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In this paper we present a theoretical study of the free and localized states of an excess electron in liquid 
helium. Electron-helium interactions are treated by the pseudopotential method, while multiple scattering 
effects on the properties of a quasifree electron in the dense fluid are treated using the Wigner-Seitz model. 
It is demonstrated that the plane-wave state is not the lowest energy state for an excess electron in liquid 
helium and that fluid deformation leads to a localized state of lower energy. The large, repulsive helium-atom 
pseudopotential coupled with the small helium polarization potential lead to electron localization which 
may be attributed entirely to short-range repulsions. The following experimental observations are adequately 
interpreted by these results: (a) The energy barrier of liquid helium for electrons, (b) the density-dependent 
transition from a delocalized state to a localized state of the excess electron, (c) the mobility of an excess 
electron in normal 4He and in 3He. Pressure and temperature effects on the electron bubble are also discussed. 
It is concluded that a pressure-induced transition from the localized to the delocalized state of the excess 
electron will not occur in the fluid domain even at high pressures. Finally, we present some speculations 
concerning the optical properties of the excess-electron center. 

I. INTRODUCTION 

THE use of slow electrons, generated in situ, as a 
probe for the study of superfluid helium was intro-

duced by Williams/" by Careri,rb and by Meyer and 
Reif.2 It is interesting that several phenomena can be 
elucidated without knowledge of the details of the 
nature of the interaction between the electron and the 
fluid. Thus, the temperature dependence of the ion 
mobility in liquid 4He at temperatures below the 
lambda point may be successfully interpreted in terms 
of ion-roton scattering.2 Also, Rayfield and Reif8 have 
successfully used electrons to characterize the behavior 
of quantized vortex rings in the superfluid, and magnetic 
deflection experiments by Meyer4 have shown that the 
effective mass of the electron in superfluid helium is 
large. 

Now, unlike the experiments cited, an understanding 
of the magnitude of the mobility of the electron in 
liquid He requires a detailed study of the nature of the 
scattering mechanism as well as a quantitative descrip-
tion of the changes in the structure of the liquid caused 
by the excess electron. It is just this problem which we 
attack in this paper, focusing attention on the electron 
mobility in liquid 4He and 8He above 2.2°K, where 
there is no superfluid behavior. The electron-liquid-He 
system under these conditions is of interest for two 
reasons: 

(a) The electron-helium-atom interaction is easier 
to calculate from first principles than that corresponding 

* Present address: Department of Chemistry, Stanford Univer-
sity, Palo Alto, California. 

I (a) R. L. Williams, Can. J. Phys. 35, 135 (1957); (b) G. 
Careri, F. Scaramuzi, and J. O. Thomson, Nuovo Cimento 13, 
186 (1959). 

2 L. Meyer and F. Reif, Phys. Rev. 119, 1164 (1960). 
3 G. S. Rayfield and F. Reif, Phys. Rev. Letters 11, 305 (1963). 
• L. Meyer, Proc. Intern. Conf. Low Temp. Phys. 9th, Colum-

bus, Ohio, 1964 (to be published). 

to the interaction of an electron with larger atoms. For 
this reason, and because of the strength of the electron-
He-atom pseudopotential,5 this system is an interesting 
prototype with which to understand the properties of 
isolated electrons in simple, nonpolar liquids. 

(b) Sanders and Levine6 have demonstrated that, as 
the density of He is increased in the gas phase at 4°K, 
a critical density is reached at which the mobility of 
the electron drops a factor of 103 to 104• These observa-
tions have been interpreted as indicating that the 
electron in He undergoes a transition from a delocalized 
state to a localized state as the He is compressed from 
gaseous densities to liquid densities. An understanding 
of this behavior may lead to valuable insights into the 
nature of the transition between delocalized and local-
ized states in other systems. 

To date, three models have been proposed to explain 
the properties of excess electrons in liquid He: 

(a) The electron is localized within a cluster of He 
atoms which, because of the effects of electrostriction, 
are at a higher density than the surrounding fluid. 7 

The size of the cluster is determined by assuming that 
the macroscopic equation of state may be extended to 
provide a valid density-pressure relationship (and hence 
phase-equilibrium line) at the molecular level. Since it 
is unlikely that any complex of the form Hen- is stable, 
this model is not considered further. 

(b) The electron is localized in a cavity in the 

5 (a) N. R. Kestner, J. Jortner, M. H. Cohen, and S. A. Rice, 
"Low Energy Elastic Scattering of Electrons and Positrons by 
Helium Atoms" (to be published); (b) J. Jortner, N. R. Kestner, 
M. H. Cohen, and S. A. Rice, "The Electron Helium Atom Pseudo-
potential," in Ne:w Developments in Quantum Chemistry-Is-
tanbul Lectures (Academic Press Inc., New York, to be published). 

6 J. Levine and T. M. Sanders, Phys. Rev. Letters 8, 159 
(1962) . 

7 K. R. Atkins, Phys. Rev. 116, 1339 (1959). 
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liquid.6.8-11 If the electron-atom repulsion is sufficiently 
strong, this state of local fluid dilation may lead to a 
stable state despite the large increase in the kinetic 
energy of the electron which accompanies the localiza-
tion in the bubble. Hydrodynamic motion of the bubble 
and enclosed electron is characterized by a large electron 
effective mass. 

e c) The electron is a quasifree particle, basically in 
a plane-wave state, and scattered by the atoms con-
stituting the dense fluid.I2 When the electron-atom 
interaction is small, or is attractive because of a long-
range polarization interaction, this description will be 
accurate. 

