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A statistical treatment is used to describe the dipole-dipole relaxation processes of spins S = 1/2 diffusing on 
finite two-dimensional (W) surfaces. This leads to a general expression for the dipolar correlation function 
G(r) including pairwise autocorrelation and cross-correlation terms. We show that for a finite W planar 
surface, G(r) decays faster than that for an infinite planar surface. For finite 2D planar surfaces, dipolar 
translational correlation times, fc are expressed in terms of the diffusion coefficient, the distance of closest 
approach between spins, and the area of the surface. It is shown that there is rapid motional line shape 
narrowing for sufficiently small two-dimensional surfaces. The calculation of resonance line shapes for the 
infinite W surface is discussed, but remains an unsolved problem when the only relaxation processes are those 
that arise from intermolecular dipolar interactions. 

I. INTRODUCTION 

It is well known that, at least from a theoretical point 
of View, a number of physical and chemical properties 
of two-dimensional (2D) systems are expected to be 
remarkably different from those of three-dimensional 
(3D) systems. Such properties include chemical re-
action rates, 1 lateral diffusion,2 the nature and order of 
phase transitions,3 and various correlation functions, 4.5 

especially those involved in the calculation of magnetic 
resonance line shapes. In evaluating such theoretical 
work the question is often raised as to whether or not 
a particular physical system is truly two dimensional. 
Certain problems involving the components of biological 
membranes are either strictly 2D, or sufficiently close 
to 2D that 2D theory must be used. This is the case 
for the theory of magnetic resonance line shapes, dis-
cussed here and earlier. 6 This problem is particularly 
troublesome Since, as is well known, the correlation 
time for secular dipolar interactions is infinite for an 
infinite 2D membrane, even though the system is in every 
respect a 2D fluid where there is rapid molecular mo-
tion. 8 The purpose of the present paper is to provide a 
mathematical and physical understanding of this seem-
ingly paradoxical result, by treating the problem for 
finite 2D systems, thereby laying the foundation for 
further work on the infinite 2D system. 

We consider the case where the modulation of the 
secular dipole-dipole interaction, by the 2D Brownian 
diffUSion, is the dominant mechanism for the relaxation. 
This can be useful for dilute gases4 and liquids5•7- 11 and 
in some appropriate ranges of temperature and viscosity 
for biological membranes.8.12-15 In the first part of the 
following section we give a general expression for the 
dipolar correlation function in a finite 2D spin system. 
This latter is expressed as a difference of a pairwise 
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autocorrelation and cross-correlation terms which are 
significant for finite systems and ensure the decay to 
zero of the dipolar correlation function at infinite time. 
This is an extension to finite 2D system of a previous 
work on lattice correlation functions4 calculated ac-
cording to the well known Kubo's method. 8 In the second 
part we calculate this expression, using the Green's 
function method18 (a) successively for infinite and finite 
planar surfaces. For the infinite surface this correla-
tion function does not decay fast enough to define a cor-
relation time. For a finite surface, one obtains an ex-
preSSion which is a function of the diffusion constant D, 
the distance of the closest approach between two spins 
0, and the size of the system. This leads to a finite 
value of the correlation time. In the final part, we 
consider the motional narrowing effect in a finite planar 
spin system such as a spin-labeled phospholipid mono-
layer membrane. The narrowing condition8 for each val-
ue of the spin concentration C and the diffusion constant 
D defines a maximum area of the spin system for which 
motional narrowing occurs. A range for the values of 
this size is given for electrons and protons. 

