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Qubits with electrons on liquid helium
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We study dissipation effects for electrons on the surface of liquid helium, which may serve as the qubits of
a quantum computer. Each electron is localized in a 3D potential well formed by the image potential in helium
and the potential from a submicron electrode submerged into helium. We estimate parameters of the confining
potential and characterize the electron energy spectrum. Decay of the excited electron state is due to two-
ripplon scattering and to scattering by phonons in helium. We identify mechanisms of coupling to phonons. An
estimate of contributions from different scattering mechanisms shows that the decay rate shedlf se*.
We analyze dephasing of the electron states due to quasielastic ripplon scattering off an electron. The dephas-
ing rate is<10? s~ * for T=10 mK and depends on temperatureTds Decay and decoherence of the electron
states result also from classical and quantum electrode noise. We relate the corresponding relaxation rates to
the power spectrum of the fluctuating electric field on the electron. The dependence of the rates on the
electrode parameters is obtained.
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I. INTRODUCTION In this paper we show that, even without a magnetic field,
the relaxation rate of a confined electron can be much less
Much interest has attracted recently the idea of creating than that of a free electrons. The rate of ripplon-induced
condensed-matter based quantum comp(@Z). A major  dephasing can be even smaller than the previous estimate for
challenge is to have a system that would have a sufficientha strong magnetic field. This is due to large level spacing in
long relaxation time, and nevertheless could be controllecg 3D confining potential formed by a localizing microelec-
with high precision and allow its quantum state to be meaitrode provided the electrode is sufficiently thin. Electrodes of
sured. The proposed systems include localized electron spir appropriate shape have already been fabricated.
in semiconductor heterostructures, nuclear spins of*P For low temperatures, the major known dissipation
donoré or 2°Si nucle? in a zero nuclear spirf®Si matrix, mechanism is scattering by surface capillary waves, ripplons.
electron states in a quantum dot excited by terahertZhese waves are very slow. Therefore, a large distance be-
radiation® excitons in quantum dofs® Josephson-junction tween electron energy levels makes it impossible to conserve
based systents.**electrons on helium surfade!®quantum energy and momentum in a one-ripplon decay process. De-
dots coupled via a linear suppdft,and trapped polar cay of the excited electron state, i.e. electron energy relax-
molecules'® ation may occur via scattering into two short-wavelength rip-
The system of electrons on the surface of superffiiigé  plons. We show that a very important role is played also by
is in several respects attractive for making a scalable quardecay processes where the electron energy goes to phonons
tum computer. First, many properties of this system are al-

ready known experimentally and well understood E

theoretically!® Second, electrons on helium have extremely 1

long relaxation time: they display the highest mobility U(r)
known in a condensed-matter systéhiast but not least, Il
the typical interelectron distance is comparatively large, o

~1um. To make a QC we suggested® to fabricate a sys-
tem of microelectrodes, which would be submerged beneath
the helium surface. Each electrode is supposed to localize h Helium
one electron above it, as seen in Fig. 1, and to control this
electron. Respectively, the interelectrode distance should be
~1 um, which makes fabrication technologically feasible.
The two states of an electron qubit are the two lowest S5
states of quantized motion transverse tp the su_rff'i_ce. To fur- FIG. 1. (Color onling A sketch of a microelectrode submerged
ther slow down the already slpw relaxation, we initially pro- by the depthh~0.5.m beneath the helium surface, with an elec-
posed to apply a magnetic fiel, normal to the surface. 4, |ocalized above it. The electron is driven by a figld normal
Then the estimated relaxation tiriig due to ripplon scatter- (o the surface. This field comes from the electrode and the parallel-

ing becomes as long as 19s, for typicalB, ~1.5 T and  plate capacitofonly the lower plate of the capacitor is showfihe
temperature3 ~10 mK, whereas the clock frequency of the in-plane electron potentiall|(r) is parabolic near the minimum,

computer() can be in the GHz range. This attracted attentionwith curvature determined by the electrode potentiak (x,y) is
of experimentalists to the projett. > the in-plane position vectr
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in helium. The relevant phonons propagate nearly normal to 5
the surface. We find the mechanisms of electron-phonon cou- 2>
pling and analyze their contribution to the decay rate. 00— 1

Electron coupling to excitations in helium leads also to b
dephasing, i.e. to randomization of the phase difference be- r
tween the electron states. The dephasing is due primarily to 25 Zoy- 21ty
scattering of thermally excited ripplons off an electron. We
find its temperature dependence for different coupling
mechanisms. We also investigate the spectrum of sideband - Z),/t,
absorption in which a microwave-induced electron transition
is accompanied by creation or annihilation of a ripplon, and 0 02 0.4 0.6 0.8 1
analyze the related decrease of the intensity of the zero- eEer/R
ripplon absorption line.

An important problem for electrons on helium, as well as  FIG. 2. (Color onling Energy differenceE,—E; and matrix
for several other proposed realizations of qubits, is noisé&lementsz,,=(n|z|m) of the electron coordinate normal to he-
from Controning electrodes. If the size of a qub|t is small lium surface on the wave functions of the gl’ound and first-excited
compared to the distance to the electrode, as in the case 8fftes ofz motion, |1) and|2), vs the overall pressing field, .
electrons on helium, the effect of coupling to the electrodelhe flf_eld E, includes the electrode fielfi, and the_ field from the
on qubit relaxation can be described in terms of the powefaPacitoreE, rg/R=1 for E, ~0.91 kv/cm. The inset shows the
spectrum of the fluctuating electric field of the electrode.™!l €nergy level diagram. Each level, of zmotion gives rise to a
This electric field is due to quantum electrode charge-densit et_ of energy levels of vibrations parallel to helium surface, with
fluctuations. We find its power spectrum for a simple but ypical Spac'”¢“’u'
realistic model of an electrode. This makes it possible to

estimate the relaxation rate and to find how it depends on thfsevels(l)z“ and to quantization of motion parallel to the sur-

parameters of the electrodes and the circuit. face. A realistic estimate of this potential and of the electron
In Sec. Il below we analyze the energy spectrum of a_ "~ b

confined electron and discuss many-electron effects. In Se(ggﬁé?}étsige?l;]rgrgmtﬁearg?rﬁgé&gdﬁg??Ot?ﬁee;?:g?gdeeas a
Il we discuss energy relaxation rate for different mecha- 9sp q

nisms of electron-ripplon and electron-phonon coupling. jpdiameter. The center of the sphere is located at dagite-

Sec. IV we consider dephasing rate. Section V deals Witlﬁ1eath the helium surface. Typically we expevtto be

one-ripplon sidebands and the Debye-Waller type factor inNIO'f'“m't S?hthat 'ft largely Exceidhs thg ;jlstt:;ncg fr?m the
the zero-ripplon absorption line. In Sec. VI we discuss eleciectron 10 the surface-rg. Forz and for the in"plane