Davis, Rice, and Meyerl2 have treated the electron 
as a quasifree particle scattered from the atoms in the 
liquid, with coherence between single scattering from 
separate centers being accounted for in terms of the 
radial distribution function of the liquid. It is now 
known that the electron-He-atom pseudopotential is 
large and positive." Experimental confirmation of this 
conclusion is provided by Sommers' experiment,13 which 
demonstrates that liquid helium (both above and below 
the lambda point) acts as an energy barrier of magni-
tude 1.3 eV for electrons. Because of the very large 
electron-helium-atom interaction, the local structure 
of the liquid may be changed, and a substantially 
lower energy state is accessible to the electron if there 
can be created a cavity in the liquid sufficiently large 
to reduce the zero-point energy of the localized electron, 
without costing too much pressure-volume or surface-
tension work. This is the factor that leads to the failure 
of the quasifree-electron model for an electron in liquid 
helium. On the other hand, the interaction between an 
electron and an argon atom is strong and attractive, 
but of long range. Because of the sign and the range of 
the potential, no cavity formation is expected, and the 
quasifree-electron state should be energetically favored. 
Schnyders, Meyer, and Ricel4 have recently obtained 
preliminary data on the mobility of excess electrons in 
liquid argon. The magnitude of the field-independent 
mobility (500 cm2 V-I'SeCI at T=900K) and its tem-
perature dependence are consistent with the 
predictions of the single scattering modeJ.Is 

8 R. P. Feynman, quoted in Ref. 9. 
g C. G. Kuper, Phys. Rev. 122, 1007 (1961). 
10 R. A. Ferrel, Phys. Rev. 108, 167 (1957). 
11 L. Onsager, in New Developments in Quantum Chemistry-

Instanbul Lectures (Academic Press Inc., New York, to be 
published) . 

I. Ca) H. T. Davis, S. A. Rice, and L. Meyer, Phys. Rev. 
Letters 9, 81 (1962); (b) H. T. Davis, S. A. Rice, and L. Meyer, 
J. Chern. Phys. 37,947,2470 (1962). 

13 W. T. Sommer, Phys. Rev. Letters 12,271 (1964). 
14 H. Schnyders, L. Meyer, and S. A. Rice, Phys. Rev. Letters 

15, 187 (1965). 
16 The original analysis presented by Davis, Rice, and Meyerl• 

has been modified to include a more general pseudo potential 
(expressed in terms of the scattering length), and an omitted 
numerical factor of 411' in the density of states (which was over-
looked in the original work) has been included. 

We have alluded to structural changes in liquid 
helium near an electron. A model in which the electron 
is localized in a bubble has been proposed by Ferrel,I° 
Feynman,8 and Kuper. 9 In liquid helium, it appears 
that the electron-atom repulsion is so large that a local 
fluid dilation does lead to a state of lower free energy 
than the quasifree-electron state. The basic idea is, of 
course, that a stable configuration of the system is 
achieved by a balance between the electron-atom repul-
sions (summed over all surrounding atoms), the in-
creased kinetic energy of the electron due to localization 
in the bubble, the contractible force on the bubble 
resulting from surface tension, and the pressure-volume 
work of creation of the bubble. To date only simple 
model calculations have been published in which the 
nature of the electron-helium-atom interaction is not 
considered, and simple particle-in-a-box models have 
been used. In these considerations the bubble boundary 
was taken as an infinitely steep potential wall, where-
upon the bubble boundary becomes infinitely sharp. 
In addition, macroscopic parameters were used to 
describe the bubble. In the present work, we used the 
physical ideas already inherent in the Kuper-Sanders 
model, but discuss a number of the features of the 
electron-atom interaction that have up to now been 
ignored. 

II. ELECTRON-HELIUM-ATOM INTERACTION 

The first step in developing a quantitative description 
of the system electron plus liquid He is the determina-
tion of the electron-He-atom interaction. Recent work 
in this laboratory has been concerned with the calcula-
tion of the electron-He-atom pseudopotential,16.s and, 
from that pseudopotential, the cross section for low-
energy scattering of electrons from He atoms. The 
agreement between experiment and theory is good, 
thereby indicating that the pseudopotential provides an 
accurate and physically incisive description of the 
electron-He-atom interaction. Since this calculation is 
described in detail elsewhere,S here we merely note 
that the calculated pseudopotential is based on the 
following: 

(i) The pseudopotential V p. is defined by 16 

Vp.=V+ VR , 

V R<P = - LXc (Xc I V I <P ), ( 1) 

where <p is a pseudowavefunction which is equal to the 
one-electron self-consistent-field wavefunction if; at 
large distances from the atom, but inside the core has 
the oscillations of if; removed. The functions Xc are core 
orbitals. The wavefunction if; satisfies the one-electron 

16 (a) J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 
(1959); (b) M. H. Cohen and V. Heine, ibid. 122, 1821 (1961); 
(c) B. Austin, V. Heine, and L. J. Sham, ibid. 127, 276 (1962). 
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self-consistent-field eigenvalue equation 

(T+ V)1/;=E1/;. (2) 

(ii) In Eq. (1), VR is a nonlocal repulsive potential 
defined by the transformation of (1) to read 

(3) 

and the condition that the eigenvalues of Eqs. (2) and 
(3) are the same. When, of the possible transformations, 
that one is chosen which leads to the smoothest orbitals 
(in the sense of having the lowest kinetic energy), the 
second of Eqs. (1) is obtained. 

(iii) The effective core potential V is constructed 
from the sum of the nuclear, Coulomb, and exchange 
potentials, plus the polarization potential arising from 
the small distortion of the atom by the electronic charge. 

(iv) The numerical calculation of the pseudopoten-
tial is, finally, based on the use of the Bagus-GiIbert 
nominal set17 

Xc=0.18159'PIB(2.906) +0.84289'P1s(1.453) (4) 

for the Hartree-Fock orbitals of He. In Eq. (4), 'PI.(Z) 
is a normalized Slater Is function with orbital exponent 
z. In Fig. 1 is displayed the total potential for the 
scattering of an electron in a quasifree plane-wave state 
[cf>= exp(ik· R) ] by He atoms, calculated in the manner 
outlined for the limiting case As mentioned, there 
is good agreement between the observed and computed 
scattering lengths using this pseudopotential. 

III. ESTIMATE OF THE BARRIER TO PENETRA-
TION OF LIQIDD He BY AN ELECTRON 

It has already been mentioned that a plane-wave 
state for the electron in liquid He lies at positive energy 
relative to the vacuum level, which implies that the 
liquid acts as a barrier to the passage of electrons from 
vacuum into the liquid. Now, under the conditions of 
Sommer's experiment,13 the electrons move rapidly rela-
tive to the He atoms, and it may be assumed that the 
He atoms do not rearrange in the process of electron 
injection. In the adiabatic limit just described, it is 
easy to obtain several complementary estimates of the 
energy of interaction of the electron and the liquid He. 