II. THEORY 

A. Dipolar correlation function in a finite two-
dimensional spin system 

We consider a system of 2N (» 1) electronic or nu-
clear spins with S = 1/2, belonging to the same species 
which diffuse on a finite 2D surface of area A in the 
presence of a strong constant'magnetic field of in-
tensity Bo. We consider only the relaxation due to the 
modulation of the secular dipole-dipole interaction by 
translational diffusion. Using a statistical approach, 
the perSistence of the fluctuations of the local dipolar 
fields acting on an arbitrary test spin j due to all other 
spins j), 17 can be represented by the dipolar cor-
relation function 

(1 ) 

Here 
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(2) 

is the secular interaction between two spins,10(h) and 
biJ(T) the same quantity at a later time T, and n, = ± 1 
gives the orientations of the spin i assuming an orien-
tation + for the test spin j. The notation () corresponds 
to the ensemble averages over all the positions e'f' r,f , 
and orientations n! at times ° and T, respectively. 
Here e,i is the angle between the radius vector r ,i from 
i to j and direction of the field B o• 

lt is possible to simplify Eq. (1) as follows: The 
separation of the contributions from the i's belonging to 
the up and down spins leads to the following sum of auto-
correlation Gac(T) and cross-correlation GCC(T) functions 

G(r)==GaC(r) + GCC(r) , 

where 
2N 

Gac(r) =L (b,iO)b,j(r) , 
121 

2N 

GCC(T)= L' (b1i(0)bki(r» . 
Uk:! 

Primes on summations indicate that terms for which 

(3) 

(4) 

(5) 

i = k are omitted. At high temperatures (- 300 K) when 
the number of plus spins is very nearly equal to the 
number of minus spins, 

(6) 

In this latter equation the ensemble averages can be re-
placed by their usual expressions [(7) and (8)1 in 
terms of the conditional probability P{r

" 
r i' T I r, 0' ria' 0) 

for the particle i to be at time T at position rj within 
the surface at a distance r ij from a second particle 
j at r j contained within when these two particles 
were at time T == 0 at r j 0 and r in' respectively. This 
gives 

(b/j(O)bk/r» p(rlo) f dr;op(r io)b'Qiq 

x jdrip(rk) f '= ([;)2 , (B) 

where p(r,o) =p(rin) are the initial uniform distribu-
tions for i and j, and b is the average magnitude of the 
field between two particles randomly distributed in the 
area. By substituting Eqs. (7) and (8) into Eq. (6), we 
obtain the following general expression of the dipolar 
correlation function for a spin system diffusing on a 
finite 2D surface of area A: 

G(T) 

xP(r/> r i , T I rio' rio' O)bu -A biolo YJ . 
(9) 

As seen in Eq. (9), the decay of G(T) depends on the 
form of the function P which is obtained by solving the 
diffUSion equation. That solution depends on the size 
and geometry of the 2D surface. Concrete examples 
are presented in the next section for planar surfaces of 
different areas. 

B. Dipolar translational correlation time in a planar 
spin system 

For Simplicity, let the high constant magnetic field 
Bo be perpendicular to the 2D plane. This eliminates 
the explicit cos eli dependence in Eqs. (2)-(9). Two 
cases will be successively considered, infinite A and 
the finite A <:ases. In each case the normalized dipolar 
correlation function will be calculated from Eq. (9) and 
the average secular dipolar translational correlation 
time will be deduced. 

1. Infinite planar area 

For an infinite planar area (A- co), the pairwise ex-
pression given in Eq. (9) can be greatly Simplified. The 
cross-correlation term does not contribute here, and 
it is legitimate to consider one of the particles fixed at 
the origin and allow the other to diffuse radially with a 
double diffusion coefficient. 10(a),11 USing a delta func-
tion for the unit instantaneous material source released 
at time T=O at the radius r=ro, 16(b) we <:an obtain the 
Green's function for an infinite system p l • t • - (B7TDTr1 
at long time (1. t.). Substituting the function p l . t • in Eq. 
(9), one finds after some algebraic manipulations the 
normalized dipolar correlation function at long time 

= (0) - 02/(DT) , (10) 

where 0 is the distance of closest approach of pairs of 
spins. We see in Eq. (10) that for an infinite 2D sur-
face does not decay fast enough, as shown pre-
viously, 4,5 to obtain a finite correlation time Tc [or 
zerO-frequency spectral density J(O) J because of the 
logarithmic divergence of J(w) as w- 0: 

(11) 

where is replaced in Eq. (11) by its expression 
given in Eq. (10). In that case, it is not possible to • 
apply the rapid motion narrowing theory of Kubo to ob-
tain the line shape. 

