a five-dimensional
real manifold embedded into the total Hilbert space. Using
these equations, we can separate six extra real degrees of
freedom that we have in the total state description from those
in the spin density matrix description. However, these extra
degrees of freedom are not eliminated in the spin density
description; they are included in the form of correlation ma-
trix R��0�, �= 	s , t ,m
. It was shown in Part I that Eq. �14�
provides an exact description of quantum evolution in the
spin density space. Therefore, as long as we have a universal
set of unitary gates in the total Hilbert space, this set of gates
will be translated into the corresponding universal set of non-
unitary gates generated by Eq. �14� because no information
is lost in our “reduced” spin density matrix description.

G. Spin-orbit interaction in the pseudospin model

Let us consider spin-orbit effects, which are proportional
to �Bso, in the pseudospin model. From Eq. �6�, we obtain

Hso��B� so� = �
kk�=2,3

H1k
ss� 1

ĒI − Hss

kk�

−1

Fk���B� so� , �63�

where

Fk��B� so� = �
i=1

3

	Hki
st��B� so�Ki + �Hki

st��B� so��*Ki
†
 . �64�

It follows from Eq. �49� that H2i
st =H3i

st and F2=F3 and Eq.
�64� can be reduced to

F2,3��B� so� = F��B� so� = i�2�B� so�s�A � s�B� . �65�

Then, Eq. �63� can be rewritten as

Hso��B� so� = AdoF��B� so� , �66�

where the coefficient Ado is proportional to the ratios of the
amplitudes of double-occupancy transitions �H12

ss and H13
ss �

and the energies of interelectron interaction �H22
ss − Ē and

H33
ss − Ē� in doubly occupied QDs:

Ado = �
kk�=2,3

H1k
ss� 1

ĒI − Hss

kk�

=
1

�
�H12

ss �Ē − H33
ss − H32

ss � + H12
ss �Ē − H22

ss − H23
ss ��

�
H12

ss

Ē − H22
ss

+
H13

ss

Ē − H33
ss

. �67�

FIG. 8. �Color online� Effect of spin-orbit angular anisotropy on triplet-state population. All parameters are the same as in Fig. 6.
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Here, the determinant is

� = �Ē − H22
ss ��Ē − H33

ss � − �H23
ss �2. �68�

The effective spin-orbit interaction Hamiltonian Eq. �66�
is different from the corresponding one obtained by
Kavokin.17 In our derivation, the double-occupancy states
are essential, whereas in Ref. 17, these states are totally ne-
glected. We showed above that neglecting double-occupancy
states results in zero spin-orbit coupling. The very physical
picture put forward in Ref. 17 to support the derivation was
based on the assumption that when one of the two electrons
localized at centers A or B tunnels to the adjacent center �say,
from A to B�, it experiences the influence of the spin-orbit
field resulting from the underbarrier motion of the electron.
Neglecting double-occupancy states means that the second
electron should simultaneously tunnel from B to A so that the
two electrons can never be found in the same QD. Indeed, in
Ref. 17, this simultaneous two-electron transition is de-
scribed by the product of two matrix elements: the overlap S

and ��B� so��, �=x ,y ,z �Hso�S��B� so · �s�A�s�B��, our �B� so is

related to Kavokin’s b field via �B� so=−ib, and the overlap
via S=��. With the orthogonalized molecular-type, two-
center orbitals, such a one step two-electron transition gives
a zero contribution since the spin-orbit interaction is a one-

electron operator and the overlap S̃= ��̃A � �̃B�=0. Equation
�63� describes the two-step mechanism: In the first step, the
two-electron system makes a transition from the singly oc-
cupied state �s1 to the intermediate, double-occupancy states
�s2 and �s3 due to the interelectron interaction �H1k

ss ,k
=1,2 terms�. Then, in the second step, as a result of the
spin-orbit interaction, the system makes transitions from �s2
and �s3 to �ti triplet states �the Hki

st terms�.
Let us find an estimate for

Ado�R� � −
2�2

��do − �t�
� � dr�1dr�2�2�r1�

����r�2 − R� ��
1

��r�2 − r�1

��r2� , �69�

where the hydrogenlike orbital ��r�= ��aB
3�−1/2 exp�−r /aB�.