Consider first a first-order perturbation calculation 
which gives a rough estimate of the electron-helium 
interaction. The wavefunction for the electron III a 
plane-wave state is taken to be 

I k) =n--! exp(ik·r), (5) 

where n is the volume. The electron-helium interaction 
(to first order) is then 

N 
E(k)=(kl T+2:(V+VR)i!k), (6) 

i=l 

E(k) = (h2k2/2m) +p (k I V + VR I k), (7) 
-----

17 P. Bagus, T. L. Gilbert, C. C. J. Roothaan, and H. Cohen 
(to be published). 

where T is the kinetic energy, V is the atomic SCF 
potential plus polarization, VB is the nonlocal repulsive 
potential for the plane-wave state,· the sum is over all 
atoms in the liquid, and the density p=Nln, where N 
is the number of helium atoms. For k=O 

(8) 

The Fourier transform of the pseudopotential is almost 
energy independent in the region 0 to 0.5 eV, and leads 
to E(O) =1.26 eV. 

The first-order perturbation treatment sketched above 
is equivalent to the application of the Born approxima-
tion. However, at low energies the pseudopotential is 
obviously too large for the Born approximation to be 
applicable (see Fig. 1). The proper approach would be 
to rewrite the electron-helium interaction in terms of 
the t matrixI8a rather than the pseudopotential and to 
use the experimental value of t for low-energy scattering, 
so that 

j(V+VR)r2dr-+(O I t I 0)= (h2/2m) a, (9) 

where ! 0) is the exact wavefunction of the electron 
for k=o and a is the scattering length. This leads to 
the familiar result 

(10) 

From Eq. (10) we get E(O) =0.6 eV. Equation (10) 
represents an optical approximation which underesti-
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FIG. 1. The electron-helium-atom pseudopotential as a function 
of the electron-atom separation. The pseudopotential was cal-
culated for a plane-wave state in the limit k->O. 

18 (a) See, for example, A. Messiah, Quantum Mechanics (John 
Wiley & Sons, New York, 1962), Vol. 2, p. 806; (b) see, 
for example, F. Seltz, Theory oj Solids (McGraw-Hill Book Com-
pany, Inc., New York, 1940). 
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mates the value of E(O) because the increase of the 
electronic kinetic energy associated with multiple 
scattering is not taken into account. To obtain an 
estimate of the multiple scattering effects, we apply 
the Wigner-Seitz modeP8b to an electron in a helium 
crystal. 

We represent each helium atom by an equivalent 
hard sphere of radius a, the scattering length. The 
electron wavefunction is then 

1P= [sink (r-a) Ir], (11) 

T ABLE I. Energy calculations for plane-wave electrons in helium. 

Energy (a.u.) 

Born ap-
Wave proximation 

Density 
(a.u.) 

vector ko (first-order 
[Eq. (12) ] perturbation 

(a.u.) theory) 

0.2813XI0--1! 0.277 0.0463 
(liquid density) 
4.2°K 

0.2813XI0-a 

Exact 
single 

scattering 
result 

0.0221 

Wigner-
Seitz 

model 

0.0384 

while the equivalent sphere size r. is related to the 0.1407XIO-S 
density by 

0.072 
0.051 

0.00463 

0.00232 
0.00221 
0.00111 

0.00259 
0.00130 

lip =-f7rr.3• 

The boundary conditions on 1Po, the electron wavefunc-
tion of lowest energy, require the vanishing of d1Po/dr 
at the boundary of the equivalent sphere. This leads to 

tanko(r.-a) =kor (12) 

for the determination of the wavenumber, ko, charac-
teristic of the lowest energy state, whose energy is 

(13) 

In the limiting case ko(r.-a)«l, Eq. (13) takes the 
form 

27rpa ft2 
Eo [1-(a/r)]2 m ' 

(14) 

which provides a correction term to the result obtained 
from Eq. (10), arising from the exclusion of the electron 
from the region occupied by the hard spheres. Since 
in almost all cases kor. is of order unity, the condition 
for the applicability of Eg. (14) is that which 
is not correct for liquid helium. A direct solution of 
Eq. (12) for ko leads to the results presented in Table 
I for a quasifree-electron interacting with helium fluid 
at several densities. The calculated energy of an excess 
electron in a hypothetical helium lattice characterized 
by the liquid density is found to be Eo=1.04 eV. 

Recent experimental work13 has shown the potential 
barrier of liquid helium to electrons to be 1.3±0.3 eV, 
in good agreement with the 1.04 eV calculated here,19 
especially since a barrier experiment of this form must 
determine an upper limit to the barrier. 

IV. SOME ELEMENTARY ESTIMATES OF THE 
PROPERTIES OF AN ELECTRON IN A CAVITY 

The pseudopotential formalism may also be used 
conveniently in the study of the localized state of the 

19 Recently, a calculation of the energy of an electron inter-
acting with a periodic lattice of helium atoms was performed. 
The quasifree-electron-helium interaction was represented by 
the experimental scattering length [B. Burdick, Phys. Rev. Letters 
14, 11 (1965); L. Onsager, Ref. 11]. This treatment leads to an 
interaction energy of 1.09 eV at liquid-helium density, in ex-
cellent agreement with the results of the Wigner-Seitz model. 

excess electron. A direct solution of this problem in the 
SCF scheme is obviously impossible at present, while 
the pseudopotential formalism makes the problem 
tractable. 

We start with the assumption that the electron is in 
a localized state, and therefore require that the electron 
wavefunctions tend to zero for large distances from 
the center of localization. For convenience, a simple 
one-parameter smooth wavefunction of the form 

= exp( I r-ro \) (15) 

is used to describe the excess electron.2o Note that this 
wavefunction is referred to a coordinate system cen-
tered at ro, which is also taken to be the center of the 
cavity in the liquid. As usual, is a variational param-
eter to be used in the minimization of the energy. 

The electronic energy is written in the form 

and is stationary with respect to the variation of S, i.e., 

The electronic energy of the system, for a constant 
fluid configuration, can now be displayed in the form 

( 16') 

20 This Is hydro genic-type variational wavefunction is not en-
tirely satisfactory for small values of I r-ro I since there is a 
cusp in the center, introduced only by Coulomb interaction. 
However, the variational calculations of the energy of interaction 
of the excess electron with helium atoms at distances larger than 
10 a.u. should not be affected by the presence of this cusp. An 
alternative choice for a variational wavefunction would be that 
corresl?onding to a particle in a box with finite walls, q, (r) = 
(sink I r-ro 1/1 r-ro I) for I r-ro I <Ro and q,(r} =exp(-
!; I r-ro 1)/1 r-ro I for I r-ro I >Ro• Still another different 
function might be considered: q,(r) =exp( -(j I r-ro 12). In 
the variational treatment of strongly coupled polaron states 
[So Pekar, Untersuchangen uber die Elektronentheorie der Kristalle 
(Akademie-Verlag, Berlin, 1954) ] where the interaction po-
tential between the electron and the medium is finite (and not 
Coulombic) at small distances, the hydrogenic Is-type wave-
function and the Gaussian wavefunction lead to practically iden-
tical results. 
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10 

5 

20 40 60 80 100 
rio u) 

FIG. 2. The electron-helium-atom diagonal matrix element of 
the pseudopotential for a localized Is state. (1) e, a.u., 
(2) 0, a.u., (3) 0, ;=0.07 a.u., (4) D., a.u. 

where 
(17) 

and per) is the density of He atoms a distance r from 
the center of the cavity. 

