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Quantum computers promise to exceed the computational efficiency of ordinary classical machines because quantum
algorithmsallow theexecution of certain tasks in fewersteps. But practical implementationof thesemachinesposesa
formidable challenge. Here I present a scheme for implementing a quantum-mechanical computer. Information is
encoded onto the nuclear spins of donor atoms in doped silicon electronic devices. Logical operations on individual
spins are performed using externally applied electric fields, and spin measurements are made using currents of
spin-polarizedelectrons.The realization of suchacomputer is dependenton future refinementsof conventional silicon
electronics.

Although the concept of information underlying all modern com-
puter technology is essentially classical, phsyicists know that nature
obeys the laws of quantum mechanics. The idea of a quantum
computer has been developed theoretically over several decades to
elucidate fundamental questions concerning the capabilities and
limitations of machines in which information is treated quantum
mechanically1,2. Specifically, in quantum computers the ones and
zeros of classical digital computers are replaced by the quantum
state of a two-level system (a qubit). Logical operations carried out
on the qubits and their measurement to determine the result of the
computation must obey quantum-mechanical laws. Quantum
computation can in principle only occur in systems that are
almost completely isolated from their environment and which
consequently must dissipate no energy during the process of
computation, conditions that are extraordinarily difficult to fulfil
in practice.

Interest in quantum computation has increased dramatically in
the past four years because of two important insights: first, quantum
algorithms (most notably for prime factorization3,4 and for exhaus-
tive search5) have been developed that outperform the best known
algorithms doing the same tasks on a classical computer. These
algorithms require that the internal state of the quantum computer
be controlled with extraordinary precision, so that the coherent
quantum state upon which the quantum algorithms rely is not
destroyed. Because completely preventing decoherence (uncon-
trolled interaction of a quantum system with its surrounding
environment) is impossible, the existence of quantum algorithms
does not prove that they can ever be implemented in a real machine.

The second critical insight has been the discovery of quantum
error-correcting codes that enable quantum computers to operate
despite some degree of decoherence and which may make quantum
computers experimentally realizable6,7. The tasks that lie ahead to
create an actual quantum computer are formidable: Preskill8 has
estimated that a quantum computer operating on 106 qubits with a
10−6 probability of error in each operation would exceed the
capabilities of contemporary conventional computers on the
prime factorization problem. To make use of error-correcting
codes, logical operations and measurement must be able to proceed
in parallel on qubits throughout the computer.

The states of spin 1/2 particles are two-level systems that can
potentially be used for quantum computation. Nuclear spins have
been incorporated into several quantum computer proposals9–12

because they are extremely well isolated from their environment
and so operations on nuclear spin qubits could have low error rates.
The primary challenge in using nuclear spins in quantum compu-
ters lies in measuring the spins. The bulk spin resonance approach

to quantum computation11,12 circumvents the single-spin detection
problem essentially by performing quantum calculations in parallel
in a large number of molecules and determining the result from
macroscopic magnetization measurements. The measurable signal
decreases with the number of qubits, however, and scaling this
approach above about ten qubits will be technically demanding37.

To attain the goal of a 106 qubit quantum computer, it has been
suggested that a ‘solid state’ approach13 might eventually replicate
the enormous success of modern electronics fabrication technology.
An attractive alternative approach to nuclear spin quantum com-
putation is to incorporate nuclear spins into an electronic device
and to detect the spins and control their interactions
electronically14. Electron and nuclear spins are coupled by the
hyperfine interaction15. Under appropriate circumstances, polariza-
tion is transferred between the two spin systems and nuclear spin
polarization is detectable by its effect on the electronic properties of
a sample16,17. Electronic devices for both generating and detecting
nuclear spin polarization, implemented at low temperatures in
GaAs/AlxGa1−xAs heterostructures, have been developed18, and
similar devices have been incorporated into nanostructures19,20.
Although the number of spins probed in the nanostructure experi-
ments is still large (,1011; ref. 19), sensitivity will improve in
optimized devices and in systems with larger hyperfine interactions.