Since electron 1 in Eq. �69� is localized around the effective
Bohr radius aB, one can approximate

1

�r�2 − r�1�
�

1

�r�2 − aBr�1/r1�
. �70�

Then, the remaining integrals can be calculated exactly and
we obtain

Ado�r = R/aB� � −
4�2

er
	4eF1�r� − 2�F1�r + 1� + F1�r − 1��

− �F2�r + 1� − F2�r − 1�� + 2�F0�r + 1� − F0�r − 1��
 ,

�71�

where

F0�x� =
sgn�x�

48
�15�1 + �x�� + 6�x�2 + �x�3�exp�− �x�� ,

F1�x� = 1
48�3�x��1 + �x�� + �x�3�exp�− �x�� ,

F2�x� =
sgn�x�

2
�1 + �x��exp�− �x�� . �72�

Here, we used the same estimate for �do−�t as in Sec. III D.
In order to compare our calculations to Kavokin’s result

for GaAs, we have plotted in Fig. 9 the spin-orbit interaction
reduction coefficient,

Kso =
�Ado�
�2S

, �73�

which is exactly the ratio of our and Kavokin’s estimates as
a function of interdot distance. As one can see, Kso decreases
from 0.98 to 0.46 in the range rAB�300–700 Å. Interest-
ingly, our results qualitatively agree with the results of Ref.
28, which were obtained in the region of interest �rAB

��3–7�aB�, a reduction of about one-half relative to that of
Refs. 17 and 41. According to Ref. 28, Hso�2J�GK, where J
is the exchange integral calculated using the medium hyper-
plane method29,30 and �GK is an angle of spin rotation due to
spin-orbit interaction introduced by Gor’kov and Krotkov
��GK� 1

2�K, �K being the corresponding angle of spin rota-
tion introduced by Kavokin�. Note that Kavokin’s �K and J
are not independent parameters. In Ref. 17, �K was defined
as �b /J, so that their product 2J�K=2�b does not depend
explicitly on J.

IV. ELECTRONS ON LIQUID HELIUM

Recently, Lyon suggested that the spin of electrons float-
ing on the surface of liquid helium �LHe� will make an ex-
cellent qubit.42 Lyon’s proposal, instead of using the spatial
part of the electron wave function as a qubit as in the charge-

FIG. 9. Spin-orbit interaction reduction coefficient �Eq. �73�� as
a function of interdot distance for GaAs.
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based proposal,43–46 takes advantage of the smaller vulner-
ability of the electron’s spin to external magnetic perturba-
tions and, as a consequence, a longer spin-coherence time. It
also has the important advantage over semiconductor spin-
based proposals �as first pointed out in the charge-based
proposal43–46� that, with the electrons residing in the vacuum,
several important sources of spin decoherence are eliminated
so that the environment effects are highly suppressed �the
spin-coherence time is estimated42 to be T2�100 s�.

The geometry of the system with the electrons trapped at
the LHe-vacuum interface �see Fig. 2 in Ref. 42� is concep-
tually similar to that of semiconductor heterostructures. The
two electrons are trapped at sites r�A and r�B �r�A,B are radius
vectors of the centers of quantum dots in the z=0 plane� by
the two attractive centers created by two charged spherical
electrodes located below the LHe surface at distance h and
separated by the interdot distance rAB= �r�A−r�B�:

Vtr�z,r�� = −
�

z
+ VA�z,r�� + VB�z,r�� , �74�

VA,B�z,r�� = −
QA,B

��z + h�2 + �r� − r�A,B�2
, �75�

where the first potential, −� /z, is due to attraction to the
image charge induced by an electron in the LHe ��= ��
−1� / �4��+1���7�10−3, with ��1.057 being the dielectric
constant of helium�. For purposes of interaction control, the
QA,B charges on the electrodes can be made variable in time.
The electrons are prevented from penetrating into helium by
a high potential barrier ��1 eV� at the helium surface, so
that formally, one can set Vtr=	 at z�0. The in-plane and
out-of-plane motions of electrons in the potential of Eq. �74�
are, in general, nonseparable. However, near the electrode’s
position r�A,B, the potential of Eq. �75� is approximately sepa-
rable in the z and r� coordinates,