H 2 2\1/2 2__ .2y\1/2
tron relaxation and dephasing from fluctuations in the underdistance from the electrode= (x+y%)*<h, (h"—rg) ™
lying electrodes. Section VII contains concluding remarks. 1€ €lectron potential energy is

> —_—
—

The electrode potential leads to Stark shift of the energy

A 1
Il. ELECTRON STATES IN ONE- AND MANY-ELECTRON U(r,z)~— E+eé’lz+§mwﬁr2 @)
SYSTEMS
with
A. Single-electron energy spectrum
The quantum computer considered in this paper is based £ =Veregh™?+ergh(h?=r3) 2,
on a set of electrons which reside in potential wells in free
space above liquid helium, cf. Fig. 1. The electrons are pre- o= (€&, Imh)*2 3

vented from penetrating into helium by a high potential bar- ) , "

rier ~1 eV at the helium surface. For one electron, the poH1€re.T=(xy) is the electron in-plane position vector, and
tential well is formed by the electrostatic image in helium, Ver IS the electrode potential. The second tern€incomes
the potential from the electrode, and also the potential crelfom the image of the electron in the spherical electrode.

ated by the grounded plate and a parallel plate above the !N @pproximation(2), the electron out-of-plane and in-
electron layer(the latter is not shown in Fig.)1 plane motions separate, with in-plane motion being just har-

We assume that the helium occupies the half space monic oscillations. Variational qalculations of the energy
<0. The image potential for an electron isA/z, where ~ SPECUUM of the out-of-plane motion were done eaffidihe
A=(s—1)e?l4(s+1), with e~1.057 being the dielectric simple model(2} _W|th an |nf|n|_te wall atz=0 describes the
constant of helium. The energy spectrum for 1D motion inobserved transition frgq_uenmes with an error of only a few
such a potential is hydrogenic, percent, which is sufficient for the present purpogesre

realistic models have been discussed in literature, see Refs.
) 5 5 25-27 and papers cited thergirThe full electron energy
E,=—R/n*(n=12,...), R=A"m/2n". (1) spectrum in potential2) is sketched in the inset of Fig. 2.
The two states of a qubit are the ground and first-excited
The effective Rydberg enerdy is ~8 K, and the effective states of motion transverse to the surfdde,and|2), both
Bohr radius isrg=%%/Am~76 A (m is the electron mags  corresponding to the ground state of in-plane vibrations.
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In what follows, we characterize the electron stateinteraction between such oscillating dipoles has energy
li,»,m,) with the following three quantum numberis= 1,2 (1/4)Ui(j°5°)[(r'+ ol +H.c], whered', =[ o' ]7=2|2);(1]; is

enumerates the state of out-of-plane motiors0,1,...  the 1—2 transition operator for theth qubit, and

gives the energy level of in-plane vibrations, amadl,

=0,1,... y enumerates degenerate vibrational states within

this level. In calculations of the relaxation parameters we U{9=e?|z,,%/d3 . (5)

will assume that in-plane and out-of-plane motions can be

separated, so that ) . . _ . .
The interaction between static and oscillating dipoles is non-

li,v,m,)=li}v,m,) resonant and can be safely neglected. .
Interactions (4) and (5) allow implementation of a
with |i) and|»,m,) being functions of andr, respectively. ControlledNOT two-qubit gate and of interqubit excitation
transfer, respectively?''® For a typical dipole momergrg,

B. Choosing parameters of the many-electron system the interaction energgzréldﬁ between the qubits separated
by djj=1um is 2X 10’ Hz, in frequency units. This energy
is very sensitive tal;; and can be increased by reducing the

For a multiqubit multielectrode QC, the degttby which interelectron distance. Equatioitd) and (5) apply for dj;
the controlling electrodes are submerged into helium, the inless than the distance from the electrons to the grounded
terelectrode distancesl;;, and the electrode potentials plate in Fig. 1; for larged;; the interaction is screened and
should be chosen in such a way that would optimize perforfalls down asdi]s. In practice it means that the interqubit
mance of the QC. This includes, in the first place, having aoupling is likely to be limited to nearest and probably next-
high working frequency)c and low relaxation rat€’. The  nearest neighbors.
frequencyQ ¢ is limited by the rate of single-qubit opera-  The matrix elementg,,, depend on the overall field,
tions and by the rate of excitation transfer between neighborhat presses electrons against the helium surface. They can be
ing qubits, which is determined by the qubit-qubit interac-obtained by solving a one-dimensional Sainger equation
tion. for the potentia- Az~ 1+ eE, z with a hard wall az=0 [cf.
Single-qubit operations will be performédoy applying  Eq. (2); we note that the total fiele, differs from the field
pulses of resonant microwave radiation, which cause transig, produced by one electrode, see beJoihe results are
tions between the statgk) and|2). The corresponding Rabi shown in Fig. 2.
frequency isQg=e&y|215//%, where&, is the field ampli- The differencez,,— z;; sharply decreases with increasing
tude. As seen from Fig. 2z,,//rg=0.5, and therefore even a field for smallE, because of field-induced squeezing of the
comparatively weak field &,=1 V/cm gives Qg=6  wave functions, which is particularly strong for the wave
X10° s™*. This shows that single-qubit operations shouldfunction of the excited state?). The interplay between the
not limit Qqc at least at the level of 16- 10P Hz. squeezing and better overlapping of the wave functidns
Because the wave functions of different electrons do noand |2) with increasing field leads to a weak field depen-
overlap, the interaction between the qubits that we considefience ofz;, for eE, rg/R=<1. It is seen from Fig. 2 and Eq.
is dipolar, as in liquid-state NMR quantum comput&tén (4 that, for weak pressing fiell, <300 V/cm, the energy
important feature of electrons on helium is that their local-of the “static” interaction is higher than its estimate given
ization length normal to the surfacg greatly exceeds the apove by a factor varying from 20 to 4 with increasifg,
atomic radius, which makes the dipole-dipole interaction orypecause of the large numerical value @f,(z,,)/rg. It is
ders of magnitude stronger than the dipolar interaction imaiso significantly higher than the energy given by E).
atomic systems. A substantial part of single- and two-qubit operations is
Of interest to us is the part of the qubit-qubit interactiontyning targeted qubits in resonance with microwave radiation
that depends on the states of the qubits. Two types of dipolgnd with each other. It is accomplished by varying fiefds
moments have to be distinguished. One is determined by thgom the corresponding electrodes and thus Stark shifting the
differencez,;—z,, of average distances of the electron from qupit transition frequenciesg,—E;)/#%, cf. Fig. 2. In the
helium surface in the stat¢$) and|2). The dipole moment  simple case of one microwave frequency, the transition fre-
e(z11— 2,7 does not depend on time, if we take into accountquencies of different qubits will be tuned away from it and
time dependence of the wave functions, it can be calledrom each other by~1-10 GHz, which determines the
“static.” The interaction energy between the static dipoles ofrange over which they have to be varied. The transition fre-
the ith and jth qubits can be written as (1M§*™c}, 0},  quency is changed by 1 GHzé&f is changed by-1 V/cm.
where 0,=2); (2|;—|1); (1|; is the operator of the differ- The respective change of the electrode potential %3 mV

1. Working frequency considerations

ence of the state occupations for fitik qubit, and for h=0.5um andry=0.1um. It can be accomplished over
the time~10"8 s using standard means. Since the figlds
Ui(ft)= €2y, 2,9 %/d . (4)  on different electrodes differ by-1 V/cm or~1%, in Egs.

