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Phonon-Induced Decay of the Electron Spin in Quantum Dots
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We study spin relaxation and decoherence in a GaAs quantum dot due to spin-orbit (SO) interaction.
We derive an effective Hamiltonian which couples the electron spin to phonons or any other fluctuation
of the dot potential. We show that the spin decoherence time T2 is as large as the spin relaxation time T1,
under realistic conditions. For the Dresselhaus and Rashba SO couplings, we find that, in leading order,
the effective B field can have only fluctuations transverse to the applied B field. As a result, T2 � 2T1 for
arbitrarily large Zeeman splittings, in contrast to the naively expected case T2 � T1. We show that the
spin decay is drastically suppressed for certain B-field directions and ratios of SO coupling constants.
Finally, for the spin-phonon coupling, we show that T2 � 2T1 for all SO mechanisms in leading order in
the electron-phonon interaction.
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100 ns. This indicates that the decoherence time of a where p � 
i 	hr� �e=c	A�r	 is the electron 2D
Phase coherence of spin in quantum dots (QDs) is of
central importance for spin-based quantum computation
in the solid state [1,2]. Sufficiently long coherence times
are needed for implementing quantum algorithms and
error correction schemes. If the qubit is operated as a clas-
sical bit, its decay time is given by the spin relaxation
time T1, which is the time of a spin-flip process. For quan-
tum computation, however, the spin decoherence time
T2—the lifetime of a coherent superposition of spin-up
and spin-down states—must be sufficiently long. In semi-
conductor QDs, the spin coherence is limited by the dot
intrinsic degrees of freedom, such as phonons, spins of
nuclei, excitations on the Fermi surface (e.g., in metallic
gates), fluctuating impurity states nearby the dot, electro-
magnetic fields, etc. It is well known (and experimentally
verified) that the T1 time of spin in QDs is extremely long,
extending up to 100 �s. The decoherence time T2, in its
turn, is limited by both spin-flip and dephasing processes,
and can be much smaller than T1, although its upper
bound is T2 � 2T1. Knowledge of the mechanisms of
spin relaxation and decoherence in QDs can allow one
to find regimes with the least spin decay.

Recently, the spin T1 time in a one-electron GaAs QD
was measured [3] by a pulsed relaxation measurement
technique (PRMT) [4]. This technique was previously
applied to detect triplet-to-singlet relaxation in a two-
electron quantum dot [4], yielding a spin relaxation time
of 200 �s. Application of PRMT to Zeeman sublevels
became possible with resolving the Zeeman splitting in
dc transport spectroscopy [3,5], which required a mag-
netic field B > 5 T. The results of Ref. [3] show that T1 >
50 �s at B � 7:5 T and 14 T, with no indication of a
B-field dependence. Experimental values for the spin T2
time in a single QD are not available yet, but an ESR
scheme for its measurement has been proposed [6]. The
ensemble spin decoherence time T�

2 was measured in
n-doped GaAs bulk semiconductors [7], demonstrating
coherent spin precession over times exceeding T�
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single spin is even larger, T2 � T�
2 . However, the mecha-

nisms of spin decoherence for extended and localized
electrons are rather different (cf. Ref. [8]).

Different mechanisms of spin relaxation in QDs have
been considered, such as spin-phonon coupling via spin-
orbit (SO) [9] or hyperfine interaction [10], and spin-
nuclear coupling [11–13]. The SO mechanisms yield no
spin decay at B � 0, due to the Kramers degeneracy.
Interestingly, for GaAs QDs, the orbital effect of B leads
to no spin decay in lowest order in SO interaction [9,14].
This is due to the special form (linear in p) of the SO
coupling in 2D. The leading order contribution is, thus,
proportional to the Zeeman splitting and leads to long T1
times in GaAs QDs varying strongly with B [9]. However,
previous theories [9] do not apply to the high values of B
used in recent experiments [3], and thus, no comparison
could be made so far. As for the nuclear mechanism, the
electron spin decay can be suppressed by applying a B
field or by polarizing the nuclei [11,12].