The pseudopotential (1) for the localized state is 
displayed in the form 

(Vcou1+ Vnuc+ 
- (Xc I Vcou1+ Vnuc+ Vexc I I Xc), (18) 

where Vcou1, Vnuc, and Vexc are the Coulomb, nuclear, 
and exchange interaction potentials of the excess elec-
tron with the helium core. A straightforward calcula-
tion leads to the result 

= I Vp8W I 
=2 l1/r121 Xc(2)xc(2) ) 

- 2 (cf>e 11/rI I (Xc ( 1) 11/rI2 I xc(2)cf>e(2) ) 

- I xc) 11/r121 Xc(2)xc(2) ) 

+ 2 (cf>e 1 Xc) <Xc l1/rl I (19) 

In contrast to our previous treatment of quasifree-
electron scattering by He atoms,5 in the present case 
two-center interactions between the localized excess 
electron and the helium atoms must be considered. 
These two-center integrals were calculated on an IBM 
7094 using the molecular integrals programs written 
by A. C. Wahl and P. Cade at the Laboratory of 
Molecular Structure and Spectra, the University of 
Chicago. 

To evaluate Ee(r) , it is necessary to specify the form 
of the density distribution p(r). We have used the 
simple distribution 

per) =0, r<Ro, 

per) =p(1-[l+a(r-Ro)] exp[ -a(r-Ro)]}, 

r>Ro, (20) 

where a and Ro are variational parameters, Ro corre-
sponding to the cavity radius, and a-I measuring the 
thickness of the boundary layer. When 00, the 
density distribution reduces to the step-function form 

per) =0, r<Ro, 

lim per) =p, r>Ro. (20') 

It should be noted that 

which is just the Fourier transform, evaluated at k =0, 
of the pseudopotential for an electron in a plane-wave 
state in interaction with an He atom (see Fig. 1). Thus, 
in the limit cited, the energy Ee is identical to the energy 
computed from first-order perturbation theory in the 
quasifree-electron model. 

In Fig. 2 is displayed the diagonal matrix element of 
the pseudopotential for the range of values of r of 
interest. Of course, since the pseudopotential depends 
on the pseudowavefunction used, the pseudopotential 
for the localized state differs from that for the plane-
wave state. 

We now examine the electronic energies corresponding 
to bubble sizes and boundary widths and for different 
fluid densities. The orbital exponents corresponding 
to the density distribution of Eq. (20'), the infinitely 
thin boundary layer, for several different densities are 
displayed in Fig. 3. In Fig. 4 is shown the electronic 
energy obtained for two fluid densities, again for the 
density distribution defined in Eq. (20'). 

It is instructive at this point to compare the results 
of the present calculation with calculations based on 
the electron in a box model. For the case of a spherical 
box with infinite walls, Ee=r/2Ro2 a.u. As is apparent 
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from Fig. 4, at the normal density of liquid He, the 
results of our calculation are not appreciably different 
from those of the simple box model. However, at the 
lower fluid densities and small Ro, the box model is 
inadequate because it cannot account for the substantial 
charge leakage to the region outside the bubble. 

Before closing this discussion we should point out 
that in the present calculations for the localized state 
the effect of electronic polarization of the medium by 
the excess electron has not been included. We consider 
an excess-electron trapping center which nearly preserves 
the charge distribution of the atoms constituting the 
fluid. In view of the low polarizability of the helium 
atom it appears that core polarization effects due to 
the excess electron are small. For the energy of a quasi-
free-electron in a plane-wave state in liquid helium, we 
obtain from first-order perturbation theory 4.8SX 10-2 

a.u. when polarization effects are included, and S.38X 
10-2 a.u. when polarization effects are neglected. In 
the localized state of the excess electron, the contribu-
tion of the electronic polarization also appears to be 
small. The contribution of the polarization energy in 
the localized state of an electron in a bubble of radius 
Ro, neglecting penetration effects, can be expressed as 
Ep=27rpexe2jRo, where ex is the atomic polarizability. 

For the case of liquid helium, setting Ro=40 a.u., 
we obtain Ep=O.60X 10-3 a.u. to be compared with 
the electronic energy Ee=O.61Xl0-2 a.u. calculated 
neglecting polarization effects. Hence, the error involved 
in neglecting polarization effects does not exceed 10%. 

v. TOTAL ENERGY OF THE SYSTEM-THE 
BUBBLE MODEL 

We have as yet not calculated the total energy of 
the system under investigation, nor have we examined 
the nature of the configuration determined by minimiz-
ing the free energy of the system. It is this task to which 
we now turn. 

The total energy of the system, E t, is, in our approxi-
mation, simply the sum of the electronic energy and 

.12 
-; 
.; 

W.OS 

.04 
A 

FIG. 3. The dependence of the excess-electron ls-wavefunction 
orbital exponent on the cavity size and on the fluid density. 
A, p= 1.9Xl()21; B, p=3.8Xl()2°; C, p= 1.9XI020 ; D, p= 1.6XIQ20; 
and E, p=3.5XI019 atom/cc. 

4 

.w 2 

50 60 70 80 90 
Ro (o,u.) 

FIG. 4. The dependence of the electronic energy of a localized 
state of the excess electron on the cavity size. These results 
were obtained by the variation method using the pseudopotential 
approximation and the density distribution.--, liquid helium 
density at 4.2°K and 1 atm (po= 1.9Xl()22 atom/cc); - - --, 
gas density at 4.2°K and 0.85 atm (p=1.9XI021 atom/cc). Open 
circles represent the electron in the box model. 

the energy required for bubble formation, Eb, 

(21) 

and the energy, E t, is to be minimized with respect to 
the parameters determining the bubble size and bound-
ary-layer thickness, 

fJEtjfJex=O. (22) 

Consider first the simple classical expression 

(23) 

which represents the work of formation of the bubble, 
at constant pressure, as the sum of surface work and 
volume work terms. Note that in Eq. (23) P is the 
pressure, 'Y(Ro) is a size-dependent surface tension, 
and the relation displayed is written for the limit a---+ 00. 