Here I present a scheme for implementing a quantum computer
on an array of nuclear spins located on donors in silicon, the
semiconductor used in most conventional computer electronics.
Logical operations and measurements can in principle be per-
formed independently and in parallel on each spin in the array. I
describe specific electronic devices for the manipulation and mea-
surement of nuclear spins, fabrication of which will require sig-
nificant advances in the rapidly moving field of nanotechnology.
Although it is likely that scaling the devices proposed here into a
computer of the size envisaged by Preskill8 will be an extraordinary
challenge, a silicon-based quantum computer is in a unique posi-
tion to benefit from the resources and ingenuity being directed
towards making conventional electronics of ever smaller size and
greater complexity.

Quantum computation with a 31P array in silicon
The strength of the hyperfine interaction is proportional to the
probability density of the electron wavefunction at the nucleus. In
semiconductors, the electron wavefunction extends over large dis-
tances through the crystal lattice. Two nuclear spins can conse-
quently interact with the same electron, leading to electron-
mediated or indirect nuclear spin coupling15. Because the electron
is sensitive to externally applied electric fields, the hyperfine inter-
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action and electron-mediated nuclear spin interaction can be
controlled by voltages applied to metallic gates in a semiconductor
device, enabling the external manipulation of nuclear spin
dynamics that is necessary for quantum computation.

The conditions required for electron-coupled nuclear spin com-
putation and single nuclear spin detection can arise if the nuclear
spin is located on a positively charged donor in a semiconductor
host. The electron wavefunction is then concentrated at the donor
nucleus (for s orbitals and energy bands composed primarily of
them), yielding a large hyperfine interaction energy. For shallow-
level donors, however, the electron wavefunction extends tens or
hundreds of ångströms away from the donor nucleus, allowing
electron-mediated nuclear spin coupling to occur over comparable
distances. The quantum computer proposed here comprises an
array of such donors positioned beneath the surface of a semicon-
ductor host (Fig. 1). A quantum mechanical calculation proceeds by
the precise control of three external parameters: (1) gates above the
donors control the strength of the hyperfine interactions and hence
the resonance frequency of the nuclear spins beneath them; (2) gates
between the donors turn on and off electron-mediated coupling
between the nuclear spins13; (3) a globally applied a.c. magnetic field
Bac flips nuclear spins at resonance. Custom adjustment of the
coupling of each spin to its neighbours and to Bac enables different
operations to be performed on each of the spins simultaneously.
Finally, measurements are performed by transferring nuclear spin
polarization to the electrons and determining the electron spin state
by its effect on the orbital wavefunction of the electrons, which can
be probed using capacitance measurements between adjacent gates.

An important requirement for a quantum computer is to isolate
the qubits from any degrees of freedom that may lead to decoher-
ence. If the qubits are spins on a donor in a semiconductor, nuclear
spins in the host are a large reservoir with which the donor spins can
interact. Consequently, the host should contain only nuclei with
spin I ¼ 0. This simple requirement unfortunately eliminates all
III–V semiconductors as host candidates, because none of their
constituent elements possesses stable I ¼ 0 isotopes21. Group IV
semiconductors are composed primarily I ¼ 0 isotopes and can in
principle be purified to contain only I ¼ 0 isotopes. Because of the

advanced state of Si materials technology and the tremendous effort
currently underway in Si nanofabrication, Si is the obvious choice
for the semiconductor host.

The only I ¼ 1=2 shallow (group V) donor in Si is 31P. The Si:31P
system was exhaustively studied 40 years ago in the first electron–
nuclear double-resonance experiments22,23. At sufficiently low 31P
concentrations at temperature T ¼ 1:5 K, the electron spin relaxa-
tion time is thousands of seconds and the 31P nuclear spin relaxation
time exceeds 10 hours. It is likely that at millikelvin temperatures the
phonon limited 31P relaxation time is of the order of 1018 seconds
(ref. 24), making this system ideal for quantum computation.