VA,B�z,r�� � −
QA,B

h
+ E�A,Bz +

1

2
�A,B

2 �r� − r�A,B�2, �76�

where it is assumed that z and �r�−r�A,B��h and E�A,B
=QA,B /h2 and �A,B= �QA,B /h3�1/2. In the separable approxi-
mation of Eq. �76�, the electron’s motion in the z direction
�z�0� is described by a one-dimensional �1D� Coulomb po-
tential perturbed by a small Stark interaction and the in-plane
motion by a two-dimensional �2D� oscillatory potential. We
assume that the out-of-plane motion in the z direction is fro-
zen in the ground state of a 1D Coulomb potential,

�0
C�z� = 2����z�exp�− �z� , �77�

and the in-plane motion, in a superposition of the in-plane
confining oscillatory potential and, possibly, a perpendicular
magnetic field, is described by the FD states of Eq. �23�.
Then, the calculation of hij and vee�ij ;kl� in Eqs. �27�–�29� in
the chosen basis set is reduced to the 1D integrals

hAB = �−
�

2
+

1

4lA
2 − 2�QAgc��,
,�A�

− 2�QBgc��,
,�B��SAB,

hAA = −
�

2
+

1

4lA
2 − 2�QAgc��,
A,0� − 2�QBgc��,
A,2�rAB� ,

hBB = −
�

2
+

1

4lB
2 − 2�QAgc��,
B,2�rAB� − 2�QBgc��,
B,0� ,

gc��,
,�� = �
0

	

dxJ0��x�exp�− �x − 
x2�/�x + 1�3,

� = 2�h, 
 =
�2�lAlB�2

lA
2 + lB

2 ,


A,B = 2��lA,B�2, �A,B =
2�lB,A

2

lA
2 + lB

2 rAB, �78�

vee�AB;CD� = Neegee�a,b� ,

Nee =
�lAlBlClD

�lA
2 + lC

2 ��lB
2 + lD

2 �
exp�−

rAC
2

4�lA
2 + lC

2 �
−

rBD
2

4�lB
2 + lD

2 �

 ,

gee�a,b� = �
0

	

dxJ0�bx�exp�− ax2��3x2 + 9x + 8��x + 1�−3,

a = 4�2� lA
2 lC

2

lA
2 + lC

2 +
lB
2 lD

2

lB
2 + lD

2 
 ,

b = 2�� lC
2 r�A + lA

2r�C

lA
2 + lC

2 −
lD
2 r�B + lB

2r�D

lB
2 + lD

2 � , �79�

where i=A ,B ,C ,D in the two-electron matrix elements de-
notes orbitals with the effective lengths li localized at r�i, and
J0�x� is the zeroth order Bessel function. From Eq. �79�, one
can obtain the following expression for the Heisenberg inter-
action constant:

JH = − 1.36 � 104�gee�a,0�S2 meV,

a =
8�2lA

2 lB
2

lA
2 + lB

2 . �80�

Note that JH is proportional to the square of the overlap
matrix element S �Eq. �25��, and the integral gee�a ,0� does
not depend on the interdot distance rAB. As a rough estimate,
one can approximate the rational function in the integral
gee�a ,0� by a constant 8, obtaining gee�a ,0��4�� /a as a
result.

Figure 10 shows the magnitudes of the Heisenberg and
dipole-dipole spin interaction, �JH� and Jdip from Eqs. �80�
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and �36� respectively, as a function of interdot distance. As
estimated, the magnitude of the Heisenberg interaction is
comparable to the weak dipole-dipole interaction at rAB
�1000 Å. However, we remark that the strong dependence
of S�exp�−�rAB

2 � �quadratic in the interdot distance� is due
to the quadratic dependence on coordinates in the exponent
of the corresponding oscillatory wave functions. Asymptoti-
cally, the confining potential in Eq. �75� behaves as a 2D
Coulomb potential, so that one should expect a milder coor-
dinate dependence, S�exp�−�rAB�, at large distances �as-
suming B0=0� and the rough estimate of Eq. �80� provides a
lower bound for the Heisenberg interaction strength.