(4) and(5) we assumed that the matrix elements, are the
The other dipole moment is associated with the-2  same for different qubits. Overall, for interelectron distances
transition. If we use time-dependent wave functions, it oscil-d=1um, the qubit-qubit interaction limits the clock fre-
lates in time at high frequend ,,=(E,—E1)/A. Resonant quency of the quantum comput&ry to 10-10° Hz.
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2. Limitations from many-electron effects N0,9 —

The electron energy spectrum should be formed so as to (D” ELLIZ'Z\
minimize the electron relaxation rate. One of the most “dan- 0.61 ] X
gerous” relaxation processes is quasielastic scattering by ) ~
capillary waves on helium surface, ripplons, in which an b N 0734 06 08 1 12
electron makes a transition between its states and a ripplon is 03| h/d
emitted or absorbed. This scattering is responsible for finite
electron lifetimeT . Typical energies of appropriate ripplons
are extremely small~10"2 K (see below. Therefore, the 0 ‘ ‘ ‘ ‘
scattering can be eliminated for a one-qubit system, if none 0.4 0.7 1 L3 L6 L9
of the excited vibrational levels of the stdte) is in reso- h/d
nance with the ground vibrational level of the sta 5
shown with a bold line in F|g 2. FIG. 3. (Color onling In-plane frequencyuH:wH/wH’ and nor-

From Eq.(3), for a field £, =500 V/cm andh=0.5um  mal to the surface fielé, =E, /E| for an electron above a square
we have o)/2m~2.1X 10 Hz~1.0 K. Even though the array of electrodes. The electron is localized at hefgabove one
spacing between vibrational levels is less than the energy gai the electrodes. The interelectrode spacingl.i€lectrodes are
E,—E;~6-10 K, with so bigw) it is easy to avoid reso- modeled by s_mall spheres, /h<1, with same posi_tive potential
nance betweerE, and an excited vibrational level of the Ve- The scaling frequency| =(eVerq/mh®)? is given by Eq.
state 1, i.e. betweeB,—E; andnfi o . (3) and corresponds to the Iimdaoi. The~scaling field isE]

The situation becomes more complicated for a system of-2mn.V,r . Asymptotic behavior oty andE, for large 2rh/d
interacting qubits. The interaction leads to coupling of in-is shown with dashed lines.
plane vibrations of different electrons. In a many-electron

system the vibrational energy spectrum becomes bandlik,static image in the electrodlim particular, the second term

One can think that egch vibrati.onal. level in I.:ig.. 2 become; % Eq. (3) for £,] can be ignored. The overall potential of the
bottom of a band of in-plane vibrational excitations. We will electrode lattice at a distanaefrom helium surface 4+ h
assume that the width of the lowest bafidis small com- ~0) is

pared tow . The width of thevth band is then~ A for not
too largev. To avoid quasielastic scattering by ripplons, the
vibrational bands should be well separated from each other
up to energie€, —E,, that is forv~(E,—Ej)/hw). This
means that

V(r,2)=2mN Vol o2, G lexp(iGr)e &+
G

—27TneVe|re|(Z+ h), (8)
Aj<hofl(E;—Ey). (6)

The value ofA; depends on the geometry of the many-whereG is the reciprocal lattice vector.
electron system. It can be found if the electrodes and the The dependence @ onh/d for a square electrode array
electrons above them form a regular 2D array, or in otheis shown in Fig. 3 along with thi/d dependence of the total
words, the electrons form a Wigner crystal with the samenormal field from the electrodes. The electrostatic in-plane
lattice constant as the electrodes. Then, if the phonon fresonfinement is due to the spatial nonuniformity of the elec-
quencies of the free-standing crystal in the absence of thkode potential. ~ Therefore | falls down as
electrode potential ares; (k is the wave vector ang — 2m(2eVefo/md®)Y2exp(-=h/d) for large 2rh/d. How-
=1,2 is the branch numbkrthen the vibrational frequencies ever, as seen from Fig. 3 remains close to the single-
of the pinned crystal areu(;+ wf)*2. The phonon band- electrode valug3) for h/d=<0.5. This gives the desirable
width is small compared tay providedwy;<w|, in which ~ range of the aspect ratiw/d.
case A= maxwy/ |~ wj/w|, where w,=(2me?nd%m)?
is the characteristic zone-boundary frequency of the free- 3. The overall pressing field
standing Wigner crystaln, is the electron densily

It follows from the above arguments and conditi(h)
that quasielastic scattering will be eliminated for a pinne
Wigner crystal, provided

The total perpendicular field on a localized electi®n
dcomes from the electrodes and the parallel-plate capacitor
with the plates parallel to the helium surface. The lower plate
is submerged into helium and is shown in Fig. 1. The upper
w§<ﬁwf/(E2— E,). ) plate is above the surface _and further away; it is not sh(_)wn.
As we will see, the squeezing of the electron wave functions
This imposes an upper limit on the nearest-neighbor spaciny the fieldE, (cf. Fig. 2) increases the electron relaxation
d=mind;, becausewpocd*S’Z. For a square lattice witll rate. ThereforelE, should be minimized. At the same time,
=1lum we haveop/27~6.3 GHz. the electrostatic confinemerithe frequencyw)) increases
For the multielectrode system, the frequengyitself de-  with the increasing field from the electrodes. It would be
pends on the interelectrode distartéf the electrode radius good to compensate the out-of-plane field while keeping
re is small compared to the depth the effect of the elec- the in-plane potential as strongly confining as possible. This
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can be accomplished by using a field from the capacitorwith sufficiently long wavelengths to a good approximation
which is uniform in the plane and does not affect in-planethe vibrating helium surface can still be considered as a cor-
confinement. rugated infinitely high potential wall. The electron wave

The limitation on the compensating capacitor field comedunction is set equal to zero on the surface.
from the condition that the overall field behind the electron In this approximation the Hamiltoniad; of interaction of
layer should attract electrons to helium, otherwise they willan electron with surface vibrations is obtained by changing
leave the surface. This field is formed not only by the exterthe electron coordinates—r, z—z— &(r) whereé&(r) is the
nally applied potentials, but also by the electron layer itselfsurface displacement, see Refs. 30—32. The interaction is a
The total averaged overapplied field in the electron plane series in the ratict/rg. Typically this ratio is very small,
should therefore exceedmen,. In other words, the uniform ~3x10"2 for thermal displacement with characteristic
component ZngVefr g of the electrode field-4d,V|,—o (8)  wave numbers. Therefore, to a good approximatiyncan
can be compensated down terdn,. The remaining press- be expanded i, keeping only lowest-order terms. The ma-
ing field on the electrorE, becomes therCX2mneVere  jor term, H®, is linear in&(r) == 4&,e'",
+2men, with smallC (C~0.24 forh/d=0.5, as seen from
Fig. 3.

