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Measurements with a noninvasive detector and dephasing mechanism
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We study the dynamics of the measurement process in quantum-dot systems, where a particular state out of
coherent superposition is observed. The ballistic point contact placed near one of the dots is taken as a
noninvasive detector. We demonstrate that the measurement process is fully described by the Bloch-type
equations applied to the whole system. These equations clearly reproduce the collapse of the density matrix
into the statistical mixture in the course of the measurement process. The corresponding dephasing width is
uniquely defined. We show that the continuous observation of one of the states in a coherent superposition may
acceleratedecay from this state—in contradiction with rapidly repeated observations, which slow down the
transitions between quantum stafése quantum Zeno effect S0163-18207)04748-4

[. INTRODUCTION In this paper we apply the above approach to study the
decoherence, generated by measurement of a quantum-dot
In recent years there have been many measurements @ecupancy in multidot systems. As the measurement device
mesoscopic systems sensitive to the phase of the electronidetectoy, we take the ballistic point contact in close prox-
wave function. We mention experiments with double-splitimity to the measured quantum doSince the quantum-
systems;? quantum dot embedded in an Aharonov-Bohmmechanical description of this detector is rather simple, it
ring>* and coupled quantum dotslt is known that the allows us to investigate the essential physics of the measure-
phase of the wave function, or, more precisely, the off-ment process in great detail. In addition, the ballistic point
diagonal density-matrix elements, can be destroyed by inteontact is a noninvasive detectoindeed, the time which an
action with the environment, or with the measurement deelectron spends inside it is very short. Thus the point contact
vice. As a result, the density matrix becomes the statisticalvould not distort the measured dd@The first measurement
mixture. The latter does not display any coherence effect®f decoherence in a quantum dot generated by the point-
Now the rapid progress in microfabrication technology al-contact was recently performed by Budsal®)
lows us to investigate experimentally the dephasing process The plan of this paper is the following: In Sec. Il we
in mesoscopic systems, for instance, by observation of a patescribe the measurement of a quantum-dot occupation,
ticular state out of coherent superpositfon. when the current flows through this dot. We use the quantum
Although dephasing(decoherendeplays an important rate equation&;*?which allow us to describe both the mea-
role in different processes, its mechanism has not been elabsured quantum dot and the point-contact detector in the most
rated upon enough. For instance, in many studies of theimple way. A detailed microscopic derivation of the rate
guantum measurement problems the dephasing is usually aequations for the point contact is presented in Appendix A.
counted for by introducing some phenomenological dissipatin Sec. Ill we investigate the decoherence of an electron in a
ing terms, associated with a detector an environment  double-well potential caused by the point-contact detector by
Yet such a procedure cannot not illuminate the origin of themeasuring the occupation of one of the wells. Special atten-
dephasing and its role in the measurement problem. Thton is paid to a comparison with the result of rapidly re-
most appropriate way to approach the problem, however, ipeated measurements. For a description of this system we
to start with a microscopic description of the measured sysuse Bloch-type rate equatioft&*'*which are derived in
tem and the detector together with use of the Sdimger  Appendix B. Similar decoherence effects, but in dc current
equation,ibz[H,a], where ¢(S,8';D, D' t) is the total flowing t_hroug_h a coupled-dot system, are discussed in Sec.
density matrix andH is the Hamiltonian for the entire sys- V. Section V is a summary.
tem. HereS(S') and D(D’) are the variables of the mea-
gured system and the detector, respectively. In this case the || BALLISTIC POINT-CONTACT DETECTOR
influence of the detector on the measured system can be de-
termined by “tracing out” the detector variables in the total ~ Consider the measurement of the electron occupation of a
density matrix, semiconductor quantum dot by means of a separate measur-
ing circuit in close proximity’’ A ballistic one-dimensional
point contact is used as a “detector” of whether resistance is
very sensitive to the electrostatic field generated by an elec-
tron occupying the measured quantum dot. Such a setup is
The decoherence would correspond to an exponential damghown schematically in Fig. 1, where the detector is repre-
ing of the off-diagonal matrix elements in the reduced densented by a barrier, connected with two reservoirs at the
sity matrix: o(S,S8’,t)~exp(-=T'4qt)—0 for S=§’, with T’y chemical potentialg,, and ug, respectively. The transmis-
the decoherence rate. sion probability of the barrier varies fromto T, depending

