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Measurements with a noninvasive detector and dephasing mechanism
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Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel
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We study the dynamics of the measurement process in quantum-dot systems, where a particular state out of
coherent superposition is observed. The ballistic point contact placed near one of the dots is taken as a
noninvasive detector. We demonstrate that the measurement process is fully described by the Bloch-type
equations applied to the whole system. These equations clearly reproduce the collapse of the density matrix
into the statistical mixture in the course of the measurement process. The corresponding dephasing width is
uniquely defined. We show that the continuous observation of one of the states in a coherent superposition may
acceleratedecay from this state—in contradiction with rapidly repeated observations, which slow down the
transitions between quantum states~the quantum Zeno effect!. @S0163-1829~97!04748-6#
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I. INTRODUCTION

In recent years there have been many measuremen
mesoscopic systems sensitive to the phase of the elect
wave function. We mention experiments with double-sp
systems,1,2 quantum dot embedded in an Aharonov-Boh
ring,3,4 and coupled quantum dots.5 It is known that the
phase of the wave function, or, more precisely, the o
diagonal density-matrix elements, can be destroyed by in
action with the environment, or with the measurement
vice. As a result, the density matrix becomes the statist
mixture. The latter does not display any coherence effe
Now the rapid progress in microfabrication technology
lows us to investigate experimentally the dephasing proc
in mesoscopic systems, for instance, by observation of a
ticular state out of coherent superposition.6

Although dephasing~decoherence! plays an important
role in different processes, its mechanism has not been el
rated upon enough. For instance, in many studies of
quantum measurement problems the dephasing is usuall
counted for by introducing some phenomenological dissip
ing terms, associated with a detector~or an environment!.
Yet such a procedure cannot not illuminate the origin of
dephasing and its role in the measurement problem.
most appropriate way to approach the problem, howeve
to start with a microscopic description of the measured s
tem and the detector together with use of the Schro¨dinger
equation, i ṡ5@H,s#, where s(S,S8;D,D8,t) is the total
density matrix andH is the Hamiltonian for the entire sys
tem. HereS(S8) andD(D8) are the variables of the mea
sured system and the detector, respectively. In this case
influence of the detector on the measured system can be
termined by ‘‘tracing out’’ the detector variables in the tot
density matrix,

(
D

s~S,S8,D,D,t !→ s̄ ~S,S8,t !. ~1.1!

The decoherence would correspond to an exponential da
ing of the off-diagonal matrix elements in the reduced d
sity matrix: s̄ (S,S8,t);exp(2Gdt)→0 for S5S8, with Gd
the decoherence rate.
560163-1829/97/56~23!/15215~9!/$10.00
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In this paper we apply the above approach to study
decoherence, generated by measurement of a quantum
occupancy in multidot systems. As the measurement de
~detector!, we take the ballistic point contact in close pro
imity to the measured quantum dot.7 Since the quantum-
mechanical description of this detector is rather simple
allows us to investigate the essential physics of the meas
ment process in great detail. In addition, the ballistic po
contact is a noninvasive detector.7 Indeed, the time which an
electron spends inside it is very short. Thus the point con
would not distort the measured dot.~The first measuremen
of decoherence in a quantum dot generated by the po
contact was recently performed by Bukset al.6!

The plan of this paper is the following: In Sec. II w
describe the measurement of a quantum-dot occupa
when the current flows through this dot. We use the quan
rate equations,8–12 which allow us to describe both the me
sured quantum dot and the point-contact detector in the m
simple way. A detailed microscopic derivation of the ra
equations for the point contact is presented in Appendix
In Sec. III we investigate the decoherence of an electron
double-well potential caused by the point-contact detector
measuring the occupation of one of the wells. Special att
tion is paid to a comparison with the result of rapidly r
peated measurements. For a description of this system
use Bloch-type rate equations,8,9,13,14 which are derived in
Appendix B. Similar decoherence effects, but in dc curr
flowing through a coupled-dot system, are discussed in S
IV. Section V is a summary.

II. BALLISTIC POINT-CONTACT DETECTOR

Consider the measurement of the electron occupation
semiconductor quantum dot by means of a separate mea
ing circuit in close proximity.6,7 A ballistic one-dimensional
point contact is used as a ‘‘detector’’ of whether resistanc
very sensitive to the electrostatic field generated by an e
tron occupying the measured quantum dot. Such a setu
shown schematically in Fig. 1, where the detector is rep
sented by a barrier, connected with two reservoirs at
chemical potentialsmL andmR , respectively. The transmis
sion probability of the barrier varies fromT to T8, depending
15 215 © 1997 The American Physical Society
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15 216 56S. A. GURVITZ
on whether or not the quantum dot is occupied by an e
tron, Figs. 1~a! and 1~b!.