We note that the frequency, can be further increased
electrostatically without increasing, by using a more so- with
phisticated configuration of electrodes. Analysis of such con- _ "
figurations is outside the scope of this paper. We note also ~ | LY 2
that, for sufficiently largaw|, the curvature of the electrode Vo= E(q' p)pz—ﬁq Pz +eE +Aq7pe(a2),
potential(8) in the z direction may become substantial, par-
ticularly for highly excited states of out-of-plane motion. vpol(x):x‘z[l—xKl(x)]. (10
However, for a typical w)/2m=20 GHz, the effective R ) . -
curvature-induced change of the out-of-plane field for lowestiere, p=—ifid, is the 2D electron momentum, ang=
states mwﬁrB/e is only ~14 V/cm. —ifid,. The first two terms in the operatdf, describe a
kinematicinteraction, which arises because the electron wave
function is set equal to zero on a nonflat surface. The term

Upoi(d2) describes the change of the polarization energy due

Electric field from the electrodes and pressure from theg syrface curvatufé32[K,(x) is the modified Bessel func-
electrongpolaronic effectlead to deformation of the helium jgpn).

surface. The effect of the electrode potential can be easily The quadratic it coupling is

estimated by noticing that the dielectric constant of helium is

close to oneg—1~0.057%<1. Therefore, if the surface is ) ) .

raised by£(r), the associated change in the densitgr unit Hi :qE €0,60, XA (A1 A1V, q,- 1D
area of the free energy of helium F in the surface field L2

E(r) is —(e—1)E%(r)&(r)/8m. Bending of the surface is As in the case of linear coupling, it also has a kinematic part
counteracted by surface energy, with densityg&/ar)%/2,  discussed in Ref. 32 and a polarization part,

where o is the surface tension. The competition between - S0 L o) oK) )

these two terms gives the height- (¢ — 1)E*h?/87 o for Vaya,= Vo, Vg, Vaye,= ~(Gadz)pz/2m. (12)
h~d. For typical E, =3x10% V/cm, h=0.5um, andd
=1um this gives a negligibly smalf<10 1 cm. There-
fore, this effect can be safely ignored.

HP=2 £V, 9
q

C. Electrostatic force on helium

The polarization coupling parameters can be obtained in the
same way as it was dotie’2for the linear coupling constants
*vpo(02). They have the form

Ill. DECAY OF THE EXCITED ELECTRON STATE V0=~ Az [ 1-u(d;12) —u(g,2) + u(|qs +do|2)],

A. The Hamiltonian of coupling to surface displacement )
) . , u(x)=xKy(x)/2 (13
The major mechanism of electron relaxation for low tem-

peratures is scattering by vibrations of the liquid helium sur-
face. A complete calculation of the energy of coupling to ) o o
surface vibrations is nontrivial. The density profile of the 1he biggest contribution to surface vibrations comes from
interface between helium and its vapor has a complicate§@Pillary waves, ripplons. The corresponding displacement
form, with the 109%/90% interfacial width-6—7 A, for low g_q is related to the creation and annihilation operators of
temperature&’ As a consequence, even for a flat surface thdiPplons by
electron potential is more complicated than the simple image 12 12 +
potential — A/z for z>0 and a sharp wall at=0 (2).?° In §q=S THh0/2pwq) " (bgth=y), (14
particular the repulsive barrier is smooth, it becomes highwhereSis the area of the system,is the helium density, and
compared to the binding energyalready on the tail of the  the ripplon frequencyo,=(q%p)"? for g=(pg/c) 2.

helium density distribution. The spatial structure of surface The change of variables used to take into account the hard
excitations is complicated as well. However, for excitationswall potential on helium surface leads also to extra terms in

1. Coupling to ripplons
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the kinetic energy of ripplons coupled to the electron, whichelectron energy change. These are transitions to the vibra-
is yet another source of electron-ripplon couplfigCcom-  tional energy level of the statd) with the energy closest to
pared to similar terms in Eq$9) and(11), these terms have E,. It has the quantum number
an extra parametemqm/ﬁqz, which is extremely small for
typical g. o v=v=int [(E;—Ey)/fiw)]

There are several limitations on the wave numbgpicsf
ripplons for which the electron-ripplon coupling has the form (int[x] is the integer part o). In the general case the elec-

(9)—(13). Monarkha and Shikiif argue that essentialljrs  tron energy change in a transitid,0,0—|1,vc,m, ) is
should be<1. This could be too restrictive. But we believe _, ¢

that g should certainly be small compared to the reciprocal I- i ; : ;
width of the helium liquid-vapor interface and the reciprocal The one-ripplon deca}/ rate is determined by the matrix
decay length of the electron wave function into heli(mte  €leéments (2,0,0exp(ar)Vg|1,vc,m, ) of the electron-
that there is no factor 2 here, because a capillary wave with rfipplon coupling (9) and (10. They contain factors
wave number decays into helium as exy), for a sharp  (0,0exp(ar)|vc,m, ). Itis easy to see that these factors are
interfacg. Both lengths are of order of a few angstroms,exponentially small fo> vi’Z/aH, where
which means that the largg- cutoff g, should be
=10 cm L. L . . - aH:(ﬁ/me)lIZ (15)
A cutoff at 10 cm™ ! is consistent also with the condition
that H(® (L1) should be small. The effect dfi{*) is seen s the electron in-plane localization length. The conditépn
already in the first order of the perturbation theory. It comes< Vi/Z/a” determines the limiting wave number of ripplons
primarily from largeg terms in the kinematic part in EQ. pat may be emitted in an electron transition.
(12). For the relevant wave numberBwq>kgT, and The frequency of ripplons witly=v}%a, is much less
therefore from Eq. (14 we have (§q1§q2> thanw;, provided
~8‘15q1,_qzﬁql‘l’2/2(crp)1’2. This gives the relative change
of the electron kinetic energy for motion transverse to the w”>(g/p)1/2[m(Ez—El)/h2]3/4_
surface
L 1 This inequality is satisfied already fow|/27=0.2 GHz,

OKI/K=10ma/14m(op) ™. whereas a typical for confined electrons is-20 GHz.
Therefore one-ripplon decay is exponentially improbable.
This result does not change for a many-electron system pro-
vided the bands of in-plane vibrations are narrow, as dis-
gussed in Sec. II B, see E(f).