% a(S,S' D, D,t)— (85,8 ). (1.1
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& ho ”%P om la(1)= 2, g (1) + o1 =Doae(t) +D op(),

ez = (2.39
%HEF@ 0 < |m ()= 2 m{oZ(0) + 0By’ ()] =Trops(t), (.39
Z =z = o '

whereo,,==, ,ons ando,,==2, ,opp are the total prob-
@ (b) abilities of finding the dot empty or occupied. Obviously

FIG. 1. Ballistic point contact near the quantum dat. are the Uaa(.t) =1- U(t)’.Wherea(t)EUbb(t)' Fferformmg the sum-
corresponding tunneling rates. The penetration coefficient of théﬂat'o_n overm,n in Egs.(2.1), we Obta"_q the f0|IOW£g rate
point contact isT for the empty dota), andT’ for the occupied dot equation for the quantum-dot occupation probabitity
(b). The indicesm andn denote the number of electrons penetrating L o
to the right reservoirs at time o(t)=T — (T +TR)o(t). (2.9

on whether or not the quantum dot is occupied by an elec- If the point contact and the quantum dot are decoupled,
tron, Figs. 1a) and Xb). the detector current i§”’=D. Hence the occupation of the
Initially all the levels in the reservoirs are filled up to the quantum dot can be measured through a variation of the
corresponding Fermi energies, and the quantum dot is emptyetector currenal 4=1"’— 1. One readily obtains from Eq.
(For simplicity we consider the reservoirs at zero tempera¢2 33 that
ture) Such a state is not stable, since electrons move from
the left to the right reservoir. The time evolution of the entire ATVy4—
system can be described by the mastate equation& 2 Alg() = —_—a (1), (2.9
(the microscopic derivation from the many-body Schro
dinger equation is given in Appendix A and in Refs. 8 andwhere V4= x| — ug is the voltage bias, andT=T-T"'.
9). Thus the point contact is indeed the measurement device. In
In order to write down these equations we introduce theact, Eq.(2.5) is a self-evident one. Indeed, the variation of
probabilitiesoy,"(t) andoy'(t) of finding the entire system  the point-contact current s TV,/27, ando is the probabil-
in the statega) and|b) corresponding to empty or occupied ity for such a variation.
dots[Figs. Xa) and Xb)]. Herem andn are the number of It follows from Egs.(2.1) and(2.3) that the same current
electrons penetrating to the right reservoirs of the measureps(t):FRU_(t) would flow through the quantum dot in the
system and the detector, respectively. The corresponding rat§)cance of the detectoP=D’ =0). This means that the
equations for these probabilities have the following forms: 4t contact detector is a noninvasive detector. This is not
surprising, since only an electron inside the point contact
o= —(T' + D)ol +Trapy M+ Dol 1, (under the barrigrcan affect an electron in the quantum dot.
(2.1  The relevant(tunneling time is very short. Actually, it is
zero in the tunneling Hamiltonian approximation, E(51)
and(B1), used for the derivation of the rate equations.

o= —(Tg+D")ol"+T o™+ D’ ol 2,
2.1
I1l. DETECTION OF ELECTRON OSCILLATIONS

wherel" | are the transition rates for an electron tunneling IN COUPLED DOTS
from the left reservoir to the dot and from the dot to the right
reservoir, respectively, arid=T(u, — ugr)/27 is the rate of

electron hopping from the right to the left reservoir throughpotential. The origin of these oscillations is the interference

theTﬁzlrgciﬁrr]rgilcgzz tﬁg;ﬂa; ?nr Iﬁ;mr:ﬂ?t reservoirs of the del_)etween the probability amplitudes of finding a particle in
tector @d) and of the meagured systegm) (s given by different wells. Hence one can expect that the disclosure of a
particle (electron in one of wells would generate the
“dephasing” that eventually destroys these oscillations,
_ m,n m,n even without distorting the energy levels of the system.
Qu(t)= % NLoaa (U +app (D], (2.23 Let us investigate the mechanism of this process by taking
for detector a noninvasive point contact. A possible set up is
shown in Fig. 2. We assume that the transmission probability
Qs(t):E ml ol (1) + app(1)]. (2.2b of the point contact i when an electron occupies the right
mn well, and it isT’ when an electron occupies the left well.
Here T'<T, since the right well is away from the point
(We choose the units where the electron chaegel and  contact.
f=1.) The currents flowing in the detector and in the mea- Now we apply the quantum-rate equatidfso the whole
sured system arlgj(t)=Qd(t) andls(t)=Qs(t). Using Egs. system. However, in the distinction with the previous case,
(2.1) and(2.2), we obtain the electron transitions in the measured system take place