2. Finite planar area 

For a finite planar surface of area A, the relative 
diffusion assumption used above cannot be applied. 
However, because the two random variables r l and rj 
are independent it is possible to consider the Green's 
function peri' r j , T Iri9, riO' 0) present in Eq. (9) as a 
product of two Green s functions p,(rl' T Ir, 0,0) asso-
ciated with each i (i = 1 or 2). These latter 
functions can easily be found when one considers, as 2D 
finite planar area, a square of side a (O:sx,y:Sa). If 
one assumes a unit instantaneous material line (parallel 
to the z axis) passing through the point x,o' Ylo (i==l or 
2) at time T 0, and no diffusive flow out of the square, 
it has been shown1S(a) that 
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PI (XI' YI' T I Xlo' Y / 0' 0) = a-2 [1 + 2 exp( - n2rr2 DT / XI 0)] 

x i=1 or 2, (12) 

uSing the notation 

or YI' x/a or or YI)] or Ylo)] (13) 

The pairwise Green's function p(rh r2,Tlr10' r 2o ' 0) is then obtained as the product P 1XP2, where PI and P 2 are given 
in Eq. (12). This assumes that volume exclusion is not significant in the correlation of the interparticle distance. 
After a simple calculation one has 

P(Xl, Yt, X2,Y2, Tlx10' Y10' X2o' Y20' 0) =a-4{1 +2t exp(-n2T/2Tl) L io) + 4 t texp[ - (n2 +m2)r/2Ttl 
n=1 1=1,2 n,m=1 

X io) + 10)C'!.+m(2, 20)J + 8 exp[ - (n2 + m 2 + p2)T/2Ttl 

x L io)C:<1>{j,io) + 16t t t t exp[ - (n2 + m 2 + p2 + l)T /2TtlCnxm(l, 10)Cpx/2, 20)} , 
n,m,p,q::;1 , 

(14) 

with the notations 

Tl = a2/2rr2D , (15) 

(16) 

i=1 or 2. (17) 

The different terms in the series present in Eq. (14) 
can be regarded as coming from the superposition of the 
normal modes of diffusive relaxation in a square, start-
ing at time T = 0 with two unit instantaneous material 
lines (one for each particle), respectively at (X1 0' Y10) 
and (X20' Y20) and represented by delta functions (Appen-
dix A 2). These series converge rapidly due to the time-
decaying exponentials. The exponents of those exponen-
tials are expressed in terms of the longest correlation 
time Tl defined in Eq. (15). We have shown in Appendix 
A how each of these five series of terms contributes to 
the dipolar correlation function and obtained the nor-
malized dipolar correlation function GN(T) for a finite 
plane area as 

5 

• GN(T) =LGk(T)/G(O) , (18) 
k=1 

where the expreSSions of the five Gb(T) and G(O) are 
given in Eqs. (AI), (A4) [(A8), and (AI4)], (A18) 
[(A22), and (A26)], respectively. The Gk(T)'S are ex-
pressed as sums of individual mode contributions. Each 
of these contributions is a product of a time-decaying 
exponential and an amplitude factor which represents a 
spatial oscillation. The decay constant of each mode Tn 
varies approximately as 7j/n2. The spatial frequency of 
the oscillations depends on the value of the range of di-
polar interaction lo (l?l) (0 being the distance of closest 
approach between two spins), the size of the system a, 
and the value of the mode n, through the product nrrlo/a 
for the condition: 0 <lo« a (Appendix A). So, for a 
gi ven value of the ratio lO / a « 1, the high spatial fre-
quency terms (n» 1) decay faster than the low frequency 
ones (n-1). 

In order to have a more useful form for the line shape 
analysis it is possible to simplify greatly the expression 
of GN(T). For instance, according to the assumption 
lO/a« 1, most of the terms of Eq. (18) have a very 
small amplitude and we neglect these terms of order 
lOla which give very small contributions to the line 
shape. Computer calculations of the amplitudes of the 
different Gk(T) have shown that the following convergent 
expression represents, at time T = 0, 99% of the total 
power GN(O). 