Clearly, K very strongly depends on the cutoff wave num-
ber qmax. Numerical estimates givésK/K~3x10 * for
Omax=10" cm™ 1, whereas forg,,=10° cm ! the relative
change of the kinetic energy would be equal to one. Findin
H; for g>10" cm ! requires a full calculation of the

ripplon-induced modulation of the electron potential for the C. Two-ripplon decay
diffuse helium surface, which is not a subject of the present gy an for a large separation between electron energy lev-
paper. els, where one-ripplon decay processes are exponentially

I.n what follows we will use spectroscopic notations andsuppressed, decay with emission of two ripplons may still be
define the decay rat& as the rate of decay of the off- possible?®3 Indeed, each of the wave vectars,q, of the

diagonal matrix elemeng,, of the electron density matrix. emitted ripplons can be large: it is only their sum that is
So defined " gives the decay-induced contribution to the imjteq by the reciprocal electron localization length. This
half-width of the peak in the spectrum of microwave absorpeang thatj,~ — s, i.e. the ripplons propagate in opposite
tion. It is related 7to the lifetimel; of the electron excited jjrections and have nearly same frequencies. They are deter-
state byl'=(2T) ~*. mined by energy conservatiomyq ~wq,~ SE/2/i, where
B. One-ripplon decay 6E is the electron energy change.
An important consequence of strong in-plane electron A characteristic minimal value ofE in an electron tran-

confinement is that it essentially eliminates decay processe$ition [2,0.0—|1,v,m,) is ~hw|. For a typical wj/2m

in which an electron transition is accompanied by emissiori- 20 GHz, the ngplorlfrequenczgoq becomes equal ta)/2

or absorption of one ripplon. This happens because ripplon¥hen q=1.2x10" cm™=. For wave numbers that are so

are very slow. Energy conservation in a transition requireda'ge, the theory9)—(13) already overestimates the strength

too large ripplon momentum for an electron to accommo-Of the electron-ripplon coupling. Even largerare required

date. for ripplon-induced transitions over several vibrational lev-
Decay of the excited qubit sta2,0,0) does not require a els, because in such transitions the electron energy change

transition into the ground stat@,0,0). An electron can emit €Xceedsfiwj. We will disregard them and discuss only

a ripplon and make a transitid2,0,0—|1,»,m,) into any ~ Minimal-energy transition$2,0,0—|1,»,m,) with v= .

excited statdv,m,) of in-plane vibrations in the stafd) of ~ For these transitions

zmotion, see Fig. 2. In the case of decay into low-frequency

excitations, most “dangerous” are transitions with a minimal SE=E;—E1—vho).
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For typical temperatures of 10 mK we haﬂ@q12~ SE/2

>KkgT, and electron decay occurs via spontaneous emission
of ripplons.

To find the two-ripplon decay ratE,, one should first
calculate the matrix elements of the two-ripplon coupling
H(® (12) on the relevant electron wave functions. They fac-
tor into products of matrix elements of out-of-plane and in-
plane electron operators,

0.4 0.6 0.8 1

(2,0,0Vq q,exdi(d;+az)r][1,0,m,)
eE /R

=(2|Vqq,/1)(0,0exi (a;+ap)r]|v,m,).
(16)

The squared absolute values of the tef@® should then be

FIG. 4. The absolute values of the scaling factiérs (18) and
U5(q) (19 in the probabilities of scattering into two ripplons due
to the kinematic and polarization couplings, respectively. The rip-
summed over the final statesm, and overqg; ,. The sum-  Plons propagate in opposite directions with nearly same wave num-
mands have to be multiplied by an extcp rdependent Dersdres given by the energy conservation conditiang= JE/2#
weighting factor, which comes from the Fourier componentd©F d=0res- Only transitions with smallest energy transi are

of the ripplon-induced displacement of the helium surfacetaken into account and the approximation of an infinite sharp po-
£, ,&.. (14) and from the energy conservation law tential wall for an electron at the helium surface is used. The data
150, .

e . . for Uy, refer to q,.—3.5kg, which corresponds toSE/2xh
The calculation is significantly simplified by the fact that _5 gy,

the sum ovem, can be found independently. This is because
all states of in-plane electron vibratiohg m,) with samev

value can be decreased by reducistg. However, Eq.(18
but differentm, have same energies. We will use the relation y b a(18)

is probably an overestimate even for th&E used above,
because it is based on the approximation of an infinite-wall
potential for an electron and the assumption that the helium
surface is sharp.

The expression for the two-ripplon decay rat@* due
to the polarization two-ripplon interactidid3) has the same
form as Eq.(18). Just the factoK2,q/2in Eq. (18) has to be

replaced withU2,(q,e9/r5a~2, whereU,, is determined by

the matrix element of- ZrSVg‘igZ/A (13) on the functions

g(v,q)=>, [(0,0€'%|v,m,)|2=x"e /v,
mV

x=g?af/2, 17
where the electron localization lengthis given by Eq(15).
The function g(v,q) (17) is exponentially small ifq
> vl’Z/aH .

Forv= Ve, the sum ovem,, of the Squared absolute val- |1>,|2> For typ|ca| |ql+ q2| < Vi-/Z/aH , the major contribu-
ues of the matrix elementél6) gives a factorg(vc.[di  tion to this matrix element comes from the range of com-
+0q,|). This factor imposes the expected constraint on thfbaratively small|q; +q,|z. Therefore, a good estimate can
typical ripplon wave vectors|q;+ap|<vgai<diz. I be obtained by replacing(|q, + d,|2) with its smallz limit
turn, this inequality significantly simplifies integration over jn Eq. (13) and by settingy; = 0,= q,es iN the other terms in
d1,92. One can sefy;~—q, everywhere except for the (po) Then
functiong(v,|q,+d,|), which can be easily integrated over %1%
g1+ dz.

We will analyze the contributions to the decay rate from
the kinematic and polarization two-ripplon couplings sepa-
rately. The kinematic coupling is determined by the term The coefficientU,, as given by Eq(19) is shown in Fig.
V{9, (12)in Vg o . Keeping only this term, we obtain the 4. ForSE andw chosen above we hawgl*)/ 9 ~0.1 for
. E, =0-300 V/cm. The ratd"*) grows much slower then
F(z'? with increasingq,es (and thus with increasingE).

Up(a)=2r3(1|z 32— 0°2°Kx(q2)]|2). (19

decay ratd’{¥) as

y K2,R%q72 (1|p2/2m|2) Besides the termb & and riped due to purely kinematic
= > s Kie=——gx - (18  and polarization mechanisms, there is a contribution to the
24majp™co decay rate from the interference of these two mechanisms. It

i (k) (pol) i i
Here,dresis given by the condition, = 5E/2#. The decay is smaller tharl™, +I'37°” and will not be discussed.

rate is determined by the scaled matrix element of the kinetic

energy of out-of-plane motioK,,. It is shown in Fig. 4.
The rateI‘(z'? depends om,.s and therefore orbE very
steeply, T %= SE7S. For SE=fiwj/4 and wj/2m=20 GHz
we have Qes~4.6x10° cm™ ' and I'¥=7.6x10°P—3.8
x10° s71 for the pressing fieldE, =0-300 V/cm. This

D. Phonon-induced decay

An important channel of electron energy relaxation is de-
cay into phonons in helium. For a typical energy transfer

O0E~%hw|, the wave numbers of the phonons participating in
decay are~ o /v, wherevg is the sound velocity in helium.
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They are much larger than the reciprocal in-plane localizaThe sum ovem, in Eq. (21) can be then calculated using

tion length of the electrorau’l, which limits the in-plane

Eq. (17). This gives the following expression for the kine-

momentum transfer from electrons to phonons. As a resultnatic contribution to the decay rate,

only phonons propagating nearly normal to the surf@oe
the z direction may be excited in a one-phonon deday.
Ref. 33.