The well-known manifestation of quantum coherence is
the oscillations of a particle in a double-wétouble-do}
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Uy o (w) o (m electron hopping from the left to the right detector reservoirs,
%/ T’ W%MR Zrbom D=T(u_— ur)/27 [Egs.(2.1)]. Notice that the presence of
the detector results in additional terms in the rate equations

in comparison with Eq93.1). These terms are generated by
E, ; E E, o E, transitions of an electron from the left to right detector res-
o] 0}"'

_

o ervoirs with the rate® andD’, respectively. The equation
for the nondiagonal density-matrix element$, is slightly
(a) (b) different from the standard Bloch equations due to the last
term, which describes the transition between different coher-
FIG. 2. Electron _oscillations in_the double well. The penetrationences,aggl and o}, . This term appears in the Bloch equa-
coefﬂqlent of the point contact varies fromtoT yvhen an ellectron tions for coherences whenever the same hoppingX— n)
occupies the left wella) or right well (b), respectively. The inder 15105 place irboth states of the off-diagonal density-matrix
?enotes the number of electron accumulated in the collector at t'mglement & andb) (see Refs. 8 and 9 and Appendiy. Bhe
' rate of such transitions is determined by a product of the

' insi correspondingamplitudes(TY2 and T'/?).
between thdsolated states inside the dots. As a result, the it follows from Eqe.(2.33 and (3.3 that the variation of

diagonal density-matrix elements are coupled with the off- . _ (0 :
diagonal elements, so that the corresponding rate equatiortllge point-contact currendlq(t)=1""—14(t) measures di-

are the Bloch-type equatiofg:*314 rectly the charge in the first dot. Indeed, for the detector
We first start with the case of the double-well detached®U™eNt ONe obtains

from the point-contact detector. The Bloch equations de-

scribing the time evolution of the electron-density matrix la() =2 N[0 (1)+ oDy (1) ]=D’ oaa(t) + Dapy(t),

have the following forms: n 34

Taa= 1 Qo(ap™ Tba), (3.13 whereg;; =307 . ThereforeAly(t) is given by Eq.(2.5),

(3.1b whereo(t)=0,,(1). _ _
In order to determine the influence of the detector on the
double-well system, we trace out the detector states in Egs.

Tpp=1Q0(Tpa— Tap),

Tap=i€0an+i0o(0raa= Tbp), (319 (3.3, thus obtaining
wheree=E,—E;, and(}, is the coupling between the left _
and right wells. Herer,,(t) and o,,(t) are the probabilities 02a=1Q0(Tap— Tpa), (3.59
of finding the electron in the left and right wells, respec-
tively, and o,,(t)=o0p,(t) are the off-diagonal density- o6=1Q0(Tha— Tap), (3.5h

matrix elementg“coherences’).**

Solving these equations for the initial conditions and

72a(0)=1 andapy(0)= 0744(0)=0, we obtain Oap=1 €02t 100(0aa= o) =3 (D~ VD) "ab(’ .
3.5
t= Qfcog(wt) + €2/4 3.2 whereo; =2 ,af}(t).
Tadt) = 02+e2s ' These equations coincide with Ed8.1), describing the

electron oscillations without a detector, except for the last
wherew=(Q§+ €%/4)2. As expected, the electron initially term in Eq. (3.59. The latter generates the exponential
localized in the first well oscillates between the wells with damping of the nondiagonal density-matrix element with the
the frequencyw. Note that the amplitude of these oscillations “dephasing” raté>*’
is Q2/(Q3+ €2/4). Thus the electron remains localized in the
first well if the level displacement is large> ). - -, Vg
Now we consider the electron oscillations in the presence Tg=(VD—=\D")*=(yT- ‘/T—)ZZ' (3.6
of the point contact detectoFig. 2). The corresponding
Bloch equations for the entire system have the followingThis implies thato,,—0 for t—o. We can check this by

forms (Appendix B: looking for the stationary solutions of Eg&.5) in the limit
_ e t—o. In this caseo;(t—=)=0, and Egs.(3.5 become
0ha=—D'03,+ D05, +iQo(0a,—0p), (3.38 linear algebraic equations, which can be easily solved. One

_ finds that the electron-density matrix becomes the statistical
of,=—Dop,+Dapy 1 —iQo(oN,—0h), (33D  mixture