In this Letter, we show that the spin T2 time, caused by
SO interaction in GaAs QDs, is as large as the spin T1
time. We assume low temperatures, T � 	h!0, where 	h!0
is the dot size-quantization energy, and with no external
noise in the applied B field. We, thus, argue that the lower
bound T1 � 50 �s established in Ref. [3] is, in fact, also a
lower bound for T2. Furthermore, we show that the spin
decay can be reduced by a special choice of direction of
B, if there is Rashba coupling.

The Hamiltonian describing the electron in a QD reads

H � Hd �HZ �HSO �Uph; (1)

Hd �
p2

2m�
�U�r	; (2)

HSO � ��
px�x � py�y	 � ��px�y 
 py�x	; (3)

HZ � 1
2g�BB � �; (4)
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FIG. 1 (color online). Solid curve: The relaxation rate 1=T1
of Eq. (18) as a function of an in-plane B for a GaAs QD
with 	h!0 � 1:1 meV, d � 5 nm, "SO � 	h=m�� � 1 �m, and
� � 0. Dashed (dotted) curve: Contribution of the piezoelec-
tric mechanism (�j#) with transverse (longitudinal) phonons.
Dot-dashed curve: Contribution of the deformation potential
mechanism (�j). Note that 1=T1 / 1="2SO.
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momentum, U�r	 is the lateral confining potential, with
r � �x; y	, and � are the Pauli matrices. The axes x and y
point along the main directions in the (001) plane of
GaAs. The SO Hamiltonian (3) includes both the
Dresselhaus SO coupling (�), due to the bulk inversion
asymmetry of the GaAs lattice, and the Rashba SO
coupling (�), due to asymmetry of the quantum well
profile in the z direction. We consider here � and � as
model parameters; for their microscopic derivation, see
Ref. [15]. The magnetic field B � B�sin� cos’; sin� sin’;
cos�	 defines the spin quantization axis via the Zeeman
term (4). The phonon potential is given by

Uph�r	 �
X
qj

F�qz	eiqkr���������������������
2 c!qj= 	h

q �e�qj 
 iq�qj	�b
y

qj � bqj	;

where byqj creates an acoustic phonon with wave vector
q � �qk; qz	, branch index j, and dispersion !qj;  c is the
sample density [volume is set to unity in (5)]. Optical
phonons play no role at the low energies considered here.
The factor F�qz	 in Eq. (5) equals unity for jqzj � d
1

and vanishes for jqzj � d
1, where d is the size of the
quantum well along the z axis. We take into account both
piezoelectric (�qj) and deformation potential (�qj) kinds
of electron-phonon interaction [16]. Next, we derive an
effective Hamiltonian for the low temperature (T �
	h!0) spin dynamics, relaxation, and decoherence.

The electron spin couples to phonons due to the SO
interaction (3). For typical GaAs QDs, the SO length
"SO � 	h=m�� is much larger than the electron orbit
size ". The linear in the "="SO contribution to the spin-
phonon coupling is due only to a finite Zeeman splitting
[9,14]. We consider a B field, for which the spin-phonon
coupling dominates the spin decay. For simplicity, we
assume m��2 � g�BB� 	h!0. Using perturbation
theory (or Schrieffer-Wolff transformation), we obtain
[17] the effective Hamiltonian

Heff �
1
2g�B�B� #B�t	� � �; (5)

#B�t	 � 2B���t	; (6)

where ��t	 � h j��L̂L
1
d �	; Uph�t	�j i, j i is the electron

orbital wave function, L̂Ld is the dot Liouvillean, L̂LdA �
�Hd; A�. The vector � has a simple form in the coordinate
frame x0 � �x� y	=

���
2

p
, y0 � 
�x
 y	=

���
2

p
, z0 � z (see

Fig. 1 inset), namely, � � �y0="
; x0="�; 0	, where
1="� � m���� �	= 	h. Equation (6) contains one of our
main results: In first order in SO interaction, there can be
only transverse fluctuations of the effective magnetic
field, i.e., #B�t	 � B � 0 [18]. This statement holds true
for spin coupling to any fluctuations, be it the noise of a
gate voltage or coupling to particle-hole excitations in a
Fermi sea. Next, we consider the decay of the electron
spin, S � �=2, governed by Eq. (5).