GN(T) - L bn exp( - n2T h j ) 
n=1 

+L Lbnm exp[-(n2+m2)r/Ttl+ .. · , 
n=1 m=1 

where 

, 

. 

(19) 

(20a) 

(20b) 

Here Zn, Bn, Bnm are functions of 0, a, and n, which 
are defined in Eqs. (A16), (A17), and (A23), respec-
tively. 

In order to estimate the rate of decay of GN(T) we can 
use an "average" translational correlation time Tc de-
fined by 

Tc= GN(T)dT 
o 

= 

+ + m2)] , (21) 

where we have replaced GN(T) by its expression given in 
Eq. (19). We have displayed in Fig. 1 the variations of 
Tc/(02/2D) with the size of the system expressed by the 
ratio a/o. It is interesting to note that 62/2D corre-
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FIG. 1. Semilogarithmic plot of7'!(o2/2D) vs alo. The solid 
line corresponds to computer calculations of Eq. (21). The 
dotted line shows the weak logarithmic increase of T c when 
a»>o (Eq. 22). 

sponds to the constant limit value of the translational 
correlation time obtained for an infinite three-dimen-
sional system. 10(a) The increase of Tc with the size of 
the system comes from the convergent expression in 
brackets in Eq. (21) which has been calculated using a 
computer. ill the limit of an infinite 2D system, one 
has a - "" and it is easy to show that Z. - 1 and B. and 
B.m tends to 1 - a(r1). With the relations18 •19 

L1In2 =7T2/6, 
.=1 

00 <X) co 2 'E r: 1/(n2 + m2) = L coth n7T -!!..- , 
.=1 m=1 2.=1 n 12 

one has the following limiting expression for T c: 

(22) 
2D L 7T .=1 n 

where the sum on n diverges logarithmically when n- "". 
So we obtain the same weak logarithm divergence as that 
shown in Eq. (11). 

C. Motional narrowing in a finite planar spin system 

It is well known that dipolar interactions, in nuclear 
or paramagnetic spin systems, are modulated by the 
motions of the spins. This modulation, when it is suf-
ficiently rapid, can average out the dipolar interactions 
and consequently leads to an important narrowing of the 
resonance lines. The theory of this motional narrowing 
has been previously described for an infinite 3D spin 
system. 8 Its application to an infinite 2D spin system4 

is difficult due to the result obtained in Eq. (11). How-
ever, owing to the finite value of Tc obtained in Eq. (21), 
it becomes possible now to apply this theory to the finite 
2D case. 

According to this theory and introducing the line width 
in the rigid lattice limit, the line becomes nar-

rowed if the condition, 1, is satisfied. In this 
case of fast modulation the line becomes a Lorentzian 
with a half-height half-width Using a 
statistical theoryiO(b).20 for the rigid lattice limit, we 
have calculated in Appendix B the linewidth N A 
== 2N/A) for a finite 2D planar spin system as described 
above, and found 

NA) = 2. 528(g:2) 

[
1 + 0 415N-2R"4 + a(N-5R"iO)]1/2 

x 1 + 5: + N'f.2 , (23) 

where R is the radius of the system. If we consider a 
constant surface density NA through the sample and as-
sume that the spins are distributed randomly over the 
No sites available in this sample with the concentration 
C = 2N/No, we have NA = C/A1s' where Ais represents 
the area of a single site. Knowing C and A1s' it be-
comes possible to get an estimate of the radius R90 of 
the system surrounding the test spin j for which one has 
90% of the maximum value NA ) obtained from the 
limit of Eq. (23) for R- 00. This has been considered 
below in a particular case. 