Initially all the levels in the reservoirs are filled up to th
corresponding Fermi energies, and the quantum dot is em
~For simplicity we consider the reservoirs at zero tempe
ture.! Such a state is not stable, since electrons move f
the left to the right reservoir. The time evolution of the ent
system can be described by the master~rate! equations8–12

~the microscopic derivation from the many-body Sch¨-
dinger equation is given in Appendix A and in Refs. 8 a
9!.

In order to write down these equations we introduce
probabilitiessaa

m,n(t) andsbb
m,n(t) of finding the entire system

in the statesua& andub& corresponding to empty or occupie
dots @Figs. 1~a! and 1~b!#. Herem andn are the number of
electrons penetrating to the right reservoirs of the measu
system and the detector, respectively. The corresponding
equations for these probabilities have the following forms

ṡaa
m,n52~GL1D !saa

m,n1GRsbb
m21,n1Dsaa

m,n21 ,
~2.1a!

ṡbb
m,n52~GR1D8!sbb

m,n1GLsaa
m,n1D8sbb

m,n21 ,
~2.1b!

whereGL,R are the transition rates for an electron tunneli
from the left reservoir to the dot and from the dot to the rig
reservoir, respectively, andD5T(mL2mR)/2p is the rate of
electron hopping from the right to the left reservoir throu
the point contact~the Landauer formula!.

The accumulated charge in the right reservoirs of the
tector (d) and of the measured system (s) is given by

Qd~ t !5(
m,n

n@saa
m,n~ t !1sbb

m,n~ t !#, ~2.2a!

Qs~ t !5(
m,n

m@saa
m,n~ t !1sbb

m,n~ t !#. ~2.2b!

~We choose the units where the electron chargee51 and
\51.! The currents flowing in the detector and in the me
sured system areI d(t)5Q̇d(t) andI s(t)5Q̇s(t). Using Eqs.
~2.1! and ~2.2!, we obtain

FIG. 1. Ballistic point contact near the quantum dot.GL,R are the
corresponding tunneling rates. The penetration coefficient of
point contact isT for the empty dot~a!, andT8 for the occupied dot
~b!. The indicesm andn denote the number of electrons penetrati
to the right reservoirs at timet.
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I d~ t !5(
m,n

n@ṡaa
m,n~ t !1ṡbb

m,n~ t !#5Dsaa~ t !1D8sbb~ t !,

~2.3a!

I s~ t !5(
m,n

m@ṡaa
m,n~ t !1ṡbb

m,n~ t !#5GRsbb~ t !, ~2.3b!

wheresaa[(m,nsaa
m,n andsbb[(m,nsbb

m,n are the total prob-
abilities of finding the dot empty or occupied. Obvious
saa(t)512 s̄ (t), wheres̄ (t)[sbb(t). Performing the sum-
mation overm,n in Eqs.~2.1!, we obtain the following rate
equation for the quantum-dot occupation probabilitys̄ :

ṡ̄ ~ t !5GL2~GL1GR!s̄~ t !. ~2.4!

If the point contact and the quantum dot are decoupl
the detector current isI d

(0)5D. Hence the occupation of th
quantum dot can be measured through a variation of
detector currentDI d5I d

(0)2I d . One readily obtains from Eq
~2.3a! that

DI d~ t !5
DTVd

2p
s̄~ t !, ~2.5!

where Vd5mL2mR is the voltage bias, andDT5T2T8.
Thus the point contact is indeed the measurement device
fact, Eq.~2.5! is a self-evident one. Indeed, the variation
the point-contact current isDTVd/2p, ands̄ is the probabil-
ity for such a variation.

It follows from Eqs.~2.1! and~2.3! that the same curren
I s(t)5GRs̄ (t) would flow through the quantum dot in th
absence of the detector (D5D850). This means that the
point-contact detector is a noninvasive detector. This is
surprising, since only an electron inside the point cont
~under the barrier! can affect an electron in the quantum do
The relevant~tunneling! time is very short. Actually, it is
zero in the tunneling Hamiltonian approximation, Eqs.~A1!
and ~B1!, used for the derivation of the rate equations.

III. DETECTION OF ELECTRON OSCILLATIONS
IN COUPLED DOTS

The well-known manifestation of quantum coherence
the oscillations of a particle in a double-well~double-dot!
potential. The origin of these oscillations is the interferen
between the probability amplitudes of finding a particle
different wells. Hence one can expect that the disclosure
particle ~electron! in one of wells would generate th
‘‘dephasing’’ that eventually destroys these oscillation
even without distorting the energy levels of the system.

Let us investigate the mechanism of this process by tak
for detector a noninvasive point contact. A possible set u
shown in Fig. 2. We assume that the transmission probab
of the point contact isT when an electron occupies the rig
well, and it is T8 when an electron occupies the left we
Here T8,T, since the right well is away from the poin
contact.