The phonons which are emitted or absorbed by the
electron leave the dot during a time (c, d=s & (c &

"=s, where s is the sound velocity. The electron spin
016601-2
decays over a much longer time in typical structures,
and thus, undergoes many uncorrelated scattering events.
Then, the spin obeys the Bloch equation [19]

h _SSi � !� hSi 
 �hSi ��; (7)

where ! � !l, with ! � g�BB= 	h and l � B=B. For a
generic #B�t	 [with h#B�t	i � 0], in the Born-Markov
approximation [19,20], we find �ij � �rij � �

d
ij, with

�rij � #ij�#pq 
 lplq	J�pq�!	 
 �#ip 
 lilp	J�pj�!	


 #ij"kpqlkI


pq�!	 � "ipqlpI



qj�!	; (8)

�dij � #ijlplqJ
�
pq�0	 
 lilpJ

�
pj�0	; (9)

where J�ij �w	 � Re�Jij�w	 � Jij�
w	� and I�ij �w	 �
Im�Jij�w	 � Jij�
w	� are given by the spectral function

Jij�w	 �
g2�2B
2 	h2

Z �1

0
h#Bi�0	#Bj�t	ie
iwt dt: (10)

The inhomogeneous part in Eq. (7) is given by

2�i � ljJ


ij �!	 
 liJ



jj�!	 � "ipqI

�
pq�!	

� "iqklklp�I�pq�!	 
 I�pq�0	�; (11)

where "ijk is the antisymmetric tensor. Equation (7) de-
scribes spin decay in a number of problems, such as
electron scattering off impurities in bulk systems, nuclear
spin scattering [19], etc. In our notation, the spin decay
comes from the symmetric part of �, whereas the anti-
symmetric part leads to a correction to ! in Eq. (7). The
tensor �r describes spin decay due to processes of energy
relaxation such as emission or absorption of a phonon.
Thus, the T1 time is entirely determined by �r [see
Eq. (16)]. The tensor �d can be nonzero due only to elastic
scattering of spin, i.e., due to dephasing. �d contributes to
the decoherence time T2, and so does �r. In many cases,
016601-2
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however, the latter contribution is negligible, and �d

entirely dominates the spin decoherence [19]. This is in
strong contrast to what we find here for an electron
localized in a QD. To illustrate this, we first consider an
example when �d dominates the spin decoherence and
then return to our case. A textbook example is
h#Bi�0	#Bj�t	i � 	bb2#ij exp�
jtj=(c	. Choosing l �
�0; 0; 1	, we obtain from Eqs. (8)–(10) the nonzero ele-
ments: �rxx � �

r
yy � �

r
zz=2 � 22n 	bb

2(c=�1�!2(2c	, and

�dxx � �
d
yy � 22n 	bb2(c, where 2n � g�B= 	h. The longitu-

dinal component hSzi decays over the time T1 � �
1zz �
1=�rzz. The transverse components decay over the time
T2 � 1=��

r
xx � �

d
xx	. At !� 1=(c, the contribution of

�rxx to T2 is negligible, and hence, T2 � T1. The latter
relation has widely been quoted in the literature on quan-
tum computing. In stark contrast to this example, we
show now below that there are no intrinsic dephasing
mechanisms for our case, which would justify this rela-
tion for the electron spin in GaAs QDs at T � 	h!0.