Consider as a 2D planar spin system the case of a 
spin-labeled phospholipid membrane where the area per 
lipid molecule A1 is of the order of 64 A2 and the dis-s 0 

tance of the closest possible approach Ii is around 8 A. 
In the case where there is no diffusion the line is Gauss-
ian with a width corresponding to the rigid lattice 
limit given in Eq. (23) (Appendix B). In this case, we 
have displayed in Fig. 2, the variationS of the ratio 

C)/ (00, C) with R for different concentrations 
C. We see on these curves that R90 decreases when C 
increases taking the following values: 307, 168.2, 97, 
and 53.2 A when C is 0.003, 0.01, 0.03, and 0.1, re-
spectively. lh the case of rapid modulation (Tc« 
the diffUSion is sufficiently rapid to obtain a motional 
narrowing of the line. The line becomes Lorentzian 
with a width where and Tc are given in 
Eqs. (21) and (23), respectively. ill this case, we have 
displayed in Fig. 3 the variations of the narrowing con-
dition, C)Tc(D, a/Ii) 1, with the 
size of the system a/Ii for different concentrations C. 
Here D has been chosen to be the average value found 
for these systems - 10-8 cm2/s and we consider the spin 
electronic value gllo in Eq. (23). We see on these 
curves that the narrowing condition is better satisfied 
for low concentration (C = 0.003) than for high concen-
tration (C = O. 03). This is due to the concentration vari-
ation of the static linewidth C) which is propor-
tional to C3/2 • In other words the percentage of narrow-
ing for some values of C, D, and a is more 
important when the concentration decreases, a result 
previously observed in these systems. i 3<b) In the pres-

u 
! 
f' 

. / 
(C) /0.1 /0.03 //0.01 

.::1. 0.5 
U 

I '/..- --

/ / .....--/- -------------L .. __ --ri 

l' 
R (A) 

FIG. 2. Plot of (R. e)1 00. e) vs R in A for different 
values of the the spin concentration e (rigid lattice condition). 
The solid lines correspond to the region of R (for fixed values 
of e) where the limited expansion given in Eq. (B8) occurs. 
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-----
(C) 

0.01 

0.003 ----- ------

a/8 

FIG. 3. Semilogarithmic plot of the product C)Tc(D, al 
b) vs alb for different values of the spin concentration C and 
with D = 10-8 cm2 I s, b = 8 A and the value g,uo in Eq. (23) for 
electronic spins (ESR case). 

ence of inhomogeneously broadened lines21 a fast decon-
volution procedure may be needed to extract L from 
the observed linewidth. 22 

As the maximum value of is it is also pos-
sible to define for each value of C and D a maximum 
size of the system l1mu from the solution of the narrow-
ing condition in the limit case where 

(24) 

For the ESR case the range of the values found for On.u 
stands between 102 and -1036 or much more depending 
on the value of C and D. For the proton NMR case, the 
values found for l1mu are much higher (macroscopic 
values) due to the low value of C) found for the 
protons which is about 106 smaller than that of the elec-
trons (Tc being naturally the same in the two cases). 
So, for each value of C, D, and 6, Eq. (24) gives a 
physical reason to take a finite size of the spin system 
under which the condition of fast modulation is verified 
and the motional narrowing occurs. 

III. CONCLUSION 
We have used a statistical method to calculate the 

correlation function for the secular part of the dipolar 
relaxation processes in a finite two-dimensional spin 
system. This led to a general expression of the di-
polar correlation function G(r) represented as a differ-
ence of a pairwise autocorrelation and cross-correlation 
terms, the latter being significant for finite systems. 
We have shown that G(r) for a finite 2D plane surface 
decays more rapidly than G(r) for an infinite plane sur-
face. The translational correlation time obtained for 
these surfaces can be useful in the measurements of the 
lateral diffusion constant D of spin labels or intrinsic 
probes embedded in a planar membrane. For suffi-
ciently small, finite 2D systems one obtains narrowing 
conditions for each value of the spin concentration and 
diffusion coefficient D. The method used in this work 

can be useful for those who are interested in how mag-
netic resonance might be employed to study motion in 
restricted environments. The calculation of resonance 
line shapes for infinite 2D systems where there is rapid 
motion is a problem that remains to be solved, and this 
problem is left for subsequent work. It has been pointed 
out earlier that if there is some (rapid) TI relaxation 
process, not explicitly dependent on 2D lateral diffUSion, 
then the relaxation process provides a natural cutoff of 
the long-time decay of G(r) for the infinite system. It 
will be necessary to make a careful analysis of the ef-
fects of intermolecular dipolar interactions on Tl relax-
ation for the infinite system to determine if this relaxa-
tion due to translational diffusion can provide a trunca-
tion of the otherwise long-time decay of G(r) for the 
infinite two-dimensional system. 