Now we apply the quantum-rate equations8,9 to the whole
system. However, in the distinction with the previous ca
the electron transitions in the measured system take p

e
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56 15 217MEASUREMENTS WITH A NONINVASIVE DETECTOR . . .
between theisolatedstates inside the dots. As a result, t
diagonal density-matrix elements are coupled with the o
diagonal elements, so that the corresponding rate equa
are the Bloch-type equations.8,9,13,14

We first start with the case of the double-well detach
from the point-contact detector. The Bloch equations
scribing the time evolution of the electron-density matrixs i j
have the following forms:

ṡaa5 iV0~sab2sba!, ~3.1a!

ṡbb5 iV0~sba2sab!, ~3.1b!

ṡab5 i esab1 iV0~saa2sbb!, ~3.1c!

wheree5E22E1, andV0 is the coupling between the le
and right wells. Heresaa(t) andsbb(t) are the probabilities
of finding the electron in the left and right wells, respe
tively, and sab(t)5sba* (t) are the off-diagonal density
matrix elements~‘‘coherences’’!.14

Solving these equations for the initial conditions a
saa(0)51 andsbb(0)5sab(0)50, we obtain

saa~ t !5
V0

2cos2~vt !1e2/4

V0
21e2/4

, ~3.2!

wherev5(V0
21e2/4)1/2. As expected, the electron initiall

localized in the first well oscillates between the wells w
the frequencyv. Note that the amplitude of these oscillatio
is V0

2/(V0
21e2/4). Thus the electron remains localized in t

first well if the level displacement is large,e@V0.
Now we consider the electron oscillations in the prese

of the point contact detector~Fig. 2!. The corresponding
Bloch equations for the entire system have the follow
forms ~Appendix B!:

ṡaa
n 52D8saa

n 1D8saa
n211 iV0~sab

n 2sba
n !, ~3.3a!

ṡbb
n 52Dsbb

n 1Dsbb
n212 iV0~sab

n 2sba
n !, ~3.3b!

ṡab
n 5 i esab

n 1 iV0~saa
n 2sbb

n !2
1

2
~D81D !sab

n

1~DD8!1/2sab
n21 . ~3.3c!

Here the indexn denotes the number of electrons arriving
the collector at timet, andD(D8) is the transition rate of an

FIG. 2. Electron oscillations in the double well. The penetrat
coefficient of the point contact varies fromT8 to T when an electron
occupies the left well~a! or right well ~b!, respectively. The indexn
denotes the number of electron accumulated in the collector at
t.
-
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electron hopping from the left to the right detector reservo
D5T(mL2mR)/2p @Eqs.~2.1!#. Notice that the presence o
the detector results in additional terms in the rate equati
in comparison with Eqs.~3.1!. These terms are generated b
transitions of an electron from the left to right detector re
ervoirs with the ratesD andD8, respectively. The equation
for the nondiagonal density-matrix elementssab

n is slightly
different from the standard Bloch equations due to the
term, which describes the transition between different coh
ences,sab

n21 andsab
n . This term appears in the Bloch equ

tions for coherences whenever the same hopping (n21→n)
takes place inboth states of the off-diagonal density-matr
element (a andb) ~see Refs. 8 and 9 and Appendix B!. The
rate of such transitions is determined by a product of
correspondingamplitudes(T1/2 andT81/2).

It follows from Eqs.~2.3a! and ~3.3! that the variation of
the point-contact currentDI d(t)5I (0)2I d(t) measures di-
rectly the charge in the first dot. Indeed, for the detec
current one obtains

I d~ t !5(
n

n@saa
n ~ t !1sbb

n ~ t !#5D8saa~ t !1Dsbb~ t !,

~3.4!

wheres i j 5(ns i j
n . ThereforeDI d(t) is given by Eq.~2.5!,

wheres̄ (t)[saa(t).
In order to determine the influence of the detector on

double-well system, we trace out the detector states in E
~3.3!, thus obtaining

ṡaa5 iV0~sab2sba!, ~3.5a!

ṡbb5 iV0~sba2sab!, ~3.5b!

ṡab5 i esab1 iV0~saa2sbb!2 1
2 ~AD2AD8!2sab ,

~3.5c!

wheres i j 5(ns i j
n (t).

These equations coincide with Eqs.~3.1!, describing the
electron oscillations without a detector, except for the l
term in Eq. ~3.5c!. The latter generates the exponent
damping of the nondiagonal density-matrix element with
‘‘dephasing’’ rate15-17

Gd5~AD2AD8!25~AT2AT8!2
Vd

2p
. ~3.6!

This implies thatsab→0 for t→`. We can check this by
looking for the stationary solutions of Eqs.~3.5! in the limit
t→`. In this caseṡ i j (t→`)50, and Eqs.~3.5! become
linear algebraic equations, which can be easily solved. O
finds that the electron-density matrix becomes the statist
mixture

s~ t !5S saa~ t ! sab~ t !

sba~ t ! sbb~ t !
D→S 1

2 0

0 1
2

D for t→`.

~3.7!