. ) ] 1 , t t 0
Tab=1€0apT1Qo(05,— 0pp) — 5 (D' + D)oy, O_(t):((faait; Uabit;)_’( 1) for t—ee.
Oba Opb 0 3

+(DD")¥2¢0 L. (3.30 (3.7

Here the indexh denotes the number of electrons arriving to Notice that the damping of the nondiagonal density-matrix
the collector at time:, andD (D) is the transition rate of an elements comes entirely from the possibility of disclosing

NI=
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the electron in one of the wells. Indeed, if the detector does e=0
v . : gy Cua(t)
not distinguish which of the wells is occupied, i.&+T’,
thenI'y=0. ' g

The Bloch equation§3.3) and (3.5 display explicitly the
mechanism of the dephasing during a noninvasive measure-
ment, i.e., that which does not distort the energy levels of the 0.
measured systef. The dephasing appears in the reduced
density-matrix as the “dissipative” term in the nondiagonal
density matrix elements only, as a result of tracing out the 0.
detector variables. All other terms related to the detector are
canceled after tracing out the detector variables. It is impor-
tant to note that such a dephasing term in E35¢ gener-
ates the “collapse” of the electron-density matrix into the
statistical mixture, Eq(3.7), without explicit use of the mea-
surement reduction postulate.The collapse is fully de-
scribed by the Bloch-type equations, derived from the Schro
dinger equatiorfAppendix B). Gaa(t)

In fact, the idea that the dissipative interaction of a mea- .
sured system with a detector can be responsible for the
density-matrix collapse is not new. It was discussed in many
publications, as for instance in works of Zur&kwhich 0.6
stressed conceptual points, or in detailed studies of more
specific examples of atomic transitioflsYet the present
study of mesoscopic systems elaborates additional aspects of .2
the dephasing problem. These are the dephasing mechanism
due to continuous observation with a noninvasive detector, 0 s 10 1s 20 I/QO
and the striking difference between the continuous and rap- (b)
idly repeated measurements. The latter is discussed below.

B S
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FIG. 3. The occupation of the first well as a function of time
[Egs. (3.5]: (a) the levels are alignede&0); (b) the levels are
displaced €=40Q). The curves correspond to different values of

The most surprising phenomenon which displays Eqthe dephasing ratel'y=0 (dashedj I'y=40Q, (dot-dashed and
(3.7 is that the transition to the statistical mixture takesrI'y=16Q, (solid).
place even for a large displacement of the energy levels,
>y, irrespectively of the initial conditions. This means that for smallt the rate of transition from the left to the right
that an electron initially localized in one of the wells would el slows down with the increase &f,.
be alwaysdelocalizedat t—c. This would happen even if  \we find the same slowing down of the transition rate for
the electron was initially localized at the lower levéDf  smallt for the disaligned levelse=4,) in Fig. 3(b). This
course, this does not violate the energy conservation, sinGenplies that very frequent repeated measurements would in-
the double well is not isolatedSuch a behavior is not ex- deed localize the system. In that sense the Bloch equations
pected, because the amplitude of electron oscillations is veryeproduce the Zeno effect without explicit use of the projec-
small for large level displacemeftq. (3.2]. Thus the elec- tion postulate. Actually, this result was found earlier by an
tron should stay localized in one of the wells. One couldanalysis of atomic transitions by using the Bloch equation for
expect that the continuous observation of this electron by @ three-level Systeﬁf‘gzsn was shown that the repeated mea-
detector could only increase its localization. This can be insyrement with short intervalst=t/n localizes the system in
ferred from the so-called Zeno efféét.The latter tells us the limitn—. Yet in our case the continuous measurement
that repeated observations of the system slow down transjeads to an electrodelocalization whereas in the absence of
tions between quantum states due to the collapse of the waygstector an electron would stay localized in the left itk
function into the observed state. Since in our case the changgshed curve in Fig. (B)]. Thus the continuous and very
of the detector currentyl¢(t) monitorsa(t) in the left well ~ frequent repeated measurements affect the system in oppo-
[Egs. (2.5 and(3.4)], it represents the continuous measure-site ways.
ment of the charge in this well. Nevertheless the effect is just Our microscopic treatment allows us to determine the ori-
the opposite—the continuous measurement delocalizes thgn of the difference in both treatments. One easily finds that
systen?® the derivation of the Bloch-type equations, describing the