APPENDIX A: DIPOLAR CORRELATION FUNCTION 
FOR A FINITE PLANAR SURFACE 

In this Appendix we calculate successively the five 
terms Gk(r) k E {I, ... , 5} obtained when one substitutes 
the five series of terms of Eq. (14) with Eq. (13), and 
Eqs. (15)-(17) into Eq. (9). 

1. Calculation of the Gk(r) 

a. Gdr) 

Substitution of the first term a-4 =A -2 of Eq. (14) into 
Eq. (9) leads to an expression which is equal to the 
cross-correlation term GCC(r), so one has 

(AI) 

b. Gir) 

Substituting the second series of terms of Eq. (14) 
into Eq. (9) when using Eq. (2) with 612 = 71/2, Eqs. (13) 
and (15)-(17) and with the different symmetries, one has 

G2(r) = 8a 2N AK3 L: exp(- n2r/2rl) 
In 

[ (.-R I f'-R I J2 
X)_ dXl cosn71:; dY1H21 

R, R, 
(A2) 

Here In is a notation for n E {I, ... , oo} (n integer), 
a = 3g 2j.J. 2/41'i, A = (a - 2Re)2 is the nonhatched area in 
Fig. 4, NA =2N/A and H21 is proportional to the ex-
pected field at particle 1 due to particle 2 limited to the 
radial domain 6 r R I centered about each position of 
1 (Fig. 4). 

(A3) 

where r== [(X2 - Xt)2 + (Y2 - Yl)2]+112 and R I == 16 (Z 2!: 1) a 
multiple of 6. The contribution of the hatched region 
has been removed in order to have a finite result for 
Eq. (A2) and the possibility to have e E [0, 27T] in Eq. 
(A3). This limitation is valid providing l6/ a «l. Sub-
stitution of Eq. (A3) into Eq. (A2) leads to 

G2( r) = 32:n[1 - u(r t ) j2 L: exp( - n2r , (A4) 
2. 
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y 

FIG. 4. The square surface of side a. The particles 1 and 2 
are spatially distributed according to the various terms of Eq. 
(14). For each position of these particles, the integrations 
are limited to the nonhatched region. The field Bo is perpen-
dicular to the plane of the figure. 

introducing the notations 

:Jr==21Ta 2NA(aor2 , (A5) 

Xn == sin(n1Tlli/ a)/(n1T) , 

2n stands for n E {2, ... , <Xl} with n even. (A6) 

j "-Rl () f"-Rl 
Hm(Xt,Yt)== dX2COS\m1T:; dY2 r -s 

Rr Rr 

c. GlT) 
Substituting the third series of terms of Eq. (14) into 

Eq. (9), one can separate G3(T) into two parts 

G3(T)==G 3t(T) +G32(r) . (A7) 

The first one, Gst(r), comes from the io) de-
fined in Eq. (17) and leads to the following result: 

G31(r) == a(Z-t)]2 

x L exp[ - (n2 + m2)r , (A8) 
2n 2m 

which can be obtained in following the same procedure 
as that for G2(T). 