Notice that the damping of the nondiagonal density-ma
elements comes entirely from the possibility of disclosi

e
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15 218 56S. A. GURVITZ
the electron in one of the wells. Indeed, if the detector d
not distinguish which of the wells is occupied, i.e.,T5T8,
thenGd50.

The Bloch equations~3.3! and~3.5! display explicitly the
mechanism of the dephasing during a noninvasive meas
ment, i.e., that which does not distort the energy levels of
measured system.18 The dephasing appears in the reduc
density-matrix as the ‘‘dissipative’’ term in the nondiagon
density matrix elements only, as a result of tracing out
detector variables. All other terms related to the detector
canceled after tracing out the detector variables. It is imp
tant to note that such a dephasing term in Eq.~3.5c! gener-
ates the ‘‘collapse’’ of the electron-density matrix into th
statistical mixture, Eq.~3.7!, without explicit use of the mea
surement reduction postulate.19 The collapse is fully de-
scribed by the Bloch-type equations, derived from the Sch¨-
dinger equation~Appendix B!.

In fact, the idea that the dissipative interaction of a m
sured system with a detector can be responsible for
density-matrix collapse is not new. It was discussed in m
publications, as for instance in works of Zurek,20 which
stressed conceptual points, or in detailed studies of m
specific examples of atomic transitions.21 Yet the present
study of mesoscopic systems elaborates additional aspec
the dephasing problem. These are the dephasing mecha
due to continuous observation with a noninvasive detec
and the striking difference between the continuous and
idly repeated measurements. The latter is discussed bel

Continuous measurement and Zeno effect

The most surprising phenomenon which displays E
~3.7! is that the transition to the statistical mixture tak
place even for a large displacement of the energy lev
e@V0, irrespectively of the initial conditions. This mean
that an electron initially localized in one of the wells wou
be alwaysdelocalizedat t→`. This would happen even i
the electron was initially localized at the lower level.~Of
course, this does not violate the energy conservation, s
the double well is not isolated.! Such a behavior is not ex
pected, because the amplitude of electron oscillations is v
small for large level displacement@Eq. ~3.2!#. Thus the elec-
tron should stay localized in one of the wells. One cou
expect that the continuous observation of this electron b
detector could only increase its localization. This can be
ferred from the so-called Zeno effect.22 The latter tells us
that repeated observations of the system slow down tra
tions between quantum states due to the collapse of the w
function into the observed state. Since in our case the cha
of the detector current,DI s(t) monitorss̄ (t) in the left well
@Eqs.~2.5! and ~3.4!#, it represents the continuous measu
ment of the charge in this well. Nevertheless the effect is
the opposite—the continuous measurement delocalizes
system.23

In fact, our results for smallt seem to be in an agreeme
with the Zeno effect; even so, we have not explicitly impli
the projection postulate. For instance, Fig. 3~a! shows the
time-dependence of the probability to find an electron in
left dot, as obtained from the solution of Eqs.~3.5! for the
aligned levels (e50), andGd50 ~dashed curve!, Gd54V0
~dot-dashed curve!, andGd516V0 ~solid curve!. One finds
s
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that for smallt the rate of transition from the left to the righ
well slows down with the increase ofGd .

We find the same slowing down of the transition rate
small t for the disaligned levels (e54V0) in Fig. 3~b!. This
implies that very frequent repeated measurements would
deed localize the system. In that sense the Bloch equat
reproduce the Zeno effect without explicit use of the proje
tion postulate. Actually, this result was found earlier by
analysis of atomic transitions by using the Bloch equation
a three-level system.24,25It was shown that the repeated me
surement with short intervalsDt5t/n localizes the system in
the limit n→`. Yet in our case the continuous measurem
leads to an electrondelocalization, whereas in the absence o
detector an electron would stay localized in the left well@the
dashed curve in Fig. 3~b!#. Thus the continuous and ver
frequent repeated measurements affect the system in o
site ways.

Our microscopic treatment allows us to determine the o
gin of the difference in both treatments. One easily finds t
the derivation of the Bloch-type equations, describing
measured system@Eqs. ~3.5!# implies the tracing of the de
tector variables@Eq. ~1.1!#. Since this procedure is outsid
the Schro¨dinger equation, it could distort the time develo
ment of the system. In our case of continuous measurem
the tracing is done at the timet, whereas the frequent re
peated measurement with the intervalsDt5t/n implies that
the tracing of the detector variables takes part at the en

FIG. 3. The occupation of the first well as a function of tim
@Eqs. ~3.5!#: ~a! the levels are aligned (e50); ~b! the levels are
displaced (e54V0). The curves correspond to different values
the dephasing rate:Gd50 ~dashed!, Gd54V0 ~dot-dashed!, and
Gd516V0 ~solid!.
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56 15 219MEASUREMENTS WITH A NONINVASIVE DETECTOR . . .
each intervalDt. As a result, the limit ofn→`, the mea-
sured system, stays localized.24