1. Decay due to phonon-induced surface displacement

2.3 3
rem~w
TG~ (B~ Ey) 22— —. (22)

Ph 2 1247Tpvsfi35E

. . i (sik) & —1 _
We propose two mechanisms of electron-phonon couplind '€ numerical value of ;i is 7.8<107 s+ for E, =0,

that lead to qubit decay. One is related to phonon-induceéPH/ZTf:21-1
displacement of the helium surface. This mechanism can bg0es up to~

guantitatively described in the approximation of a sharp he
lium boundary, which provides an infinitely high potential
barrier for electrons. The coupling is given by E¢®). and

GHz, anddE~fiw| (v.=5 in this casg It
1.5x10* s7* for E; =300 V/cm andw)/2m
=20.6 GHz(in this casev.=12). The values ofw| were
adjusted here to meet the conditidiE=E,—E;—vfiw)
~h o for the energy spectrum calculated for a sharp helium

(10) with &, being now a phonon-induced component of theboundargl_;ﬂthe real level spacing is & few percent
surface displacement. As in the case of coupling to ripplonssmaller*~%" leading to a slightly smallef’ ;™ for w/2m
it would be unreasonable to use this approximation for short=—20 GHz. We expect a more significant charigeduction

wavelength phonons, in particular for phonons wih
>10" cm ! (Q, is the normal to the surface component of
the electron-phonon wave vectorFor typical w/2m
=20 GHz we haveQ,~w|/vs~5%10° cm™!. Therefore,
we will again consider decay of the std#0,0) into closest
lower-energy statekl,v, m, ).

For a typicalg=(qy,qy) ~1/a; and Q,<w/vs we have
0'q2/pv§QZ<l. This inequality allows one to think of the

of T3 due to diffuseness of helium surface.
The contribution toI'}) from the polarization term in

Vq [the last term in Eq(10)] can be calculated similarly and
has the form

AR%r3

Pl =
P ve! mpu O aff

f dxe *xe*%p2(x), (23
0

helium surface as a free boundary for phonons and to ignore

coupling between phonons and rippldfis® Then surface
displacement is simply related to the Fourier componagts
of the phonon displacement fidldere,Q=(q,Q,) is the 3D
phonon wave vector, and, is the displacement alor@]. In

turn, uq is related to the operators of creation and annihila-

tion of phonons in a standard way,

Ug=(%/2pVv Q) co—c' o) (20)
(V is the volume of heliurn

From Eqgs.(9), (10), and(20), we obtain the rate of decay
[2,0,00—|1,v.,m,) due to phonon-induced surface displace-
ment in the form

Ve

rgﬁz(swzpusaE)*lmZO dqgl(2,0,06'9V|1,v.,m,)|2.
(21)

Here, we have used th&d,>q=(q;+qj)"% Integration
over Q, is done by replacing the phonon wave numigr
with Q, in the energy conservation lad(fv ,Q— SE). We
also replaced) with Q, in the expansion coefficients Eq.
(20) of the phonon displacement field.

We start with the contribution t&'(}) from the kinematic
terms in Vq [the first two terms in Eq(10)]. The matrix
element of the sum of these terfvgeighted with exp@r)]
on the wave functions of in-plane electron vibrations is

(0,dexpliqr)[(gp) +%4%/2]|v,m,)
=—vmw|(0,0expligr)|v,m,).

where v%(x)=[(1|vpol (2X)*%2/8y]|2)|2. The numerical
value of ;7P is ~7x10% s™* for E, =0 and goes up to
~7x10* s~ 1 for E; =300 V/cm(we used same| as in the
above estimate of ;).

There exists also a contribution ‘T;) (21) from the in-
terference of the polarization and kinematic interactions dis-

cussed above. It is bilinear in the corresponding term%qin
Eqg. (10) and can be obtained froif21) in the same way as
the decay rated' (5, TP (22) and (23). The resulting
expression is of the same order of magnitude as E2@.
and(23).

The scattering ratEé?]) can be reduced by decreasing the
pressing fields, . It can also be reduced by going to a higher
confinement frequency. With increasingw; the wave-
length of the phonons participating in electron decay will
decrease and ultimately become smaller than the width of the
diffuse layer on helium surfagén fact, the above calculation
probably already overestimates the scattering)rdte this
case scattering by phonons will be largely suppressed. The
frequencyw can be increased by using a more complicated
electrode configuration. The spectrum of in-plane electron
excitations can be also controlled by a magnetic field applied
transverse to the helium surface, as initially suggested for
qubits in Ref. 15.

2. Decay due to phonon-induced modulation of the helium
dielectric constant

Another mechanism of coupling to phonons is through
phonon-induced modulation of the image potential of an
electron. It results from the modulation of the helium density
6p and related modulation of the dielectric constéat It is
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reasonable to assume that, for long-wavelength phonongphonon interaction. Therefore, as in the case of scattering
de=(e—1)8plp. To lowest order ire—1, de the coupling due to phonon-induced surface deformation, a way to reduce
energy is the scattering rate is to increase the frequency of in-plane
vibrations.

Full coupling to phonons is given by the sum of the kine-

matic and polarization couplings parametafs and V).

Here the integration goes over the space occupied by heliurTTherefore, the total rate of phonon scattering contains cross

R=(r,z) is the 3D position vector, anB(R’:R) is the elec- terms which describe interference of the couplmg mecha-
. , nisms. These terms do not change the overall estimate of the
tric field at R’ created by an electron located at a pdiit

This field is calculated for free space. Equati@4) is ob- rate.