The purpose of the electrons in the computer is to mediate
nuclear spin interactions and to facilitate measurement of the
nuclear spins. Irreversible interactions between electron and nuclear
spins must not occur as the computation proceeds: the electrons
must be in a non-degenerate ground state throughout the compu-
tation. At sufficiently low temperatures, electrons only occupy the
lowest energy-bound state at the donor, whose twofold spin
degeneracy is broken by an applied magnetic field B. (The valley
degeneracy of the Si conduction band is broken in the vicinity of the
donor25. The lowest donor excited state is approximately 15 meV
above the ground state23.) The electrons will only occupy the lowest
energy spin level when 2mBB q kT, where mB is the Bohr magneton.
(In Si, the Landé g-factor is very close to +2, so g ¼ 2 is used
throughout this discussion.) The electrons will be completely spin-
polarized (n↑=n↓ , 10 2 6) when T < 100 mK and B > 2 tesla. A
quantum-mechanical computer is non-dissipative and can conse-
quently operate at low temperatures. Dissipation will arise external
to the computer from gate biasing and from eddy currents caused by
Bac, and during polarization and measurement of the nuclear spins.
These effects will determine the minimum operable temperature of
the computer. For this discussion, I will assume T ¼ 100 mK and
B ¼ 2 T. Note that these conditions do not fully polarize the nuclear
spins, which are instead aligned by interactions with the polarized
electrons.

Magnitude of spin interactions in Si:31P
The size of the interactions between spins determines both the time
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Figure 1 Illustration of two cells in a one-dimensional array containing 31P donors

and electrons in a Si host, separated by a barrier from metal gates on the surface.

‘A gates’ control the resonance frequency of the nuclear spin qubits; ‘J gates’

control the electron-mediated coupling between adjacent nuclear spins. The

ledge over which the gates cross localizes the gate electric field in the vicinity of

the donors.

Figure 2 An electric field applied to an A gate pulls the electron wavefunction

away from the donor and towards the barrier, reducing the hyperfine interaction

and the resonance frequencyof the nucleus. The donor nucleus–electronsystem

is a voltage-controlled oscillator with a tuning parameter a of the order of 30MHzV−1.



Nature © Macmillan Publishers Ltd 1998

8

required to do elementary operations on the qubits and the
separation necessary between donors in the array. The hamiltonian
for a nuclear spin–electron system in Si, applicable for an I ¼ 1=2
donor nucleus and with Bkz is Hen ¼ mBBje

z 2 gnmnBjn
z þ Aje⋅jn,

where j are the Pauli spin matrices (with eigenvalues 61), mn is the
nuclear magneton, gn is the nuclear g-factor (1.13 for 31P; ref. 21),
and A ¼ 8

3
pmBgnmnjWð0Þj2 is the contact hyperfine interaction

energy, with | W(0)| 2, the probability density of the electron
wavefunction, evaluated at the nucleus. If the electron is in its
ground state, the frequency separation of the nuclear levels is, to
second order

hnA ¼ 2gnmnB þ 2A þ
2A2

mBB
ð1Þ

In Si:31P, 2A=h ¼ 58 MHz, and the second term in equation (1)
exceeds the first term for B , 3:5 T.

An electric field applied to the electron-donor system shifts the
electron wavefunction envelope away from the nucleus and reduces
the hyperfine interaction. The size of this shift, following estimates
of Kohn25 of shallow donor Stark shifts in Si, is shown in Fig. 2 for a
donor 200 Å beneath a gate. A donor nuclear spin–electron system
close to an ‘A gate’ functions as a voltage-controlled oscillator: the
precession frequency of the nuclear spin is controllable externally,
and spins can be selectively brought into resonance with Bac,
allowing arbitrary rotations to be performed on each nuclear spin.

Quantum mechanical computation requires, in addition to single
spin rotations, the two-qubit ‘controlled rotation’ operation, which
rotates the spin of a target qubit through a prescribed angle if, and
only if, the control qubit is oriented in a specified direction, and
leaves the orientation of the control qubit unchanged26,27. Perform-
ing the controlled rotation operation requires nuclear-spin
exchange between two donor nucleus-electron spin systems13,
which will arise from electron-mediated interactions when the
donors are sufficiently close to each other. The hamiltonian of
two coupled donor nucleus–electron systems, valid at energy scales
small compared to the donor-electron binding energy, is
H ¼ HðBÞ þ A1j

1n⋅ j2e þ A2j
2n⋅j2e þ Jj1e⋅j2e, where H(B) are the

magnetic field interaction terms for the spins. A1 and A2 are the
hyperfine interaction energies of the respective nucleus–electron
systems. 4J, the exchange energy, depends on the overlap of the
electron wavefunctions. For well separated donors28