In fact, our results for smatl seem to be in an agreement measured systeffEgs. (3.5)] implies the tracing of the de-
with the Zeno effect; even so, we have not explicitly implied tector variable§Eq. (1.1)]. Since this procedure is outside
the projection postulate. For instance, Figa)3shows the the Schrdinger equation, it could distort the time develop-
time-dependence of the probability to find an electron in thement of the system. In our case of continuous measurement
left dot, as obtained from the solution of Ed8.5) for the  the tracing is done at the time whereas the frequent re-
aligned levels é€=0), andI'4=0 (dashed curve I'y=40Q, peated measurement with the intervAls=t/n implies that
(dot-dashed curyeandI' 4= 16Q), (solid curve. One finds the tracing of the detector variables takes part at the end of

Continuous measurement and Zeno effect
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ML// . . .
_ T@LLR If% m(on"+opy"+ o) =Troee,  (4.29

= E.Mﬁ; L @ 4= 2 n(0T+ o+ 0T =D~ (D D)oy
(4.2

FIG. 4. Resonant tunneling through the double digt; denote mn
the corresponding rate for the tunneling frdto) the left (righty ~ Where ojj=Zp a5 . It follows from Eq. (4.2 that the
reservoirs. The penetration coefficient of the point contadt fer ~ variation of the detector currently=1{)—1, is given by
the empty double-dot system or for the occupied second dot, and ftq, (2.5), where o = opp. Thus the point contact measures
is T’ for the occupied first dot. The indicem andn denote the  the occupation of the left dot directly.
number of electrons penetrating to the right reservoirs at time Performing summation in Eq$4.1) over the number of
electrons arriving at the collectorsn(n), we obtain the fol-

each intervalAt. As a result, the limit on—c, the mea-  |owing Bloch equations for the reduced density matrix of the
sured system, stays localiz&4. double-dot system:

IV. MEASUREMENT OF RESONANT CURRENT 0aa=—TL0aatTrOce, (4.39
IN COUPLED DOTS

In spite of great progress made in microfabrication tech- Top= 'L 0aat1€o(0pe— Tcn), (4.3b

nigues, the direct measurement of single-electron oscillations _
in a coupled-dot system is still a complicated problem. How- Oce=—TROcc—1Q0(0pc— Tcp)s (4.30
ever, it is much easier to measure similar quantum coherence
effects in electrical current flowing through coupled-dot sys- Ope=i€Tpeti1Qo(0pp— Tec) — 2(Tr+ ) Tpe,
tems. We therefore consider the same coupled dot of Sec. lII, (4.30
but now connected with two reservoifemitter and collec-
tor). As in the previous example the point-contact detectowherel 'y is the dephasing rate generated by the deté&iqr
measures the occupation of the left @Big. 4). For the sake (3.6)]. These equations can be compared with those describ-
of simplicity we assume strong inner and interdot Coulombing electron transport through the same system, but without a
repulsion, so only one electron can occupy this system. detecto®®®We find that the difference appears only in the
Then there are only three available states of the coupled-détondiagonal density-matrix elemeritsqg. (4.3d]. The latter
system: the dots are emptg), the first dot is occupiedb), includes an additional dissipation rakg generated by the
and the second dot is occupiég). In analogy with Eqs(2.1)  detector.
and (3.3 we write the following Bloch equations for the  Solving Egs.(4.3) in the limit t—oc, we find the follow-
density matrixa{""(t) describing the entire systeh: ing expression for the currehy, Eq.(4.2b), flowing through

the double-dot system:

op'=— (I +D)ofy" +Troly " +Dopy" !

° @ ’(413 (Tr+Tg)Qf
: ls= > . (4.9
24 M_{_Qz I'o+T £+i
('Tm,n:_D/ mn4 o’ m,n—1+1—~ mn g mn_ _m,n € 4 0( R d) T T
bb Thb Thb LOaa T1Qo(opd —ocp ), R L
(4.1b

By analyzing Eq(4.4), one finds that all the measurement
o o mn_1 . mn mn effects, discussed in Sec. lll are reflected in the behavior of
oce = (FrtD)oce +Doce "~ iQo(ope —ocp ), the resonant curreit as a function of the level displacement

(4.109 e and the dephasing ralg;. As an example, in Fig. 5 we
show the resonant current(e) for three values of the
dephasing ratel’' =0, I'y=4Q,, andI'4=16Q,. We find
that for smalle the current decreases with,. However, for
larger values ok the currenincreaseswith I'y. This reflects

+(DD") Y2t (4.10  an electron delocalization in a double-well systdFig.
3(b)], due to continuous monitoring of the charge in the left
where the indicess andm denote the number of electrons dot. In contrast, rapidly repeated measurenterifswould

that arrive at timet to the upper and the lower collector always localize an electron and therefore diminish the cur-
reservoirs, respectively. HerE, and I'r are the rates of rentl,.

electron transitions from the left reservoir to the first dot, and
from the second dot to the right reservoir, afig is the
amplitude of hopping between two dots.