Lyon suggested42 using, instead of the exchange interac-
tion, the magnetic dipole-dipole interaction between the
spins in order to implement two-qubit gates, motivating this
by the strong sensitivity of the exchange coupling to the
parameters of the system and, hence, the corresponding dif-
ficulties with attempting to control this interaction. Our
analysis confirms this, though, of course, it is not easy to
control the dipole-dipole interaction either: Eq. �36� shows
that this interaction depends on only one controllable param-
eter, the interdot distance �the g factor is a constant in
vacuum�.

Similarly to Figs. 1 and 2, Figs. 11 and 12 demonstrate
nonunitary effects in the pure-spin model due to magnetic
field inhomogeneity in the electrons-on-LHe system. The in-
terdot distance shown is rAB=900 Å. At this distance, the
Heisenberg interaction still prevails over the dipole interac-
tion by at least an order of magnitude. Again, the pattern
seen in the singlet-triplet state population redistribution is
clearly oscillatory.

V. DISCUSSION AND CONCLUSION

We have performed a comparative study of pure-spin and
pseudospin dynamics for a system of two interacting elec-
trons trapped in two QDs. We have shown that when there is

negligible coupling between the spin and orbital degrees of

freedom, which is the case of near B� -field homogeneity and
negligible spin-orbit interaction, the system spin dynamics is
unitary in both pure-spin and pseudospin models and is gov-
erned by the Zeeman interaction Hamiltonian of the total

spin S� �S=1� with the magnetic field B� av. The singlet and
triplet states are totally decoupled; the total spin is con-
served. The spin system Hilbert space can be decomposed
into two independent, singlet and triplet subspaces, the sin-
glet spin states being magnetically inactive �S=0�. Thus, the
two-electron spin system restricted to the triplet subspace
physically embodies a qutrit. The Heisenberg interaction op-
erates differently in pure-spin and pseudospin models. If, for

FIG. 10. The Heisenberg and dipole-dipole spin interaction
magnitudes as a function of interdot distance. The distance from the
electrodes to the LHe surface h=800 Å and the charges on the

electrodes QA=QB=1 a.u. The magnetic field B� 0=0.
FIG. 11. �Color online� The triplet-state population of electrons

trapped in QDs on a LHe surface as a function of time at different
magnetic field differences �Bz=0.05 and 0.1 T. Initially, the system
is in the triplet state �S=1,MS=0�. The distance between QDs is
900 Å. All other parameters are the same as in Fig. 10.

FIG. 12. �Color online� The purity p�t� for the same parameters
as in Fig. 11.
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simplicity, we neglect double-occupancy states, the pseu-
dospin state is totally defined by four complex amplitudes:
	as1�0� ,ati�0� , i=1,2 ,3
 in the basis 	�s1 ,�ti
, so that the
Heisenberg interaction results in a phase unitary transforma-
tion: 	as1�t�=exp�−i�st�as1�0� ,ati�t�=exp�−i�tt�ati�0�
. Since
the spin density matrix ��t� is a bilinear combination of a:
�tij�t�=ati�t�atj

*�t�, �s�t�=1−�i�tii�t�, the � state will not be
affected by the unitary transformation induced by the
Heisenberg interaction.

We have also shown that unitary quantum gates realized
in both spin models do not provide a universal set of gates
under the condition �B� =0. In order to obtain a universal set
of gates, there should be both nonzero coupling between sin-
glet and triplet states ��B� �0� and nonzero Heisenberg in-

teraction �JH�0�. Although at �B� �0 pure-spin dynamics
becomes nonunitary, one can establish a relationship between
unitary gates in pseudospin and the corresponding nonuni-
tary gates in pure-spin dynamics, so that a universal set of
quantum gates constructed within the pseudospin model will
generate a universal set of nonunitary gates in pure-spin dy-
namics.