. . ; We note that an interesting situation may occur if one of
tained in a standard way from the electrostatic energy of ", ; :

) . X : . e transition frequencies of the electron comes in resonance
dielectric with a dielectric constant close to one in an exter-

nal field E(R’:R) with the roton energy. In this case we expect an increase of
Using E ’(24)' the counlina Hamiltonian can be then the decay rate. Observing it would be a direct demonstration
. 9 EQ. ' piing of coupling to volume excitations in helium.

written in the form

(d) 1 ’ NE2(p’ -
H;”=—- =] dR'de(R")E“(R";R). (24
8

. R E. Radiative decay
HO=> ugexpigr)V¥, Vi9=iAqQu® (25
! % Q®XAIANVa™. Vo aQv @9 Even though the dipole matrix element for the electron

transition 2-1 is large, the rate of radiative decay

~e?Z2 R%h4c®~2 st is extremely small. For lov® mi-

o crowave cavities or waveguides which will be used in ex-

v(d)=J dz' (z+2') e R#'K,[q(z+2')]. (26) periment, radiative decay will play no role in electron relax-
0 ation.

with v @=¢9(q,Q,,z) being

As in the case discussed in the preceding section, cou-
pling (25) gives rise to transitions between electron energy V- DEPHASING DUE TO RIPPLON SCATTERING

levels accompanied by emission of phonons. Here, t0o, the |, 5qition to depopulation of the excited state of a qubit,

typical in-plane wave numbers of emitted phonan@re — gjoc4ron coupling to excitations in liquid helium leads also to
much less than the nor_mal to the surface wave nuniber dephasing, i.e. diffusion of the phase difference between the
~(d5)E/ﬁvS. The expression for the corresponding decay ratequbit stated2,0,0) and|1,0,0). The dephasing results from
'y has the form random modulation, by thermal fluctuations in helium, of the
. distance between the energy levels 1 and 2. In other terms it
(d)|qy]2 can be described as quasielastic scattering of thermal excita-
0 daal{2lIDlPg(ve. ). (27 tions off an electron. The scattering is different in different
electron states. Therefore, it randomizes the phase difference
between the wave functions of the states without causing
" ) . interstate transitions. The corresponding decoherence mecha-
+3) /a%) Therefore, with an error less than 10% one canhism is known for defects in solidéas modulational or Ra-
replacev™™ in Eq. (27) by its value(26) for q=q,, . man broadening. For electrons on helium it was discussed in
For w|/2m=20 GHz andSE="%.w|, the value oﬂ“é,%) var-  Refs. 15 and 33.
ies from~1x10* s ! to ~6x10* s with E, increasing Dephasing comes primarily from coupling to ripplons, be-
from 0 to 300 V/cm. However, these values have to be takeause they are soft. The density of states of thermally excited
with care. The integrand im® (26) is a fast oscillating ripplons is comparatively high even for low temperatures. At
function of z’ on the characteristic scale ~rg, because the same time, thermal occupation numbers of the ripplons
typically Q,rg>1 (Q,rg~4 for chosenw|). In addition, the  coupled to an electron by one-ripplon couplivhg‘l) are
integrand of the matrix element @f?® in Eq. (27) has an large. Indeed, the typical wave numhgrand frequency,
integrable singularity forz=z'=0 [the wave functions of such ripplons are
Yn(2)«z for z—0]. As a result, a significant contribution to

2 2
ra. X oEs
P mh2pus

Evaluation of the integral is largely simplified by the fact that
the function q3g(v,q) sharply peaks atq=q,~(2v

the matrix element comes from small distances from the he- q,=1a, o,=oq = (ol p)¥g. (28

lium surface,z’ <rg. Changing, in view of diffuseness of '

helium surface, the limit of integration in ER6) from z’ For w)/2m=20GHz we have o,/2m~4.8X 10" Hz

=0 to a more reasonabie =rg/10 reduces the value ﬁf,?]) ~2.3 mK, i.e.iw,<kgT even for temperatures as low as 10

by a factor of 3. mK. As we will see, the dephasing rate depends on the both
The decay ratd™({) decreases with the increasintE  typical ripplon frequenciesy, andkgT/#.

roughly as 18E (and even faster, in view of the “dead” For completeness, we will briefly outline a simple way to

layer on the diffuse surfageFor higher SE and, respec- obtain the dephasing rate due to an electron-ripplon coupling
tively, for higher wave numbers of resonant phonons, theH; (a more consistent approach is based on the master equa-
simple approximatiori25) no longer describes the electron- tion, but it gives the same resulfTo first order inH;, the

155402-9



M. I. DYKMAN, P. M. PLATZMAN, AND P. SEDDIGHRAD PHYSICAL REVIEW B 67, 155402 (2003

changes of the electron energieEAl,Z of the states wheren(w)=[expfiw/ksT)—1] *is the Planck number. It is
[1,0,0),/2,0,00 are determined by the diagonal matrix ele- seen from Eq(33) that only thermally excited ripplons with
ments ofH; on the corresponding wave functions. Thesew,=<kgT/# contribute to the ratd",. In what follows we
matrix elements are operators with respect to ripplons. In thevill estimate contributions td', from different mechanisms
interaction representation the ripplon coordinaggdecome  of electron-ripplon coupling taken separately and will again
functions of time. The typical ripplon frequencies ,kgT/% ignore cross terms, which contain products of coupling con-
are small compared to the electron transition frequenciestants for different mechanisms.

~w . Therefore, in the spirit of the adiabatic approximation,

the electron energie&élz become parametrically dependent A. Dephasing rate for different coupling mechanisms
on time in terms ofé,(t). So does also the change in the

. ; The matrix elements)yq/; in expression(33) for the
interlevel distance

dephasing rate are linear in the parameters of the direct two-

ripplon couplingH® (11). However, in the second order of

perturbation theory they are renormalized by the one-ripplon
H 1

The average value of the energy differencg9), couplingH{*) (9),

(5E,q (1)), is independent of timénere and below- ) means

SEx(t)=(2,0,0H(1)[20,0—(LO,0H,(1]1,0.0. (29

averaging over the thermal distribution of ripplpnk gives L~ —h(qq’)l’z (1,0,0V_gq]j,0 o>ef(qfq’)2aﬁ/4

a shift of the transition frequency of the qubit. In what fol- aa’) Sp(wqa)q,)llz R L

lows we will assume that this shift has already been incor-

porated intoE; , and set 5E,y(t))=0. S WMV Y (hvep |, (34)
The increment of the phase diﬁeren6é521(t) between vom, 9 4

the states 1,2 is given by the integral 6E,, over time. \here VL;TVZVLV%(VZ"“V)* and V{qvmu

From Eq.(29) we have for the mean-square phase |ncrement:<j,O'0|\A/7qe_iq,|j,V’my>. In calculating the renormaliza-

2 (4N /T ST " 2 tion due to one-ripplon coupling we disregarded the contri-
8¢()=([621(t) — 6¢1(0)]%) bution from virtuarlt[)ransitionz ingto differen?states of out-of-
L[t A . plane motion|j’'), because they involve a large energy
=h Jjodtldb(5E21(t1)5E21(t2)>- (300 changg(it is straightforward to incorporate the corresponding
termg. We also disregarded ripplon energfes, compared
to hw.
Th(Ha contribution™ to the dephasing rat@3) from the
direct two-ripplon kinematic couplingl2) has a simple form
in the case ofv, <kgT/%. ThenI'}Y is determined primarily
by forward scattering of ripplons off the electron, with

The operatoBE,y(t) has two typical frequencies, and
kgT/%. Therefore, the correlatdidE (t;) SE,q(t,)) decays
on times|tl—t2|5wr’1. Fort>mr’l the phase difference
then displays a diffusion-type behavior, with