4JðrÞ > 1:6
e2

eaB

r

aB

� �5
2

exp
2 2r

aB

� �
ð2Þ

where r is the distance between donors, e is the dielectric constant of
the semiconductor, and aB is the semiconductor Bohr radius. This
function, with values appropriate for Si, is plotted in Fig. 3.
Equation (2), originally derived for H atoms, is complicated in Si
by its valley degenerate anisotropic band structure29. Exchange
coupling terms from each valley interfere, leading to oscillatory
behaviour of J(r). In this discussion, the complications introduced
by Si band structure will be neglected. In determining J(r) in Fig. 3,
the transverse mass for Si (> 0.2me) has been used, and aB ¼ 30 Å.
Because J is proportional to the electron wave function overlap, it
can be varied by an electrostatic potential imposed by a ‘J-gate’
positioned between the donors13. As shall be seen below, significant
coupling between nuclei will occur when 4J < mBB, and this con-
dition approximates the necessary separation between donors of
100–200 Å. Whereas actual separations may be considerably larger
than this value because the J gate can be biased positively to reduce
the barrier between donors, the gate sizes required for the quantum
computer are near the limit of current electronics fabrication
technology.

For two-electron systems, the exchange interaction lowers the
electron singlet (j ↑↓ 2 ↓↑ 〉) energy with respect to the triplets30.
(The | ↑↓〉 notation is used here to represent the electron spin state,

and the | 01〉 notation the nuclear state; in the | ↓↓11〉 state, all spins
point in the same direction. For simplicity, normalization constants
are omitted.) In a magnetic field, however, | ↓↓〉 will be the electron
ground state if J , mBB=2 (Fig. 4a). In the | ↓↓〉 state, the energies of
the nuclear states can be calculated to second order in A using
perturbation theory. When A1 ¼ A2 ¼ A, the j10 2 01〉 state is
lowered in energy with respect to j10 þ 01〉 by:

hnJ ¼ 2A2 1

mBB 2 2J
2

1

mBB

� �
ð3Þ

The | 11〉 state is above the j10 þ 01〉 state and the |00〉 state below the
j10 2 01〉 state by an energy hnA, given in equation (1). For the Si:31P
system at B ¼ 2 T and for 4J=h ¼ 30 GHz, equation (3) yields
nJ ¼ 75 kHz. This nuclear spin exchange frequency approximates
the rate at which binary operations can be performed on the
computer (nJ can be increased by increasing J, but at the expense
of also increasing the relaxation rate of the coupled nuclear–
electron spin excitations). The speed of single spin operations is
determined by the size of Bac and is comparable to 75 kHz when
Bac ¼ 10 2 3 T.

Spin measurements
Measurement of nuclear spins in the proposed quantum computer
is accomplished in a two-step process: distinct nuclear spin states
are adiabatically converted into states with different electron polar-
ization, and the electron spin is determined by its effect on the
symmetry of the orbital wavefunction of an exchange-coupled two-
electron system. A procedure for accomplishing this conversion is
shown in Fig. 4. While computation is done when J , mBB=2 and the
electrons are fully polarized, measurements are made when
J . mBB=2, and j ↑↓ 2 ↓↑ 〉 states have the lowest energy (Fig. 4a).
As the electron levels cross, the | ↓↓〉 and j ↑↓ 2 ↓↑ 〉 states are coupled
by hyperfine interactions with the nuclei. During an adiabatic
increase in J, the two lower-energy nuclear spin states at J ¼ 0
evolve into j ↑↓ 2 ↓↑ 〉 states when J . mBB=2, whereas the two
higher-energy nuclear states remain | ↓↓〉. If, at J ¼ 0, A1 . A2, the
orientation of nuclear spin 1 alone will determine whether the
system evolves into the j ↑↓ 2 ↓↑ 〉 or the | ↓↓〉 state during an
adiabatic increase in J.

A method to detect the electron spin state by using electronic
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Figure 3 J gates vary the electrostatic potential barrier V between donors to

enhance or reduce exchange coupling, proportional to the electron wavefunction

overlap. The exchange frequency (4J/h) when V ¼ 0 is plotted for Si.
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means is shown in Fig. 4b. Both electrons can become bound to the
same donor (a D− state) if the A gates above the donors are biased
appropriately. In Si:P, the D− state is always a singlet with a second
electron binding energy of 1.7 meV (refs 31, 32). Consequently, a
differential voltage applied to the A gates can result in charge
motion between the donors that only occurs if the electrons are in
a singlet state. This charge motion is measurable using sensitive
single-electron capacitance techniques33. This approach to spin
measurement produces a signal that persists until the electron
spin relaxes, a time that, as noted above, can be thousands of
seconds in Si:P.