The second one G32(r) comes from the 10) 

20) defined in Eq. (16) and is given by 

G32(r) == 80 2 NAKS L Lexp[ - (n2 + + , 
1n 1m 

(A9) 

taking account of the different symmetries. In Eq. (A9) 
one has 

(A1D) 

(All) 

introducing here H m and F m which are proportional to 
the expected fields at particle 1 

_ dO drr-2 , (A12) 

F",(Xl,Yt)==21Tcos(m;Yt) drr-2Jo(m;r) , (A13) 

using the integral representation of the Bessel function J of zero order in Eqs. (A12) and (A13). The substitution 
of Eqs. (A12) and (A13), respectively, into Eqs. (A10) and (All), and finally into Eq. (A9) leads, after some alge-
braic manipulations, to 

with the notations 

y _ rsin(m -n)1Tlli/a + sin(m +n)1Tlli/aJ 
nm - [ (m - nhr (m + n)1T ' (A15a) 

where 3nm stands for n,m E {1, ... , oo} with n2 *m2 and n± m even, (A15b) 

Zn == [1 -2ZO/ a - sin(2n1rlli/ a)] , (Al6) 

Bn == Ii drr-2 J o (n;r) . (A17) 

It should be noted that the functions Xn , Ynm' Zn, and Bn defined in Eqs. (AS) and (A15)-(A17) are functions of the 
range of dipolar interactions ZO, the size of the system a and the value of the mode n. The integral in Eq. (A17) 
cannot be expressed simply and has been calculated numerically when replacing the Bessel function J 0 by its power 
series. 
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d. Gir) 

Substituting the fourth series of terms of Eq. (14) into Eq. (9) one can obtain with the same procedure used for 
G32(r), 

G4(r) L L }' exp[ - (n2 +m2 +32L Lexp[- (2n2 + (Al8) 
3nl> t.;;' In 2111 

e. Gsfr) 

Substituting the fifth series of terms of Eq. (14) into Eq. (9) leads to 

G5(T) = 16a 2N A A"3L L L::E exp[ - (n2 +m2 + p2 , 
In 1m 11> 1. 

(A19) 

where 

j a-R/ ( 11 ) ja-R/ 11 ) ra-R, (; 11 ) ja-R/ 11 ) Inlll/l.= dXICoSn-X1 dYICOS m -Y1 dX2COSP-X2 dY2COSq-Y2 
R/ a RI a R z a R/ a 

(A20) 

This latter integral can be calculated using the associate series of Bessel functions 

cos(z sin 8) =Jo(z) + 2 I>2k(Z) cos 2kO 
Ik 

(A21) 

and similar series for sin(z sin 8), cos(z cos 0), and sin(z cos 0). 18 After some algebraic calculations Similar as 
those proceeded above, one finds 

Gs(T) ::E exp[ - (n2 + +8::E L L exp[- (2n2 + m 2 B;p 
In 1m In 3111i> 

+ 16l: ::E L ::Eexp[ - (n2 + m2 + p2 + Y;. , (A22) 
3nm 3j>. 

where 

Bnm =0 drr-2Jo Jo (A23) 

This last integral cannot be expressed simply and has been calculated numerically replacing the Bessel functions 
by their power series. 

2. Calculation of G(O) 

In order to calculate the normalized dipolar correlation function GN(T)=G(T)/G(O) we need to know G(O). The ex-
pression presented in Eq. (14) is not very well adapted to the situation at short time. However, it is possible to 
transform Eq. (12) with application of Poisson's formula, 16(d) and this gives 

PI (Xi' Yi' r IxiU' Yiu' 0) = {exp[ - (Xi - Xju + 2na)2 /4Dr 1 + exp[ - (Xj + Xio + 2na)2/4DT n] 
{exp[-(YI -Yio +2na)2/4DrJ +exp[- (Yi +Yio +2na)2/4Dr])] , i=l or 2 . (A24) 

If one assumes a unit instantaneous material line (par-
allel to the z axis) passing through the point x jo' Yio 
(i = 1 or 2) at time T = 0, one has 

limP/ =o(x/ -xiO)o(yj -Ylo) 

and consequently for the limiting value of Eq. (14) at 
time T = 0, one has 

Po = O(XI - Xlo)O(YI - Y10)O(X2 - X20)0(Y2 - Y20) • (A25) 

Substituting this value of Po into Eq. (9) one easily finds 

(A26) 