IV. MEASUREMENT OF RESONANT CURRENT
IN COUPLED DOTS

In spite of great progress made in microfabrication te
niques, the direct measurement of single-electron oscillat
in a coupled-dot system is still a complicated problem. Ho
ever, it is much easier to measure similar quantum cohere
effects in electrical current flowing through coupled-dot s
tems. We therefore consider the same coupled dot of Sec
but now connected with two reservoirs~emitter and collec-
tor!. As in the previous example the point-contact detec
measures the occupation of the left dot~Fig. 4!. For the sake
of simplicity we assume strong inner and interdot Coulo
repulsion, so only one electron can occupy this system13

Then there are only three available states of the coupled
system: the dots are empty~a!, the first dot is occupied~b!,
and the second dot is occupied~c!. In analogy with Eqs.~2.1!
and ~3.3! we write the following Bloch equations for th
density matrixs i j

m,n(t) describing the entire system:8,9

ṡaa
m,n52~GL1D !saa

m,n1GRscc
m21,n1Dsaa

m,n21 ,
~4.1a!

ṡbb
m,n52D8sbb

m,n1D8sbb
m,n211GLsaa

m,n1 iV0~sbc
m,n2scb

m,n!,

~4.1b!

ṡcc
m,n52~GR1D !scc

m,n1Dscc
m,n212 iV0~sbc

m,n2scb
m,n!,

~4.1c!

ṡbc
m,n5 i esbc

m,n1 iV0~sbb
m,n2scc

m,n!2
1

2
~GR1D81D !sbc

m,n

1~DD8!1/2sbc
m,n21 , ~4.1d!

where the indicesn and m denote the number of electron
that arrive at timet to the upper and the lower collecto
reservoirs, respectively. HereGL and GR are the rates of
electron transitions from the left reservoir to the first dot, a
from the second dot to the right reservoir, andV0 is the
amplitude of hopping between two dots.

The currents in the double-dot system (I s) and in the de-
tector (I d) are given by the following expressions@cf. Eqs.
~2.2! and ~2.3b!#:

FIG. 4. Resonant tunneling through the double dot.GL,R denote
the corresponding rate for the tunneling from~to! the left ~right!
reservoirs. The penetration coefficient of the point contact isT for
the empty double-dot system or for the occupied second dot, a
is T8 for the occupied first dot. The indicesm and n denote the
number of electrons penetrating to the right reservoirs at timet.
-
ns
-
ce
-
II,

r

b
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d

I s5(
m,n

m~ ṡaa
m,n1ṡbb

m,n1ṡcc
m,n!5GRscc , ~4.2a!

I d5(
m,n

n~ ṡaa
m,n1ṡbb

m,n1ṡcc
m,n!5D2~D2D8!sbb,

~4.2b!

where s i j 5(m,ns i j
m,n . It follows from Eq. ~4.2b! that the

variation of the detector currentDI d5I d
(0)2I d is given by

Eq. ~2.5!, where s̄5sbb . Thus the point contact measure
the occupation of the left dot directly.

Performing summation in Eqs.~4.1! over the number of
electrons arriving at the collectors (m,n), we obtain the fol-
lowing Bloch equations for the reduced density matrix of t
double-dot system:

ṡaa52GLsaa1GRscc , ~4.3a!

ṡbb5GLsaa1 iV0~sbc2scb!, ~4.3b!

ṡcc52GRscc2 iV0~sbc2scb!, ~4.3c!

ṡbc5 i esbc1 iV0~sbb2scc!2 1
2 ~GR1Gd!sbc ,

~4.3d!

whereGd is the dephasing rate generated by the detector@Eq.
~3.6!#. These equations can be compared with those desc
ing electron transport through the same system, but witho
detector.8,9,13We find that the difference appears only in th
nondiagonal density-matrix elements@Eq. ~4.3d!#. The latter
includes an additional dissipation rateGd generated by the
detector.

Solving Eqs.~4.3! in the limit t→`, we find the follow-
ing expression for the currentI s , Eq. ~4.2b!, flowing through
the double-dot system:

I s5
~GR1Gd!V0

2

e21
~GR1Gd!2

4
1V0

2~GR1Gd!S 2

GR
1

1

GL
D . ~4.4!

By analyzing Eq.~4.4!, one finds that all the measureme
effects, discussed in Sec. III are reflected in the behavio
the resonant currentI s as a function of the level displaceme
e and the dephasing rateGd . As an example, in Fig. 5 we
show the resonant currentI s(e) for three values of the
dephasing rate:Gd50, Gd54V0, and Gd516V0. We find
that for smalle the current decreases withGd . However, for
larger values ofe the currentincreaseswith Gd . This reflects
an electron delocalization in a double-well system@Fig.
3~b!#, due to continuous monitoring of the charge in the l
dot. In contrast, rapidly repeated measurements21,24 would
always localize an electron and therefore diminish the c
rent I s .