The spin measurement process can also be used to prepare
nuclear spins in a prescribed state by first determining the state of
a spin and flipping it if necessary so that it ends up in the desired
spin state. As with the spin computation procedures already
discussed, spin measurement and preparation can in principle be
performed in parallel throughout the computer.

Initializing the computer
Before any computation, the computer must be initialized by
calibrating the A gates and the J gates. Fluctuations from cell to
cell in the gate biases necessary to perform logical operations are an
inevitable consequence of variations in the positions of the donors
and in the sizes of the gates. The parameters of each cell, however,
can be determined individually using the measurement capabilities
of the computer, because the measurement technique discussed
here does not require precise knowledge of the J and A couplings.
The A-gate voltage at which the underlying nuclear spin is resonant
with an applied Bac can be determined using the technique of
adiabatic fast passage34: when Bac ¼ 0, the nuclear spin is measured
and the A gate is biased at a voltage known to be off resonance. Bac is
then switched on, and the A gate bias is swept through a prescribed

voltage interval. Bac is then switched off and the nuclear spin is
measured again. The spin will have flipped if, and only if, resonance
occurred within the prescribed A-gate voltage range. Testing for spin
flips in increasingly small voltage ranges leads to the determination
of the resonance voltage. Once adjacent A gates have been cali-
brated, the J gates can be calibrated in a similar manner by sweeping
J-gate biases across resonances of two coupled cells.

This calibration procedure can be performed in parallel on many
cells, so calibration is not a fundamental impediment to scaling the
computer to large sizes. Calibration voltages can be stored on
capacitors located on the Si chip adjacent to the quantum computer.
External controlling circuitry would thus need to control only the
timing of gate biases, and not their magnitudes.

Spin decoherence introduced by gates
In the quantum computer architecture outlined above, biasing of A
gates and J gates enables custom control of the qubits and their
mutual interactions. The presence of the gates, however, will lead to
decoherence of the spins if the gate biases fluctuate away from their
desired values. These effects need to be considered to evaluate the
performance of any gate-controlled quantum computer. During the
computation, the largest source of decoherence is likely to arise
from voltage fluctuations on the A gates. (When J , mBB=2, mod-
ulation of the state energies by the J gates is much smaller than by
the A gates. J exceeds mBB/2 only during the measurement process,
when decoherence will inevitably occur.) The precession frequencies
of two spins in phase at t ¼ 0 depends on the potentials on their
respective A gates. Differential fluctuations of the potentials pro-
duce differences in the precession frequency. At some later time
t ¼ tf, the spins will be 1808 out of phase; tf can be estimated by
determining the transition rate between j10 þ 01〉 (spins in phase)
and j10 2 01〉 (spins 1808 out of phase) of a two-spin system. The
hamiltonian that couples these states is Hf ¼ 1

4
hDðj1n

z 2 j2n
z Þ, where

D is the fluctuating differential precession frequency of the spins.
Standard treatment of fluctuating hamiltonians34 predicts:
t 2 1
f ¼ p2SDðnstÞ, where SD is the spectral density of the frequency

fluctuations, and nst is the frequency difference between the
j10 2 01〉 and j10 þ 01〉 states. At a particular bias voltage, the A
gates have a frequency tuning parameter a ¼ dD=dV. Thus:

t 2 1
f ¼ p2a2ðVÞSV ðnstÞ ð4Þ

where SV is the spectral density of the gate voltage fluctuations.
SV for good room temperature electronics is of order 10−18 V2/Hz,

comparable to the room temperature Johnson noise of a 50-Q
resistor. The value of a, estimated from Fig. 2, is 10–100 MHz V−1,
yielding tf ¼ 10–1;000 s; a is determined by the size of the donor
array cells and cannot readily be reduced (to increase tf) without
reducing the exchange interaction between cells. Because a is a
function of the gate bias (Fig. 2), tf can be increased by minimizing
the voltage applied to the A gates.