The surface tension 'Y(Ro) may be taken, in two differ-
ent approximations, as either the (size-independent) 
surface tension at the liquid-vapor interface, or the 
energy expended on introduction of a spherical cavity 
in a classical rigid-sphere fluid. In the latter case, the 
interfacial tension between the rigid-sphere fluid and 
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FIG. 5. The ground-state energy of a localized excess electron 
in liquid helium at 4.2°K and 1 atm. Calculations for 1'=0.098 
dyn/cm (experimental surface tension) and for 1'=0.22 dyn/cm 
are indicated, respectively, by circles and squares (for the sta-
tistical model of Reiss et at.). 

a perfect rigid wall can be expressed as21 

where 
'Y( Ro) ='Yo[l- (28/ Ro)], 

'Yo = (kT /47ru2) (x+ 18x2) -lpu, 

_1 [6X+18X2-7rpu3/kT] 8 -;fU -------"---''---
6x+9x2-7rpu3/kT ' 

( 7rpu3/6) 
x= 1-(7rpu3/6) , 

(25) 

and u is the diameter of the rigid-sphere molecule. For 
He, u=2.56 A, and Eqs. (24) and (25) lead to the 
prediction21 that 'Yo=0.22 dyn/cm at 4.2°K, which 
should be compared with the experimental liquid-vapor 
surface tension22 of 'Yo = 0.096 dyn/cm. Only at liquid 
densities is the surface work an important contribution 
to Eb; at lower densities (say the saturated vapor density 
at 4.2°K and 1 atm) the surface contribution to Eb is 
wholly negligible. 

In Fig. 5 we display the results of the calculations for 
the total ground-state energy of a localized excess elec-
tron in liquid He. The calculations shown are for the 
density distribution (20') and used the two different 
approximations to the surface work mentioned above. 
The results are also summarized in Table II. At high 
densities, as already noted, the penetration of the sur-
rounding medium by the excess electron is extremely 

21 H. Reiss, H. L. Frisch, E. Helfand, and J. L. Lebowitz, J. 
Chern. Phys. 32, 119 (1960). 

.. G. A. Cook, Argon, Helium and the Rare Gases (Interscience 
Publishers, Inc., New York, 1962). 

small. For liquid He at 4.2°K, and p=l atm, 5"=0.09 
a.u., whereupon about 98% of the excess-electron charge 
density is localized within the bubble of radius 40 a.u. 

The temperature dependence of the bubble size is 
relevant for the interpretation of the temperature 
dependence of the mobility of negative ions in normal 
liquid helium.23 It should also be noted that the bubble 
size in superfluid helium is of considerable interest with 
relation to the interpretation of the cross sections for 
the interaction of the negative ion and quantized vortex 
rings in rotating He II.24 In Table II we display the 
calculated temperature dependence of Ro, obtained 
using only the surface term to define the configuration 
changes of the fluid. It is seen that the bubble size 
decreases by 20% as T decreases from 4.2°K to the 
lambda point. Below the lambda point the temperature 
effect is smaller because of the slow change of the surface 
tension with temperature in that region. 

In contrast with the preceding, when the He density 
is low and the surface work negligibly small, 

(26) 

so that 

(26') 

using the density distribution (20). In Fig. 6 and Table 
III is displayed the total ground-state energy of an 
excess electron in He in the density range O.OlSp/poS 
0.1, with Po the liquid density at 4.2°K. From these 
results it becomes apparent that for large Ro (",40 a.u.; 
where the minimum energy is attained) the values of 
a which minimize the energy are large. Since a-I meas-
ures the thickness of the boundary layer, this result 
supports the use of the simple density distribution (20') 

TABLE II. The ground-state energy of an excess electron in liquid 
helium calculated for the steep bubble approximation. 

T l' Ro E r 
Model (OK) (dyn/cm) (a.u.) (a.u.) (a.u.) 

a 4.2 0.098 46 7.9X10-a 0.084 
a 4.2 0.223 40 9.SXlO-a 0.095 
b 4.2 0.098 42 S.1X10-a 

b 4.2 0.223 41 6.SXlO-a 

a 2.2 0.29 38 10. 6X 10-' 0.10 
a 0.5 0.37 36 11.5X 10-' 0.103 

a Pseudopotential variational calculation. 
b Particle in box model. 

23 L. Meyer, H. T. Davis, S. A. Rice, and R. J. Donnelly, 
Phys. Rev. 126, 1927 (1962) . 

24 R. J. Donnelly, Phys. Rev. Letters 14, 39 (1965). 
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in the high density limit. This result derives from the 
fact that the electron-He-atom interaction is so strongly 
repulsive that leakage of the He atoms into the cavity, 
where the electron density is high, greatly increases the 
energy of the system. When Ro is small, smaller values 
of a lead to the minimum energy, so that there is a 
possible continuous distribution of boundary widths 
coupled with bubble sizes. 

Having estimated the energies of both the localized 
state and the quasiplane-wave state, can we determine 
which is lowest in energy? In Fig. 7 these energies are 
compared over a range of fluid density. Since the cal-

.70 

.60 

, , , 
"IF =! .50 , 

..!!. ' '" "'Q 

.30 

-e.L0-..J90 
R(a.u.) 

F ·G. 6. The energy of a localized electron in helium at low den-
sities. The calculations were performed for isobaric energy curves 
at 1 atm. The solid curves represent results for the sharp bubble, 
while the dashed curves represent the data for the fuzzy bubble. 
(1) p/po=O.l, (2) p/po= 1/12, (3) p/po= 1/14, (4) p/po= 1/20. 

culations in each case were made using the variational 
method, the separate energies represent upper limits 
to the energies of the states considered. Hence, the 
lower of the two energies at each density is expected to 
represent the more stable of two configurations.25 Ex-
amination of Fig. 7 leads to the conclusion that the 
localized state is stable relative to the plane-wave state 
at high He densities. It should be stressed, again, that 
the electron localization in liquid He arises from strong 
short-range electron-atom repulsion, and is basically 
different from the trapping of electrons in liquid NH3 

25 This is correct only if the uncertainties in the two variational 
calculations are smaller than the energy separation between the 
two states. 