V. SUMMARY

In this paper we studied the mechanism of decohere
generated by continuous observation of one of the states
of the coherent superposition in experiments with mes

it
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copic systems. As an example, we considered a cou
quantum-dot system, which is simple enough for a deta
theoretical treatment of the measured object and the dete
together. On the other hand, it bears all the essential phy
of the measurement process. For a description of the e
system, we applied Bloch-type equations, which are obtai
from the many-body Schro¨dinger equation and provide th
most simple and transparent treatment of quantum coher
effects.

As the detector, we used the point contact in close pr
imity to one of the dots. We demonstrated that the variat
of the point-contact current due to electrostatic interact
with electrons in the dot measures directly the occupation
this dot.

We started with quantum oscillations of an electron
coupled quantum dots. It appears that the presence of
point-contact detector near one of the dots generates
dephasing rate in the Bloch equations for the off-diago
density-matrix elements. We found that the dephasing ra
proportional to the variation of the point-contact transm
sion amplitude squared@Eq ~3.6!#. The Bloch equations for
the diagonal density-matrix elements are not affected by
detector, providing that it does not distort the energy lev
of the double-dot system.

The appearance of the dephasing rateGd in the Bloch
equation leads to the collapse of the density matrix into
statistical mixture att→` @Eq. ~3.7!#. The collapse happen
even for a large disalignment of the energy levels. In t
case the measurement process results in an electron de
ization inside the double dot~after some critical timet.t0),
which otherwise would stay localized in one of the dots. T
contradicts a common opinion that the continuous meas
ment always leads to a localization due to the wave-pac
reduction~Zeno effect!. In fact, the localization would take
place if we considered the continuous measurement as
idly repeated measurements with intervalsDt5t/n for
n→`. The reason for such a different behavior of the m
sured system stems from the different procedure of trac
out of the detector variables from the total density matrix

The same measurement effects appear in dc current fl
ing through coupled dots. We found that the dc current v
ishes forGd→`, which can be interpreted in terms of a
electron localization due to the Zeno effect. Nevertheless,

FIG. 5. Electron current through the double dot, Eq.~4.4!, for
GL5GR5V0 as a function of the level displacemente5E22E1.
The curves correspond to different values of the dephasing
Gd50 ~dashed!, Gd54V0 ~dot dashed!, and andGd516V0 ~solid!.
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a finite Gd , and for disaligned energy levels (E1ÞE2), the
dc currentincreaseswith Gd . Here again, the situation i
opposite to that of rapidly repeated measurement, where
current alwaysdecreaseswith Gd .
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APPENDIX A: RATE EQUATIONS
FOR A POINT-CONTACT DETECTOR

Here we present the microscopic derivation of the r
equations describing electron transport in the point cont
The point contact is considered as a barrier, separating
reservoirs~the emitter and the collector! ~Fig. 1!. All the
levels in the emitter and the collector are initially filled up
the Fermi energiesmL andmR , respectively. We call it the
‘‘vacuum’’ state u0&. The tunneling HamiltonianHPC de-
scribing this system can be written as

HPC5(
l

Elal
†al1(

r
Erar

†ar1(
l ,r

V lr ~al
†ar1H.c.!,

~A1!

whereal
†(al) andar

†(ar) are the creation~annihilation! op-
erators in the left and right reservoirs, respectively, andV lr is
the hopping amplitude between the statesEl and Er in the
right and left reservoirs.~We choose the the gauge, whe
V lr is real.! The Hamiltonian equation~A1! requires the
vacuum stateu0& to decay exponentially to continuum stat
having the following forms:ar

†al u0&, with an electron in the
collector continuum and a hole in the emitter continuu
ar

†ar 8
† al

†al 8u0& with two electrons in the collector continuum
and two holes in the emitter continuum, and so on. T
many-body wave function describing this system can
written in the occupation number representation as

uC~ t !&5Fb0~ t !1(
l ,r

blr ~ t !ar
†al

1 (
l , l 8,r ,r 8

bll 8rr 8~ t !ar
†ar 8

† alal 81•••G u0&,

~A2!

whereb(t) are the time-dependent probability amplitudes
find the system in the corresponding states with the ini
condition b0(0)51, and all the otherb(0)’s being zeros.
Substituting Eq. ~A2! into the Schro¨dinger equation

i uĊ(t)&5HPCuC(t)& and performing the Laplace transform

b̃~E!5E
0

`

eiEtb~ t !dt, ~A3!

we obtain an infinite set of the coupled equations for
amplitudesb̃(E):

E b̃0~E!2(
l ,r

V lr b̃ lr ~E!5 i , ~A4a!

te:
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~E1El2Er ! b̃ lr ~E!2V lr b̃0~E!2 (
l 8,r 8

V l 8r 8 b̃ l l 8rr 8~E!50,

~A4b!

~E1El1El 82Er2Er 8! b̃ l l 8rr 8~E!2V l 8r 8 b̃ lr ~E!