Although equation (4) is valid for white noise, at low frequencies
it is likely that materials-dependent fluctuations (1/f noise) will be
the dominant cause of spin dephasing. Consequently, it is difficult
to give hard estimates of tf for the computer. Charge fluctuations
within the computer (arising from fluctuating occupancies of traps
and surface states, for example) are likely to be particularly impor-
tant, and minimizing them will place great demands on computer
fabrication.

Although materials-dependent fluctuations are difficult to esti-
mate, the low-temperature operations of the computer and the
dissipationless nature of quantum computing mean that, in prin-
ciple, fluctuations can be kept extremely small: using low-tempera-
ture electronics to bias the gates (for instance, by using on chip
capacitors as discussed above) could produce tf < 106 s. Elec-
tronically controlled nuclear spin quantum computers thus have
the theoretical capability to perform at least 105 to perhaps 1010
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Figure 4 Two qubit quantum logic and spin measurement. a, Electron (solid lines)

and lowest energy-coupled electron-nuclear (dashed lines) energy levels as a

function of J. When J , mBB=2, two qubit computations are performed by control-

ling the j10 2 01〉 2 j10 þ 01〉 level splittingwith a J gate. Above J ¼ mBB=2, the states

of the coupled system evolve into states of differing electron polarization. The

state of the nucleus at J ¼ 0 with the larger energy splitting (controllable by the A

gate bias) determines the final electron spin state after an adiabatic increase in J.

b, Only j ↑↓ 2 ↓↑ 〉 electrons can make transitions into states in which electrons are

bound to the same donor (D− states). Electron current during these transitions is

measurable using capacitive techniques, enabling the underlying spin states of

the electrons and nuclei to be determined.
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logical operations during tf, and can probably meet Preskill’s
criterion8 for an error probability of 10−6 per qubit operation.

Constructing the computer
Building the computer presented here will obviously be an extra-
ordinary challenge: the materials must be almost completely free of
spin (I Þ 0 isotopes) and charge impurities to prevent dephasing
fluctuations from arising within the computer. Donors must be
introduced into the material in an ordered array hundreds of Å
beneath the surface. Finally, gates with lateral dimensions and
separations ,100 Å must be patterned on the surface, registered
to the donors beneath them. Although it is possible that the
computer can use SiO2 as the barrier material (the standard MOS
technology used in most current conventional electronics), the need
to reduce disorder and fluctuations to a minimum means that
heteroepitaxial materials, such as Si/SiGe, may ultimately be pre-
ferable to Si/SiO2.

The most obvious obstacle to building to the quantum computer
presented above is the incorporation of the donor array into the Si
layer beneath the barrier layer. Currently, semiconductor structures
are deposited layer by layer. The d-doping technique produces
donors lying on a plane in the material, with the donors randomly
distributed within the plane. The quantum computer envisaged
here requires that the donors be placed into an ordered one- or two-
dimensional array; furthermore, precisely one donor must be
placed into each array cell, making it extremely difficult to create
the array by using lithography and ion implantation or by focused
deposition. Methods currently under development to place single
atoms on surfaces using ultra-high-vacuum scanning tunnelling
microscopy35 or atom optics techniques36 are likely candidates to be
used to position the donor array. A challenge will be to grow high-
quality Si layers on the surface subsequent to placement of the
donors.

Fabricating large arrays of donors may prove to be difficult, but
two-spin devices, which can be used to test the logical operations
and measurement techniques presented here, can be made using
random doping techniques. Although only a small fraction of such
devices will work properly, adjacent conventional Si electronic
multiplexing circuitry can be used to examine many devices
separately. The relative ease of fabricating such ‘hybrid’ (quan-
tum-conventional) circuits is a particularly attractive feature of Si-
based quantum computation.

In a Si-based nuclear spin quantum computer, the highly coher-
ent quantum states necessary for quantum computation are incor-
porated into a material in which the ability to implement complex
computer architectures is well established. The substantial chal-
lenges facing the realization of the computer, particularly in
fabricating 100-Å-scale gated devices, are similar to those facing
the next generation of conventional electronics; consequently, new
manufacturing technologies being developed for conventional
electronics will bear directly on efforts to develop a quantum
computer in Si. Quantum computers sufficiently complex that they

can achieve their theoretical potential may thus one day be built
using the same technology that is used to produce conventional
computers. M
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