To demonstrate the nonunitary effects, which are propor-
tional to the square of the magnetic field inhomogeneity, in
pure-spin dynamics, we have calculated how singlet- and
triplet-state populations, as well as the purity and the Lamb

energy shift, are affected by �B� �0 and spin-orbit interac-
tion in n-doped GaAs semiconductors. These effects are

found to be strongly dependent on the ratio of B� -field inho-
mogeneity and the Heisenberg interaction constant, ��Bz /JH�.
For example, the singlet-triplet state population redistribu-
tion is maximal at t=�n /�, where �=�JH

2 +�Bz
2 and n

=1,3 , . . ., and the singlet-state population can achieve the
value �Bz

2 /�2. Thus, we can conclude that the Heisenberg
interaction, characterized by the interaction constant JH,
plays an essential role in producing nonunitary effects in
pure-spin dynamics. Spin-orbit interaction effects are found
to be roughly 4 orders of magnitude smaller as compared to

those caused by B� -field inhomogeneity.
As shown in Figs. 1–8, there are clear oscillations in the

pure-spin dynamics and the nonunitary behavior of the spin
density matrix does not show the decaying pattern character-
istic of a real decoherence process. This should be expected
since the bath, the electron orbitals, in our spin model is not
a real stochastic or infinite external bath, an interaction with
which may result in irreversible decoherence. In essence, the
spin dynamics is embedded in space and our bath is too
small. The coordinate Hilbert space in the two-orbital
ground-state approximation adopted in the present paper is
represented by four two-electron coordinate basis wave func-
tions. In principle, the coordinate bath can be large in a sys-
tem where couplings between excited- and ground-state or-
bitals are not negligible. This is an interesting question for
future investigation: how will couplings to excited orbitals
affect the nonunitary spin dynamics? The other interesting
generalization of the present model is inclusion of real envi-

ronment effects, i.e., the real stochastic bath representing the
interaction of electron spins with the semiconductor medium.
We will consider these and other generalizations in future
publications.

In the pseudospin model, where B� -field inhomogeneity
results in first-order effects, we have estimated the contribu-
tion of the spin-orbit interaction to the effective pseudospin
Hamiltonian, namely, the DM spin-orbit interaction term,
and have suggested a two-step mechanism: coupling between
the singly occupied singlet state and triplet states occurs via
intermediate, double-occupancy states �direct coupling be-
tween these states turns out to be zero due to orthogonality of
the orbitals involved in the transition�. Our calculations pre-
dict a smaller magnitude of the spin-orbit interaction as com-
pared to the estimates of Ref. 17 but are consistent with the
results of Ref. 28.

In our second application, we demonstrated �in Figs. 11

and 12� nonunitary effects due to �B� �0 in a system of
electrons trapped above a liquid helium surface, namely, the
spin-based quantum computing proposal by Lyon.42 A more
thorough investigation of spin dynamics in this system is left
for a future publication.

Although the � dynamics becomes nonunitary in general

�at �B� �0�, it is controllable by modulating the interaction

parameters, JH, B� av, and �B� . Since the nonunitarity comes

from the magnetic field inhomogeneities, �B� and/or �B� so,
and since the � dynamics is quadratically protected from
these fields, this might prove to be important in practical
quantum computing as minimizing coupling between spin
and orbital degrees of freedom quadratically improves the
fidelity of unitary gates in the �-state space.

In conclusion, we note that the two-electron spin density
matrix description advocated in this paper is expected to be
useful when localized electrons �e.g., trapped in QDs� are not
spatially resolved or resolvable. Formalization of this physi-
cal situation results in a requirement imposed on the observ-
ables accessible by a measurement, namely, that they should
not depend on the electron’s coordinates. This means that
any measurable observable should be represented as a tensor
product O= Ir � OS, where Ir� is the identity operator acting in
the coordinate space and OS is a pure �Hermitian� spin op-
erator. Since any observable for a system of identical par-
ticles must be invariant under permutations of the particles,
we also require that OS should be symmetric with respect to
electron permutations. The observable dynamics is then

completely described by the spin density matrix �: Ō�t�
= ��tot�t��O��tot�t��=tr�OS��t��. As an example, we consider
a nonlocal pure-spin operator OS=S= �
s��
s�= 1

4 I−s�1 ·s�2, in

which case we obtain the singlet-state population, Ō�t�
=�i=1

3 �asi�t��2.
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