1V lr b̃ l 8r 8~E!2 (
l 9,r 9

V l 9r 9 b̃ l l 8 l 9rr 8r 9~E!50,

•••. ~A4c!

Equations~A4! can be substantially simplified by replacin
the amplitudeb̃ in the term(V b̃ of each of the equation
by its expression obtained from the subsequent equatio8,9

For example, substitutingb̃ lr (E) from Eq. ~A4b! into Eq.
~A4a!, one obtains

FE2(
l ,r

V2

E1El2Er
G b̃0~E!2 (

l l 8,rr 8

V2

E1El2Er
b̃ ll 8rr 8~E!

5 i , ~A5!

where we assumed that the hopping amplitudes are funct
weakly dependent on the energiesV lr [V(El ,Er)5V.
Since the states in the reservoirs are very dense~continuum!,
one can replace the sums overl and r by integrals, for in-
stance ( l ,r→*rL(El)rR(Er)dEldEr , where rL,R are the
density of states in the emitter and collector. Then the fi
sum in Eq.~A5! becomes an integral which can be split in
a sum of the singular and principal value parts. The singu
part yields ipV2rLrRVd , and the principal part is merel
included in a redefinition of the energy levels. The seco
sum in Eq. ~A5! can be neglected. Indeed, by replaci
b̃ l l 8rr 8(E)[ b̃(E,El ,El 8,Er ,Er 8) and the sums by the inte
grals, we find that the integrand has poles on the same s
of the integration contours. This means that the correspo
ing integral vanishes, providingVd@V2r.

Applying analogous considerations to the other equati
of system~A4!, we finally arrive at the following set of equa
tions:

~E1 iD /2! b̃05 i , ~A6a!

~E1El2Er1 iD /2! b̃ lr 2V b̃050, ~A6b!

~E1El1El 82Er2Er 81 iD /2! b̃ l l 8rr 82V b̃ lr 1V b̃ l 8r 850,

•••, ~A6c!

whereD52pV2rLrRVd .
The charge accumulated in the collector at timet is

NR~ t !5^C~ t !u(
r

ar
†ar uC~ t !&5(

n
ns~n!~ t !, ~A7!

where
ns

t

r

d

es
d-

s

s~0!~ t !5ub0~ t !u2, s~1!~ t !5(
l ,r

ublr ~ t !u2,

s~2!~ t !5 (
l l 8,rr 8

ubll 8rr 8~ t !u2,••• ~A8!

are the probabilities to findn electrons in the collector. Thes
probabilities are directly related to the amplitudesb̃(E)
through the inverse Laplace transform

s~n!~ t !5 (
l . . . ,r . . .

E dEdE8

4p2
b̃ l . . . r . . . ~E!

3 b̃ l . . . r . . .* ~E8!ei ~E82E!t. ~A9!

Using Eq. ~A9!, one can transform Eqs.~A6! into the rate
equations fors (n)(t) ~cf. Refs. 8 and 9!. We find

ṡ~0!~ t !52Ds~0!~ t !, ~A10a!

ṡ~1!~ t !5Ds~0!~ t !2Ds~1!~ t !, ~A10b!

ṡ~2!~ t !5Ds~1!~ t !2Ds~2!~ t !, ~A10c!

•••.

The operator, which defines the current flowing in th
system, is

Î 5 i FHPC,(
r

ar
†ar G5 i(

l ,r
V lr ~al

†ar2ar
†al !. ~A11!

Using Eqs.~A2!, ~A10!, and~A11!, we find, for the current,

I 5^C~ t !u Î uC~ t !&5D(
n

s~n!~ t !5D. ~A12!

SinceD5(2p)2V2rLrR5T,26 whereT is the transmission
probability, the current can be rewritten asI 5TVd /(2p),
which is the well-known Landauer formula.

APPENDIX B: POINT-CONTACT DETECTOR
NEAR DOUBLE WELL

Now we present the microscopic derivation of the Blo
equations~3.3! describing electron oscillations in a doub
well with a point contact in close proximity to one of th
wells ~Fig. 2!. We start with the many-body Schro¨dinger

equationi uĊ(t)&5HuC(t)& for the entire system. HereH is
the tunneling Hamiltonian, which can be written a
H5HPC1HDD1Hint . Here HPC is the tunneling Hamil-
tonian for the point-contact detector@Eq. ~A1!#; HDD is the
tunneling Hamiltonian for the measured double-dot syste

HDD5E1c1
†c11E2c2

†c21V0~c2
†c11c1

†c2!; ~B1!

andHint describes the interaction between the detector
the measured system. Since the presence of an electron i
left well results in an effective increase of the point-conta
barrier (V lr→V lr 1dV lr ), we can represent the interactio
term as
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Hint5(
l ,r

dV lr c1
†c1~al

†ar1H.c.!. ~B2!