The normalized dipolar correlation function is then de-
fined by 

5 

GN(T)= G(r)/G(O) =LGk(r)/G(O) . (A27) 
k=1 

APPENDIX B: LlNEWIDTH ANALYSIS FOR A FINITE 
2D PLANAR SPIN SYSTEM IN THE RIGID LATTICE 
LIMIT 

In this Appendix, we apply a well-known statistical 
theory of line broadening10 (b) ,20 to obtain the linewidth, 
in the rigid lattice limit, of an ensemble of 2N spins 
S == 1/2 submitted to the same conditions as described in 
Sec. n A and lIB and diluted in a 2D finite plane of area 
A. In this theory the intensity of absorption l(w)dw is 
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proportional to the area of the 2N dimensional phase 
space 

l(w)dw =A-2N i d2rl'" d 2r2N , (B1) 
E(w,dW) 

restricted to the region E(w, dw) of the phase space 
where the following condition is satisfied: 

2N 
w wert> ... , r2N) = Lw(ri ) w + dw . (B2) 

i=1 

Here r! is a vector indicating the relative position be-
tween one of the 2N spins i and the test spin j which is 
placed at the origin of the coordinates, and wert. ... , r2N) 
represents the departure from the mean Larmor fre-
quency w(r i ) being one of the 2N spin dipolar 
contributions. The latter is given in Eq. (2) where we 
take flu = 1T/2 for simplification. Equation (Bl) can be 
rewritten as an integral over the whole phase space 

l(w)dw = dwA -2N f o[w - wert. ... , r2N)]d2rl •.• d 2r2N . 
A2N 

(B3) 
Taking an orientation (+) for the spin ofj, using the in-
tegral definition of the delta function, one can modify 
Eq. (B3) after separation of the respective contributions 
from the up and down spins 

lew) = (21T)-1 /.,- dt exp(iwt) [A-1 exp(- ibtr-3)d 2rJN 

X [A-I eXP(ibtr-3)d 2rT, (B4) 

where we have used the radial coordinates r for the dis-
tance of the spins i from the origin at j with A = 1TR2, R 
being the radius of the system, and with introduction of 
the notation 

(B5) 

Following the same procedure as used in Ref. lOeb), 
Eq. (B4) becomes 

I(W)=(21T)"I.[- dtexp{iwt)exp[-NAJ(R,b,t)], (B6) 

when N A = 2N / A is the density of spins and 

J(R, b, t) =21T fR [1 - cos(btr-3)]rdr 

° 
- 1T(bt)213 S(bt/R3, 1/3) , (B7) 

introducing here the Pearson's form of the incomplete 
gamma function S. 23 Owing to the relation bt/R4 « 1 one 
can replace S by its first order expansion, giving 

J(R, b, t) - h r(I/3)(bt)2!3 - h (bt)2/R 4 + a(R-10) (B8) 

Substitution of Eq. (B8) into Eq. (B6) gives 

l(W)-1T-1 cos wtexp [- (dt2f3 - ;4 t2)Jdt , (B9) 

with 
c=hb2N A , (B10a) 

d = h r(1/3)b2l3N A • (BlOb) 

Owing to the values of the coefficients b, c, and d and 
the fact that w2/d 3« 1, one can expand cos wt in Eq. 
(B9) in a power series and the integral is done term by 

term. Near w = 0 (the important region for the line 
shape) lew) is approximated by a Gaussian with a width 
given by 

towG(R, N A) == 2.528 (g: 
2

) 

x . A A A N3f2 [
1 + 0 4l5N-2R-4 + a(N-5R-10)]lf2 

A' 

(Bll) 
This GaUSSian approximation is necessary because the 
moments of the super-Lorentzian lew) do not exist. 
For an infinite size of the system towG(oo, N A) is given 
by the limit of Eq. (Bll) when R-oo 

towG(oo, N A ) =2. 528 • (BI2) 

As expected, the 2D static linewidth is proportional to ' 
N3j2, whereas the 3D static linewidth is proportional to 
N

A
• IO (b),20 
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