We start with calculating the spin decay due to the
mechanism (6). Here, �dij is identically zero, due to the
transverse nature of the fluctuating field #B. This can be
inferred from Eqs. (9) and (10), noticing that each term in
(9) contains l � #B � 0. In order to calculate �rij, we first
find the main axes of the tensor Jij�w	 [see Eq. (10)].
Jij�w	 is diagonal in the frame �X; Y; Z	 (see inset of
Fig. 1), which is obtained from �x0; y0; z	 by a rotation
with Euler angles ’0, �, and 6. Here, the angles ’0 �
’
 7=4 and � give B in the frame �x0; y0; z	, and 6
depends on the details of U�r	. It can be determined
from h#BX#BY�t	i � 0. For U�r	 � U�r	, we find [21]

tan26 �
2�"2� 
 "2
	lx0ly0lz

"2��l
2
y0 
 l2zl

2
x0 	 � "2
�l

2
x0 
 l2zl

2
y0 	
: (12)

We now consider U�r	 � m�!20r
2=2 and evaluate ��t	 of

Eq. (6) for the ground state  �r	 � exp�
r2=2"2	="
����
7

p
,

where "
2 � 	h
1
���������������������������������������������
�m�!0	

2 � �eBz=2c	
2

q
. Using [22]

y �

i

	hm�!20
L̂Ld

�
py 


eBz
	hc
x
�
; (13)

we find  x0 from Uph�r	 by substituting

exp�iqkr	 !

iqy0

m�!20"


exp�
q2
k
"2=4	: (14)

 y0 is obtained from Uph�r	, using (14) with the prefactor
qy0="
 ! qx0="�. Finally, we obtain

Re JXX�w	 �
!2w3�Nw � 1	

�2"�m�!20	
2

X
j

	h

7 cs
5
j

Z 7=2

0
d#sin3#

� e
�w" sin#	2=2s2j

�������F
�
jwj
sj
cos#

��������
2

�

�
e2�2j# �

w2

s2j
�2j

�
; (15)

where Nw � �e 	hw=T 
 1	
1, and sj is the sound velocity
016601-3
for branch j. For GaAs, we use s1 � 4:73� 105 cm=s and
s2 � s3 � 3:35� 10

5 cm=s. Furthermore, �j � #j;1�0
with �0 � 6:7 eV, and �1;# � 3

���
2

p
7h149
1sin2# cos#,

�2;# �
���
2

p
7h149
1 sin2#, �3;# �

���
2

p
7h149
1�3cos2# 


1	 sin#, with h14 � 
0:16 C=m2 and 9 � 13:1. The ef-
fective SO length "� in Eq. (15) is given by

2

"2�
�
1
 l2x0
"2


�
1
 l2y0

"2�
�

�������������������������������������������������������������
1
 l2x0
"2


�
1
 l2y0

"2�

�
2


4l2z
"2�"

2



vuut :

Re JYY�w	 is obtained from Eq. (15) by substituting
"� ! "
, and JZZ�w	 � 0. Im JXX�w	 and Im JYY�w	
are irrelevant for our discussion; see further. From
Eq. (8), we obtain �rXX � J�YY�!	, �

r
YY � J�XX�!	, �

r
ZZ �

J�XX�!	 � J�YY�!	, �
r
XY � 
I
YY�!	, and �rYX � I
XX�!	.

Since �ij=! & !"2=!0"2� � 1, we can solve the secular
equation iteratively [23]. In the general case,

1

T1
:� lplq�pq � �ZZ � �rZZ; (16)

1

T2
:�
1

2
�#pq 
 lplq	�pq �

1

2
��XX � �YY	: (17)

Then, the solution of Eq. (7) reads hSX�t	i �
S?e


t=T2 sin�!t�:	, hSY�t	i � S?e

t=T2 cos�!t�:	,

and hSZ�t	i � ST � �S0Z 
 ST	e
t=T1 , with the thermody-
namic value of spin being ST � l�l ��	T1 �

�l=2	 tanh� 	h!=2kBT	, and the initial value hS�0	i �
�S? sin:; S? cos:; S

0
Z	. For our special situation with

purely transverse fluctuations (�d � 0), we obtain

1

T1
�
2

T2
� J�XX�!	 � J�YY�!	: (18)