The currents in the double-dot systeig)(and in the de- In this paper we studied the mechanism of decoherence
tector (4) are given by the following expressiofisf. Egqs.  generated by continuous observation of one of the states out
(2.2 and(2.3b]: of the coherent superposition in experiments with mesos-

) 1
op"=ieap"+iQo(opy— oo™ — E(I‘R—F D’'+D)opy"

V. SUMMARY
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IJ/QO a finite 'y, and for disaligned energy level&{#E,), the
0.4 dc currentincreaseswith I'y. Here again, the situation is
6 35 opposite to that of rapidly repeated measurement, where the
current alwaydecreasesvith T'y.
0.3\
/1
0.25F
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FOR A POINT-CONTACT DETECTOR

FIG. 5. Electron current through the double dot, E44), for
I' ' =T'r=Q4 as a function of the level displacemestE,—E;.
The curves correspond to different values of the dephasing rat
I'y=0 (dashed I' =40 (dot dashej] and and” ;= 160 (solid).

Here we present the microscopic derivation of the rate
equations describing electron transport in the point contact.
®he point contact is considered as a barrier, separating two
reservoirs(the emitter and the collectorFig. 1). All the
levels in the emitter and the collector are initially filled up to
copic systems. As an example, we considered a coupleghe Fermi energieg,, and ug, respectively. We call it the

quantum-dot system, which is simple enough for a detailedyacyum” state |0). The tunneling Hamiltoniari{pc de-
theoretical treatment of the measured object and the detectgEribing this system can be written as

together. On the other hand, it bears all the essential physics
of the measurement process. For a description of the entire N + +
system, we applied Bloch-type equations, which are obtained 'pc= Z Eaja+ Z Era;a+ g O (aja +H.c),

from the many-body Schdinger equation and provide the (A1)
most simple and transparent treatment of quantum coherence
effects. wherea,T(a|) and a;r(ar) are the creatiorfannihilation op-

As the detector, we used the point contact in close proxerators in the left and right reservoirs, respectively, nds
imity to one of the dots. We demonstrated that the variatiorthe hopping amplitude between the stagsand E, in the
of the point-contact current due to electrostatic interactiorfight and left reservoirs(We choose the the gauge, where
with electrons in the dot measures directly the occupation of);, is real) The Hamiltonian equatiofAl) requires the
this dot. vacuum stat¢0) to decay exponentially to continuum states
We started with quantum oscillations of an electron inhaving the following formsaja,lO), with an electron in the
coupled quantum dots. It appears that the presence of tteollector continuum and a hole in the emitter continuum;
point-contact detector near one of the dots generates thefa',a/a,,|0) with two electrons in the collector continuum
dephasing rate in the Bloch equations for the off-diagonahnd two holes in the emitter continuum, and so on. The
density-matrix elements. We found that the dephasing rate igyany-body wave function describing this system can be
proportional to the variation of the point-contact transmis-yyritten in the occupation number representation as
sion amplitude squarelEq (3.6)]. The Bloch equations for
the diagonal density-matrix elements are not affected by the t
detector, providing that it does not distort the energy levels ¥ ()= bo(t)+|§:, b (t)a;a
of the double-dot system. '
The appearance of the dephasing rBtgin the Bloch

equation leads to the collapse of the density matrix into the + X by(Halalaa+--([0),
statistical mixture at— o [Eq. (3.7)]. The collapse happens I<t'r<r!
even for a large disalignment of the energy levels. In this (A2)

case the measurement process results in an electron delocal- i . i

ization inside the double ddafter some critical timé>t,), ~ Whereb(t) are the time-dependent probability amplitudes to

which otherwise would stay localized in one of the dots. Thisi"d the system in the corresponding states with the initial

contradicts a common opinion that the continuous measuréoNndition b(0)=1, and all the otheb(0)’s being zeros.