TABLE IT!. Variational calculations of the total energy for the 
rigid and the fuzzy electron bubble models. 

Density 
(a.u.) 

0.281XlO-a 

0.233XlO-a 

0.200XlO-a 

Ro 
0 

10 
20 
30 
40 
50 
60 
0 

10 
20 
30 
40 
50 
60 
0 

10 
20 
30 
40 
50 
60 

Rigid 
bubble 
l()3Et 
(a.u.) 

0.538 
0.536 
0.530 
0.411 
0.370 
0.390 
0.495 
0.448 
0.450 
0.458 
0.382 
0.349 
0.373 
0.469 
0.384 
0.386 
0.397 
0.359 
0.327 
0.365 
0.461 

Fuzzy bubble 

a l()3Et 
(a.u.) (a.u.) 

0.538 
0.1 0.480 
0.133 0.424 
0.2 0.386 
1.0 0.369 
3.0 0.390 
3.0 0.495 

0.448 
0.22 0.425 
0.4 0.403 
1.0 0.364 
2.0 0.349 
3.0 0.373 
3.0 0.469 

0.384 
0.2 0.375 
0.25 0.368 
0.35 0.340 
2.0 0.330 
2.0 0.365 
2.0 0.461 

or from polaron formation which is due to long-range 
interactions.26 

VI. TRANSITION FROM THE DELOCALIZED 
STATE TO THE LOCALIZED STATE 

The experimental work of Sanders and Levine6 pro-
vides unambiguous experimental evidence for the fact 
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FIG. 7. The density dependence of the energy of the localized 
and the quasifree-electron states in helium. (-- quasifree 
electron: first-order perturbation theory;- - - - quasifree electron: 
Wigner-Seitz model; -.- localized electron (1 atm) (po normal 
helium density). 

26 J. Jortner, S. A. Rice, and E. G. Wilson, Proceedings of the 
Weyl Conference on Metal Ammonia Solutions (W. A. Benjamin, 
Inc., New York, 1964). 
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FIG. 8. Mobility data for electrons in helium gas at 4.2°K. 
The experimental data (solid curve) are taken from Ref. 6. 
The dashed curve represents the calculated free-electron mobility 
using a single scattering model. The arrow shows the calculated 
critical density for the transition from the delocalized to a ID-
ealized state. 

that the localized state of an electron in a bubble is not 
the configuration of lowest free energy at low densities. 
In the density region O.6X 1021 to 1.2X 1021 atom/cc at 
4°K, a critical density is reached at which the electron 

.70 

.60 

.20 
R(a.u.) 

FIG. 9. The transition from the localized to the delocalized 
state of an excess electron in helium at 4.2°K (isothermal energy 
curves). (1) p/po=O.l, (2) p/po=1/14, (3) p/po=1/20, (4) p/po= 
1/25. 

mobility drops by three to four orders of magnitude and 
a transition from the delocalized state to a localized 
state of the electron is observed (Fig. 8). In Table IV 
and Fig. 9 we present the isothermal energy curves for 
the density dependence of an excess electron in helium. 
In Table V we display the density dependence of the 
well depth for the localized state, defined as .1E = 
E free - E t • The occurrence of a transition from the free 
state to a localized state is manifested by the dis-
appearance of the minimum corresponding to a bound 
state (Le., .1E->O) at p/po=O.045, (i.e., at the density 
O.9X 1021 atom/cc). These results are summarized in 
Table VI. The calculated transition density is in good 
agreement with the experimental value derived from 
the mobility data of Sanders and Levine. This result 

TABLE IV. Dependence of the energy of an excess electron in 
helium on the bubble diameter. 

Ro 
(a.u.) 

0 
10 
20 
30 
40 
50 
60 

0 
10 
20 
30 
40 
50 
60 

103E(a.u.) 

(a) Isobaric curves, p=l atm 

p/po=0.050 p/po=0.071 p/po=0.083 

2.69 3.84 4.38 
2.72 3.79 4.26 
2.81 3.68 4.03 
2.90 3.40 3.64 
3.02 3.27 3.49 
3.44 3.65 3.73 
4.45 4.61 4.69 

(b) Isothermal curves, T=4.2°K 

p/po=0.40 p/po=0.050 p/po=O.071 

2.14 2.68 3.85 
2.67 3.74 

2.14 2.65 3.57 
2.58 3.20 

2.26 2.48 3.04 
2.57 3.10 

2.50 3.02 3.64 

p/po=0.100 

5.38 
4.80 
4.24 
3.86 
3.70 
3.90 
4.95 

p/po=O.l00 

5.38 
4.69 
4.20 
3.70 
3.53 
3.66 
4.47 

may be readily rationalized by noting that at low 
densities the bubble is not the configuration of lowest 
energy since the volume work expended in creating a 
void is still relatively large, while lowering of the energy 
of the localized state relative to the energy of the 
plane-wave state is small at low densities. The agree-
ment between the calculated and observed transition 
can be considered to represent a significant confirma-
tion of the bubble model. 

It is interesting to speculate about the possibility of 
a pressure-induced transition from the localized state 
to a delocalized state, since an increase in pressure 
should increase the volume work expended in creating 
the void and thereby tend to make the localized state 
unstable. For a rough estimate of the magnitude of 
the pressure required, we use the particle in a box 
model, a good approximation in the case of the dense 
fluid. When the energy expended in creating the void 
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is determined by the pressure [this is the case at high 
pressures when (tn-R03) p»47r Ro2"1], the total energy is 
approximated by 

E = (7r2:fI,2/2mRo2) + (4/3) 7rpR03, (27) 

leading to 

Ro= (7rh2/4mp) 1 = 46.94(p/atm)-ta.u ., (28) 

so that 
E=O.00372 (p/atm)ia.u . (29) 

Correspondingly, the delocalized plane-wave state 
energy is approximated by the results of first-order 
perturbation theory, 

E free =O.0482(p/po) a.u., (30) 

where Po is the density of liquid helium at 4.2°K and 
at 1 atm. Unfortunately, as is evident from Table VII, 
the pressure necessary to induce the transition from the 
localized state to a delocalized state is always higher 
than the melting pressure of He: Along the fusion curve 

TABLE V. The density dependence of the well depth for the 
localized state of an electron in helium. 

Il.X104 (a.u.) 