We plot 1=T1 as a function of B for � � 7=2 and� � 0 on
Fig. 1 (solid curve). In agreement with experiment [3], we
find that 1=T1 has a plateau in a wide range of B fields, due
to a crossover from the piezoelectric-transverse (dashed
curve) to the deformation potential (dot-dashed curve)
mechanism of electron-phonon interaction. For arbitrary
’, �, and �, we have 1=T1 � f=T1�� � 7=2; � � 0	 with

f �
1

�2
���2 � �2	�1� cos2�	 � 2��sin2� sin2’�:

Note that
���
f

p
describes an ellipsoid in the frame �x0; y0; z	,

i.e., f � x02 � y02 � z2, with dimensionless x0; y0; z obey-
ing �x0=a	2 � �y0=b	2 � �z=c	2 � 1, where a � 1� �=�,
b � 1
 �=�, and c �

�����������������
a2 � b2

p
. Thus, if � � �, then

b � 0, i.e., 1=T1 vanishes if B k y0. The same is true
for � � 
� and B k x0. The case � � �� was consid-
ered previously for extended electron states in a two-
dimensional electron gas (2DEG) [24]. Note that the
Hamiltonian (1) conserves the spin component �y0�x0	 for
� � � (� � 
�) and B k y0 �x0	. This spin conservation
results in T1 being infinite to all orders in the SO
016601-3
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Hamiltonian (3). At the same time, 1=T2 reduces to the
next order contribution of (3). However, as we show
below, a single-phonon process is inefficient in inducing
dephasing, and therefore, 1=T2 can be nonzero only in the
next order in electron-phonon interaction. Next, we note
that a long-lived spin state also occurs in a different GaAs
structure, namely, for a 2DEG grown in the (110) direc-
tion. Then, the normal to the 2DEG plane component of
spin is conserved [25], provided � � 0.

We discuss now other SO mechanisms. In Eq. (3),
we omitted the so-called k3 terms of the Dresselhaus
SO coupling [25]; i.e., HSO / 	h
2�d2��xfpx; p2yg 

�yfpy; p2xg	. They are parametrically small (d2="2 � 1)
in the 2D limit, compared to the retained ones. However,
their contribution to the spin decay can be important, if
gm�=m0 & �d="	2 cos� and "3 & d2"SO, since the orbital
effect of B contributes here in the first place. Otherwise,
the orbital effect is given by the second order contribution
of (3), i.e., by H�2	

SO � 
HSOL̂L

1
d HSO, and can be impor-

tant, if gm�=m0 & �"="SO	 cos�. For in-plane B fields,
however, these mechanisms are negligible.

Additional spin decay mechanisms arise from the di-
rect spin-phonon interaction [9]. The strain field produced
by phonons couples to the electron spin via the SO inter-
action, resulting in the term &H0 � �V0=4	"ijk�ifuij; pkg,
where pi is the bulk kinetic momentum, uij is the phonon
strain tensor, and V0 � 8� 107 cm=s for GaAs. A simi-
lar mechanism occurs in a B field, due to g-factor fluctu-
ations caused by lattice distortion. This yields &H00 �
~gg�B

P
i�juij�iBj, where ~gg � 10 for GaAs. The contribu-

tion of these mechanisms to the spin-flip rates in QDs has
been estimated in Ref. [9]. Except for the � � �� cases
discussed above, the direct mechanisms are usually neg-
ligible in QDs. Here, we find that such spin-phonon cou-
plings do not violate the equality T2 � 2T1. For this, we
note that �dij � 0 for a generic #Bi �

P
qMi�q	�b

y

q � bq	

in Eq. (5), if qjMi�q	j2 ! 0 at q! 0. Obviously, this
condition is satisfied for the direct spin-phonon mecha-
nisms, since uij � 0 at q � 0. The same follows for the
Hamiltonian (1) with the phonon potential (5) and an
arbitrary HSO; the physical explanation is that the poten-
tial of long-wave phonons is constant over the dot size
and, thus, commutes with HSO. Finally, we note that, at
temperatures T � 	h!0, there can be dephasing mecha-
nisms [26], which can result in T2 � T1.

In conclusion, we have shown that the decoherence
time T2 of an electron spin in a GaAs QD is as large as
the relaxation time T1 for the spin decay based on SO
mechanisms.
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