ment always leads to a localization due to the wave-packepuPstituting Eq. (A2) into the Schrdinger equation

reduction(Zeno effect. In fact, the localization would take i|W¥(t))=HpdW¥(t)) and performing the Laplace transform,

place if we considered the continuous measurement as rap-

idly repeated measurements with intervald=t/n for = |7t

n—o. The reason for such a different behavior of the mea- b(E) fo e=btdt, (A3)

sured system stems from the different procedure of tracing ) o i

out of the detector variables from the total density matrix. W€ obtain an infinite set of the coupled equations for the
The same measurement effects appear in dc current flovamplitudesb (E):

ing through coupled dots. We found that the dc current van-

ishes forl“d—foo, _which can be interpreted in terms of an EBo(E)—Z 0, b, (E)=i, (Ada)

electron localization due to the Zeno effect. Nevertheless, for r
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(E+E—E)Db(E)— Q) bo(E)— X Qy /By (E)=0, (1) =|by(1)|?, cr<1><t>=|2 by (1)]2,
1"r' r
(A4b)

- ~ d@(t)= 2 [y (D3 (A8)
(E+E+E/—E—E )by (E)— Qs by (E) !

are the probabilities to find electrons in the collector. These

+erbl’r’(E)_"E” Qprgnby e (B =0, probabilities are directly related to the amplitudb$E)
o through the inverse Laplace transform
(Adc) dEdE
adMt)= X f b (E)
Equations(A4) can be substantially simplified by replacing boveil e 4
the amplitudeb in the term=Qb of each of the equations B (E/)gi(E'-Bx (A9)

by its expression obtained from the subsequent equétion. _ _
For example, substituting,, (E) from Eq. (Adb) into Eq.  Using Eq.(A9), one can transform Eq¢A6) into the rate

(Ada), one obtains equations foro("(t) (cf. Refs. 8 and ® We find
[ 02 Q2 o O(t)=-Do'(1), (A108)
E-> —Fo(E)— Y =—=—=Dy(E) _
P E+ECE i EYECE s (1) =D ®(t)— Do ¥(t), (AL0b)
=i, (A5) )
a?t)=Do'V(t)-Da?(t), (A10c)

where we assumed that the hopping amplitudes are functions

weakly dependent on the energig¢¥,=Q(E, E,)=0Q.

Since the states in the reservoirs are very déogstinuun), ) ] o )

one can replace the sums oleandr by integrals, for in- The o_perator, which defines the current flowing in this

stance =, .— [ pL (E)) pr(E;)dEdE,, where p_ are the SyStem,is

density of states in the emitter and collector. Then the first

sum in Eqg.(A5) becomes an integral which can be split into =i

a sum of the sirzlgular and principal value parts. The singular

part yieldsi mwQ“p, prVy4, and the principal part is merely ; '

included in a redefinition of the energy levels. The secondlJSIng Egs.(A2), (A10), and(AL1), we find, for the current,

sum in Eg.(A5) can be neglected. Indeed, by replacing R

by (E)=b(E,E ,EE, ,E,/) and the sums by the inte- |:<‘I’(t)|||‘1'(t)>:D§n: oM(t)=D.  (A12)

grals, we find that the integrand has poles on the same sides

of the integration contours. This means that the correspondsince D = (27)?Q2p, pr=T,?® whereT is the transmission

ing integral vanishes, providing,>Q?p. probability, the current can be rewritten &sTVy/(27),
Applying analogous considerations to the other equationsvhich is the well-known Landauer formula.

of system(A4), we finally arrive at the following set of equa-

tions: APPENDIX B: POINT-CONTACT DETECTOR
NEAR DOUBLE WELL

HPC,Z ala, =i§ Q.(afa,—ala). (A11)

(E+iD/2)bo=1, (AGa) Now we present the microscopic derivation of the Bloch

equations(3.3) describing electron oscillations in a double
(E+E,—E,+iD/2)b,,—Qby=0, (Aeb)  well with a point contact in close proximity to one of the
wells (Fig. 2. We start with the many-body Schtimger

equationi| W (t))=H|W¥(t)) for the entire system. Herk is

the tunneling Hamiltonian, which can be written as
H=Hpct+ Hpp+ Hint- Here Hpc is the tunneling Hamil-
- (A6c)  tonian for the point-contact detectfeq. (Al)]; Hpp is the
tunneling Hamiltonian for the measured double-dot system,