Isothermal Isobaric 
p/po 4.2°K p=l atm 

0.050 2.0 
0.071 8.0 5.7 
0.083 12.4 9.9 
0.100 18.4 15.0 

of helium in the temperature region 4 ° to 40oK, E < E free , 

so that the expected transition will not occur in the 
fluid domain. 

VII. COMMENTS ON THE MOBILITY DATA 

An a priori calculation of the mobility of an electron 
trapped in a bubble in liquid helium is fraught with 
difficulty. Clearly, since the penetration of the fluid by 
the charge distribution of the excess electron is small 
at high density, no bubble-to-bubble tunneling is 
expected. It might be argued that the bubble moves 
by expanding in one direction and contracting in another 
direction. This "amoeba motion" is improbable because 
too much energy is expended in moving a helium atom 
into the cavity, i.e., the bubble is essentially nonde-
formable on the thermal energy scale. Consider now the 
possibility that the motion of the charged bubble can 
be adequately described by classical hydrodynamics, 
at least above the lambda point. This is not unreason-
able, as the calculated bubble radius is much larger 
than the interatomic separation. The bubble is then 
considered to be a rigid sphere moving through the 
liquid. The boundary conditions at the surface should 
be near-to-zero transverse velocity, i.e., both the radial 

TABLE VI. Calculated critical densities for the transition from 
the delocalized to the localized state of an excess electron in 
helium. 

Model for free- Experimental 
electron state conditions 

a Isobaric p = 1 atm 
b Isobaric p= 1 atm 
a Isothermal 4. 2°K 

" First-order perturbation theory. 
b Wigner-Seitz model. 

(p/ po)" 

calc. exptl. 

0.070 
0.17 
0.045 0.035-0.070 

c po=I.92XIO" atom/cc=O.281Xl0-' a.u. (density of normal 'He at 4.2°K 
and 1 atm). 

velocity and the transverse velocity vanish at the 
surface. There should be no internal excitation due to 
flow since there can be no exchange of energy between 
the helium atom and the electron (the lowest electronic 
excitation energy is too high). 

Since at the densities characteristic of liquid helium 
the particle in a box model provides a good approxima-
tion to the electronic energy, the ground-state energy 
at low pressure and high density can be roughly repre-
sented in the form 

where 
Ro= (7rh2/ 8m"l) 1. 

(31) 

(32) 
The Stokes law mobility }L is then given by 

}.L- = "Ii , 
67r 7rh2 T} 

(33) 

where T} is the fluid viscosity. In Table VIII we have 
displayed the relevant mobility data for electrons in 
4He and 3He using the results of Meyer, Davis, Rice, 
and Donnelly.23 It is apparent that the temperature 
dependence of the product}.L-r} is almost exactly counter-
balanced by the temperature dependence of the surface 
tension. These results provide support for the conjecture 
that the mechanism of negative charge transport in 
liquid helium involves the gross motion through the 
liquid of the bubble plus the trapped electron. 

The calculated Stokes law mobility J.L_=e/67rT}Ro for 
a negative ion in liquid helium at 4.2°K and 1 atm is 

T ABLE VII. Bound- and free-electron energies in helium at 
the melting (fusion) pressure. 

Tm" pma. P E Efree 
(OK) (atm) (a.u.) (a.u.) (a.u.) 

4 128.6 5. 16X10-3 2.57X10-2 8.85X10-2 
10 580 6.61XlO-3 5.05XlO-2 11.3XlO-2 
20 1740 8.0XlO-3 7.40XIO--2 13.7XlO-2 
30 3280 8.8XlO-3 9.25XlO-2 14.6X10-2 
42 5600 llX 10-3 1l.8XlO-2 18.9XlO-2 

"The melting temperature T m and the melting pressure Pm from Cook, 
Helium, Argon and the Rare Gases (Ref. 22). 
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TABLE VIII. Mobility of electrons in liquid He I and IHe. 

Temper- JI.-17 1'114 
ature 
(OK) absolute ratio absolute ratio 

4He 4.2 0.79 1.00 0.557 1.00 
3.0 0.94 1.19 0.682 1.22 
2.0 1.08 1.37 0.735 1.32 

'He 3.2 0.6 1.00 0.38 1.00 
1.2 1.0 1.67 0.604 1.60 

0.0135 cm2/V· sec, which is somewhat lower than the 
experimental value. We conclude that the treatment 
described in this paper overestimates the bubble size.27 

VIII. SPECULATIONS ON THE OPTICAL 
SPECTRUM OF THE LOCALIZED 

ELECTRON IN HELIUM 

At present there are no experimental data defining the 
energy-level distribution of an excess electron in liquid 
helium. An application of the pulse radiolysis tech-
nique/8 recently developed for the study of bound 
electron states in polar solvents (Le., H20 and aliphatic 
alcohols), should make the localized states of an excess 
electron amenable to spectroscopic study. 

A rough estimate of the optical excitation energy 
can be obtained from the particle in a box model. The 
1s-2p transition energy, llE18 ... 2p, is given by 

llE1 .... 2p = 1.046E.= 1.046r/2Ro2 a.u. 

For liquid helium at 4.2°K and 1 atm llE18 ... 2p =0.08 eV, 
so that the first optical transition is predicted to lie in 
the infrared region at about 1000 cm-I • The transition 
energy should be extremely sensitive to the pressure 
in view of the pressure dependence of the cavity radius. 
Thus, at 4.2°K and 100 atm Ro= 19 a.u. and EI8 ... 2p = 
0.37 eV (i.e., 3000 cm-I ) , while at p=5000 atm (which 
can be achieved at400K) Ro=9 a.u. and E1 .... 2p =1.9 eV 
(i.e., 15000 cm-I ). It should be stressed that these 
estimates are reliable only to within a numerical factor 
of 2 to 3. These transitions should have an oscillator 
strength of the order of unity. Although the experiments 
suggested are very difficult, successful completion will 
lead to valuable information concerning electron-
liquid-helium interactions. 

IX. DISCUSSION 

In this paper an attempt has been made to present a 
systematic study of free and localized electrons in 

27 It is amusing to note that if there were perfect slip between 
the bubble and the surrounding fluid the mobility would be 
JI.-=e/4trROf/=O.02 cm2/V·sec. 