The many-body wave function for the entire system can
written as

uC~ t !&5Fb1~ t !c1
†1(

l ,r
b1lr ~ t !c1

†ar
†al

1 (
l , l 8,r ,r 8

b1l l 8rr 8~ t !c1
†ar

†ar 8
† alal 8

1b2~ t !c2
†1(

l ,r
b2lr ~ t !c2

†ar
†al

1 (
l , l 8,r ,r 8

b2l l 8rr 8~ t !c2
†ar

†ar 8
† alal 81•••G u0&,

~B3!

whereb(t) are the probability amplitudes to find the enti
system in the states defined by the corresponding crea
and annihilation operators. Notice that Eq.~B3! has the same
form as Eq.~A2!, where only the probability amplitudesb(t)
acquire an additional index~1 or 2! that denotes the well
occupied by an electron. Proceeding in the same way a
Appendix A, we arrive at an infinite set of the coupled equ
tions for the amplitudesb̃(E), which are the Laplace trans
form of the amplitudesb(t) @Eq. ~A3!#:

~E2E1! b̃1~E!2V0b̃2~E!2(
l ,r

V lr8 b̃1lr ~E!5 i ,

~B4a!

~E2E2! b̃2~E!2V0b̃1~E!2(
l ,r

V lr b̃2lr ~E!50,

~B4b!

~E1El2E12Er ! b̃1lr ~E!2V lr8 b̃1~E!2V0b̃2lr ~E!

2 (
l 8,r 8

V l 8r 8 b̃1l l 8rr 8~E!50, ~B4c!

~E1El2E22Er ! b̃2lr ~E!2V lr b̃2~E!2V0b̃1lr ~E!

2 (
l 8,r 8

V l 8r 8 b̃2l l 8rr 8~E!50, ~B4d!

•••.

The same algebra as that used in Appendix A and in Ref
and 9 allows us to simplify these equations, which then
come

~E2E11 iD 8/2! b̃12V0b̃25 i , ~B5a!

~E2E21 iD /2! b̃22V0b̃150, ~B5b!

~E1El2E12Er1 iD 8/2! b̃1lr 2V8 b̃12V0b̃2lr 50,
~B5c!
e

on

in
-

8
-

~E1El2E22Er1 iD /2! b̃2lr 2V b̃22V0b̃1lr 50,
~B5d!

•••,

whereD5TVd/2p. @We assumed for simplicity that the hop
ping amplitude of the point contact is weakly dependent
the energies, so thatV lr [V(El ,Er)5V.#

Using the inverse Laplace transform~A9! we can trans-
form Eqs. ~B5! into differential equations for the density
matrix elementss i j

(n)(t) ( i , j 51,2!,

s i j
~0!~ t !5bi~ t !bj* ~ t !, s i j

~1!~ t !5(
l ,r

bilr ~ t !bjlr* ~ t !,

s i j
~2!~ t !5 (

l l 8,rr 8
bill 8rr 8~ t !bjll 8rr 8

* ~ t !,

. . . , ~B6!

wheren denotes the number of electrons accumulated in
collector. Consider, for instance the off-diagonal densi
matrix elements12

(1)(t). The corresponding differential equa
tion for this term can by obtained by multiplying Eq.~B5c!
by b̃2lr* (E8) and subtracting the complex conjugated E

~B5d! multiplied by b̃1lr (E). We then obtain

E dEdE8

4p2 (
l ,r

H S E82E2e2 i
D1D8

2 D b̃1lr ~E! b̃2lr* ~E8!

2@V b̃1lr ~E! b̃2* ~E8!2V8 b̃2lr* ~E8! b̃1~E!#

2V0@ b̃1lr ~E! b̃1lr* ~E8!2 b̃2lr* ~E8! b̃2lr ~E!#J ei ~E82E!t

50. ~B7!

One easily finds that the first term in this equation equ
2 i ṡ12

(1)2@e1 i (D1D8)/2#s12
(1) and the third term equals

2V0(s11
(1)2s22

(1)). In order to evaluate the second term
Eq. ~B7!, we replace( l ,r by the integrals, and substitute

b̃1lr ~E!5
V8 b̃1~E!1V0b̃2lr ~E!

E1El2E12Er1 iD 8/2
,

b̃2lr* ~E8!5
V b̃2* ~E8!1V0b̃1lr* ~E8!

E81El2E22Er2 iD /2
, ~B8!

obtained from Eqs.~B5c! and ~B5d!, into Eq. ~B7!. Then
integrating overEl and Er , we find that the second term i
Eq. ~B7! becomes 2ipVV8rLrRVds12

(0) . Thus Eq.~B7! can
be rewritten as

ṡ12
~1!5 i es12

~1!1 iV0~s11
~1!2s22

~1!!2 1
2 ~D81D !s12

~1!

1~DD8!1/2s12
~0! ~B9!

which coincides with the Bloch equation~3.3c! for n51 and
saa[s11, sbb[s22, and sab[s12. Applying the same
procedure to each of the Eqs.~B5!, we arrive at the Bloch
equations~3.3! for density-matrix elementss i j

(n) .
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