(E+E+E;,—E,—E, +iD/2)by,; —Qb,+ Qb =0,

whereD =27Q2p prVy. ) . . )
The charge accumulated in the collector at titris Hpp=E1€1C1+ExCyC+Qg(Cyc1+C1C0);  (BL)

and H;,; describes the interaction between the detector and
No(t) = (W (t ala|wt)= noe™(t), (A7 the measured system. Slncg thg presence of an e!ectron in the
R(=(( HZ 2P (0) ; ®), (A7) left well results in an effective increase of the point-contact
barrier Q;,—Q,,+ 8Q,,), we can represent the interaction
where term as
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Hint= lE 6Q|rCIcl(arar +H.c). (B2)
,r

The many-body wave function for the entire system can be

written as

W (t))= bl<t>c1+§ by (t)clala

+ X

<1’ r<r’

tatat
blll’rr'(t)cla a

raaay

+by(t)ch +2 by (t)ciala

t,t
rar’

+ X

<1’ r<r’

boy o (t)cialal, aiay + - - - [|0),

(B3)

RVITZ

(E+E—E,—E,+iD/2)b,, —Qb,—Qyby, =0,

(B5d)

whereD =TVy/27. [We assumed for simplicity that the hop-
ping amplitude of the point contact is weakly dependent on
the energies, so th&,, =Q(E, ,E,)=Q.]

Using the inverse Laplace transforfA9) we can trans-
form Egs. (B5) into differential equations for the density-
matrix elementsr((t) (i,j=1,2),

P O=biObF (1), o' (0= by (OB (1),

]2)(1‘)_ 2 iy (t)bjll’l‘l‘ (t)

I rr’

(B6)

whereb(t) are the probability amplitudes to find the entire wheren denotes the number of electrons accumulated in the
system in the states defined by the corresponding creatiatollector. Consider, for instance the off-diagonal density-
and annihilation operators. Notice that EB3) has the same matrix elemenw{})(t). The corresponding differential equa-

form as Eq(A2), where only the probability amplituddxt)
acquire an additional indeil or 2 that denotes the well,
occupied by an electron. Proceeding in the same way as
Appendix A, we arrive at an infinite set of the coupled equa-

tions for the amplitude® (E), which are the Laplace trans-
form of the amplitude®(t) [Eq. (A3)]:

<E—E1>BI<E>—QOBZ<E>—§ Q// by (E)=i,
| (B4a)

(E—E»E(E)—QOME)—E 0, b, (E)=0,
' (B4b)

(E+E—E;—E)by (E)— Q[ B1(E)— Qoby, (E)

=2 Y/ By(BE)= (B4o)
1!

(E+E —E;—E) Dy (E)— Q) bo(E)— Qb (E)

- 2 QI’r”E)‘ZII’rr’(E)

1"’

=0, (B4d)

The same algebra as that used in Appendix A and in Refs.

tion for this term can by obtained by multiplying E@B5c)
by b*”(E ) and subtracting the complex conjugated Eg.
ﬂBSd) multiplied by b, (E). We then obtain

[ [g-e-emiZ

)Bﬂr(E)B;.r(E')

dEdJE

4772

>

Ir

—[QDBy, (E)b3(E")— Qb3 (E")by(E)]
—Qq[by ()b}, (E")—b3, (E’ )b2|r(E)]] (E'-Bx

=0. (B7)

One easily finds that the first term in this equation equals

—ig{Y—[e+i(D+D")/2]¢{Y and the third term equals

—Qo(olP—0o8). In order to evaluate the second term in
Eq. (B7), we replaceX, , by the integrals, and substitute
Q'D1(E)+Qgby, (E)
E+E—E;—E,+iD'/2’

by (E)=

Qb3 (E")+Qgb%,(E)
2|r(E )_ 2 oMl

E'+E—E,—E,—iD/2’

obtained from Eqs(B5c) and (B5d), into Eq. (B7). Then
integrating overE, andE,, we find that the second term in
Bq. (B7) becomes b0 p, prVqolY . Thus Eq.(B7) can

(B8)

and 9 allows us to simplify these equations, which then bepe rewritten as

come
(E—E,;+iD’/2)b;—Q¢b,=i, (B5a)
(E—E,+iD/2)b,—Qob,;=0, (B5b)
(E+E,—E;—E,+iD'/2)by, —Q'b;— Qb =0,
(B5¢)

(1)

oy =ieoly +iQo(01] — 0%3) —3(D' + D)oy

+(DD")Y%59 (B9)

which coincides with the Bloch equatid8.3¢ for n=1 and
0aa=011, Opp=02, and o,p=0,. Applying the same
procedure to each of the Egd5), we arrive at the Bloch
equations(3.3) for density-matrix elements " .
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