28 See, for example, (a) E. J. Hart and J. W. Boag, J. Am. 
Chern. Soc. 84,4090 (1962) j (b) M. Matheson and L. M. Dorf-
man, Progr. Reaction Kinetics (to be published). 

liquid helium. The pseudopotential formalism used 
herein has previously been applied to the study of the 
electronic states of liquid metals and to scattering 
problems. The application of these techniques in quan-
tum chemistry, particularly to the study of highly 
excited electronic states (Le., Rydberg states) of atomic 
and molecular systems is obviously of considerable 
interest. The present application of the pseudopotential 
formalism to the description of the localized states of 
an excess electron in a dense fluid is useful for the study 
of short-range electron-solvent interactions of excess 
electrons in polar solvents (i.e., NH or H20) and for 
studies of electron trapping centers (i.e., F centers) 
in ionic crystals. 

We have demonstrated, in a semiquantitative fashion, 
that the plane-wave state is not the lowest energy state 
of an excess electron in liquid helium, and that fluid 
deformation can lead to the formation of a localized 
state of the excess electron, where the excess-electron 
wavefunction tends to zero at large distances from the 
trapping center. It becomes obvious now that the large 
repulsive pseudopotential and the small polarization 
potential of the helium atom lead to the strong short-
range repulsion which is responsible for electron local-
ization in this system. In the cases of liquid Ar, Kr, 
and Xe, the attractive contribution of the polarization 
potential overwhelms the repulsive part of the Hartree-
Fock pseudopotential. This is evident from the observa-
tion that the increase of the core polarization effects 
with increasing atomic number lead to negative scat-
tering lengths for these atoms.29 In these cases, an excess 
electron is expected to be adequately described by a 
plane-wave state. It should be noted that in this case 
we cannot at present exclude the possibility of local 
fluid-density fluctuation leading to the formation of 
clusters at higher density that the surrounding fluid, 
thus increasing the attractive electron-fluid interaction. 

The available experimental evidence is in agreement 
with the results of the present theoretical study. Thus, 
positron annihilation data in liquid helium,1O the 
Sanders-Levine mobility data in the gaseous phase,6 
and the mobility studies in liquid 4He above the lambda 
point and in SHe, are in agreement with the bubble 
model. In a recent theoretical study of the interaction 
of ions and quantized vortices in rotating He II, it 
was shown by Donnelly24 that the experimental work 
of Careri et at.so and of Tanner et al.sI can be adequately 
interpreted by assuming that the negative ion is charac-
terized by a radius of 12 A and mass m;= 100M in 
qualitative agreement with the localized model for the 
excess electron. In the present work we have used a 
simplified phenomenological model to describe the con-

29 T. F. O'Malley, Phys. Rev. 130, 1030 (1963). 
'0 G. Careri, W. D. McCormick, and F. Scaramuzzi, Phys. 

Letters 1,61 (1962). 
'I D. J. Tanner, B. E. Springett, and R. J. Donnelly, Proc. 

Intern. Conf. Low Temp. Phys. 9th, Columbus, Ohio, 1964 (to 
be published). 
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figurational changes of the fluid. Indeed, the increase 
of the kinetic energy of the fluid atoms removed from 
the bubble region is not properly included in our analy-
sis. This increase in kinetic energy will increase the 
energy required for bubble formation, leading to smaller 
values of RD. The available mobility data, as well as the 
cross sections for the interaction of negative ions and 
quantized vortices in He II, all indicate that the cavity 
radius calculated herein is too large by about a factor 
of 2. A much more general treatment of the liquid 
configuration changes, as described in the following 
paper, leads to a smaller cavity radius, which is found 
to be in better agreement with the experimental data. 

It would be extremely interesting to obtain direct 
spectroscopic evidence regarding the energy levels and 
charge distribution of the excess electron in liquid 
helium. The first optical transition of this center in 
liquid helium at 4.2°K and 1 atm should be located at 

THE JOURNAL OF CHEMICAL PHYSICS 

about 0.1 eV (1000 cm-I ) and could be observed by 
application of the pulse radiolysis technique in con-
junction with infrared spectroscopy to liquid helium. 
Another difficult but interesting experiment would be 
the study of the electron paramagnetic resonance spec-
trum of the excess electron in liquid helium. The 
resonance line corresponding to the localized electron 
in 4He is expected to be extremely narrow, but will be 
broadened in 3He by hyperfine interactions. 
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In this paper we present a study of the structural changes in liquid helium in the vicinity of an excess 
electron. We have used the formal similarity between the pair distribution function of an N-boson system, 
with the wavefunction expressed as the product of pair wavefunctions, and the pair distribution function of 
a classical fluid. The present model leads to an interfacial surface energy term which is in good agreement 
with the observed surface tension of liquid helium at OaK. An important contribution to the bubble energy 
arises from the volume kinetic energy arising from the excess kinetic energy of the fluid atoms removed 
from the boundary layer. The bubble radius ot 12.4 A calculated herein is found to be in excellent agreement 
with the available experimental data. 

I. INTRODUCTION 

I N the preceding paperl a bubble mode12 as a repre-
sentation of the localized state of an electron in 

liquid helium was examined. In that paper it was 

* Present address: Department of Applied Science, Faculty of 
Technology, Tohoku University, Sendai, Japan. 

t Present address: Department of Chemistry, Stanford Univer-
sity, Palo Alto, California. 

1 J. Jortner, N. R. Kestner, S. A. Rice, and M. H. Cohen, J. 
Chern. Phys. 43, 2614 (1965). 

2 (a) R. A. Farrel, Phys. Rev. 108, 167 (1957); (b) R. G. Kuper, 
ibid. 122, 1007 (1961); (c) J. Levine and T. M. Sanders, Phys. 
Rev. Letters 8,159 (1962); (d) L. Onsager, New Developments in 
Quantum Chemistry-Istanbul, Lectures (Academic Press Inc., New 
York, to be published); (e) J. Jortner, S. A. Rice, and N. R. 
Kestner, ibid. 

demonstrated, through the use of the pseudopotential 
formalism, that a stable liquid configuration is achieved 
by a balance between the short-range electron-atom 
repUlsion (summed over all surrounding atoms) and 
the contractile force acting on the bubble and arising 
from the surface tension work and the pressure-volume 
work of bubble creation. When the experimental sur-
face tension is employed in the calculations, the bubble 
radius is predicted to be of the order of 20 A. 

The analysis just described depends upon the use of 
very simple models for the change in liquid configura-
tion accompanying the formation of a bubble. In par-
ticular, we have not assessed the role played by the 
transition region between bubble and bulk fluid, nor 
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