So2(t)~2T .t —q'|=1/a, but with wq=wq ~kgT/Z>w,. Calculating
au(t) ¢ the integral over the angle betwegrandq’ by the steepest
The parameter descent method, we obtain
r =ﬁ‘2Rejwdt SE (1) 6E (0 31 112 3
¢ o (O (1) 6E(0)) (3D FE/I)()Z T“p kB_T) RZRiZ, (35
27\/§a” ho

gives the dephasing rate.
It follows from Eq. (31) that, to the second order of per- whereK y, is the difference of the expectation values of the
turbation theory, linear in ripplon coordinate termsdk,;  kinetic energyp§/2m in the states 1 and 2 divided & For
giveI';=0. The value ofl"; is determined in this approxi- g —0 we haveK,,=3/4, and one can show th#,, de-
mation by the two-ripplon coupling creases with increasing, . The numerical value of Y is
I'¥=0.7x10? s7* for T=10 mK andwy/2m= 20 GHz.
H®= > > vaqibibyli,00(,00. (32 The contribution from the direct two-ripplon polarization
i=12qq' coupling (13) can be estimated by utilizing the fact that the
The individual terms in the sum overq’ describe scattering Wave vectors of thermal ripplorgs = (p/ o) Y(keT/h)* are
of a ripplon with wave vectoq’ into a ripplon with wave less than /g for low temperatures. To lowest orderaqu
vector . The momentum is transferred to the electron andhe polarization contribution is again given by Eg5), but
no transitions between electron states occur. now K, is the difference of the expectation values of the
For coupling(32) dephasing rat€31) has the form potential energy\/2z divided by R. The corresponding rate
is of the same order a8{}) .
_m _ 25 — _ We now estimate the dephasing rdtg (33) due to one-
Fo=32 qzq: [vaq1 = vagr2l @) [n(@g) +118(wg— wg), ripplon coupling(10). We no?e first?hat ?he kinematic terms
(33 in Eq. (10) drop out of the matrix element gy,
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because they do not have diagonal matrix elements on thegy with zero-phonon lines in light absorption spectra in
functions|1),|2). The terms quadratic in the electric field solids.
E, drop out from the differenceyq 1 —vqq2, because they An important consequence of coupling to ripplons is also
are independent of the electron state normal to the surfacéhe occurrence of comparatively broad sidebands in the ab-
The major contribution to the dephasing rate comes from thsorption spectrum next to the zero-ripplon line. The side-
polarization one-ripplon coupling vy, in (/q (10). We will  bands are formed, k_)gcause a mlcrowave-!nduced eleptron
denote it asl“g""). |1,0,0>.—>_|2,_0,0> transition can be accompanied by creation
The polarization term ir\7q does not depend on the in- or annihilation of one or several ripplons. They are similar to

lane electron coordinate. This makes it possible to calculatghonon sidebands in absorption spectra of defects in sBlids.
b : ' P : The ripplon sidebands can be understood from the
the sum overy,m, in Eq. (34) for vyq ;. We will use the

relation Frangk—Condon pict_ure of a .microwave—indlljced electr_on
transition as happening for an instantaneous ripplon configu-
, o, ration. Since the equilibrium ripplon positions are different
> (0,0e™'|»,m,)(»,m,|e'97|0,0 in the ground and excited electron states, the transition is
My accompanied by excitation or absorption of ripplons, and the

1 5 ) o transition energy differs from its valuE,—E; in the ab-
=_r(ad’aj/2)"exd —(a°+q')aj/4]. sence of coupling to ripplons.
’ In order to describe the effect it suffices to keep in the
Further calculation is simplified in the case k§T>w,. Hamiltonian of the electron-ripplon coupling only those

Here, again, the major contribution to the dephasing ratéerms that have diagonal matrix elements on the electron
comes from forward scattering wit,q’'>|q—q’| andqq’  wave functiongj,0,0), i.e. to replaced; with
>aj %, Then

; (j,0,0

. H||J1010>|J10!0><J’O’0|
3, Veg Hvor=21Y_l i) 1q )

v> One can then apply a standard canonical transformation
which shifts ripplon coordinates so that they are counted off
from their equilibrium values in the ground electron state.

The transformed one-ripplon interaction Hamilton{@pand

(10) then takes a Franck-Condon form

xexd —(q—q’)%af/4](hwjafqq’)

In this approximation we obtain

kgT)\?3
(poh _ P [2B1) p2p2
g fw) Rkiz, HIC=3 £AF(9)]2.00(200,
k12:|<1|Upol(qz)|l>|2_|<2|Upol(qz)|2>|2- (36) F(q):q2[<2|vpol(qz)|2>_<1|vpol(qz)|1>]e—q2aﬁ/4_
The matrix element,;, here has to be calculated fay (37)

=07, and we assumed thkj, is a smooth function of| for
g~gy. The numerical value df;, is ~0.23 forq~q; and
T=10 mK, it weakly depends on the pressing field. The
phase relaxation rate from one-ripplon polarization couplin

For weak coupling, of primary interest are one-ripplon
sidebands. Because ripplon occupation numbers are large for
kgT>%w,, the probabilities of microwave-induced electron

N (o) e Sransitions accompanied by absorption and emission of a rip-

sy ~10° st plon are the same. Respectively, the sidebands are symmetri-
The overall ripplon-induced phase relaxation rate appearsg| as functions of frequency detuningw=w—(E,

to be small. It displays an unusual temperature dependenceEl)/h (we have|A |~ w,<(E,—E;)/%). Microwave ab-

I'4*T?, as seen from Eq¢35) and(36), and comparatively  sorption in the region of the sidebands is quadratic in the

weakly depends on the in-plane frequenay. We note that  g|ectron-ripplon coupling parameters. It can be calculated by

it is much smaller than our previous estimatebtained for perturbation theory itHFC. From Eq.(37) we obtain for the

the case where the in-plane confinement was due to a magggjed sideband absorlption coefficient(w),

netic field and electrostatic in-plane confinement was com-

paratively weak. keT Rzré o

agfw)= Gsb;sb(w)aGsb:

2.2 !
V. RIPPLON-INDUCED SIDEBAND ABSORPTION mho 3
Coupling to ripplons modifies the spectrum of microwave Zsb: a\\f daq *F2(q)8(Aw = wq). (39)

absorption by a confined electron. Without this coupling the

spectrum would have a-shape peak at the transition fre- The absorption coefficient itself is given lyy, multiplied by
quency E,—E;)/%. Ripplons lead to a polaronic shift and the integral intensity of the electron absorption spectrum.
broadening of the peak. The half-width of the pdakis  The latter is the integral of the absorption coefficient over
given by the sum of the electron decay and dephasing rateffequency and is equal to the appropriately scaled oscillator
We will call this spectral peak the zero-ripplon line in anal- strength of the electron transition.
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FIG. 5. The scaled coefficient of microwave absorption in the eEJ_rB/R
sideband regionag, (38) vs frequency detuning\ w=w—(E, _
—Ey)/% for E, =0 andw/2m=20 GHz. FIG. 6. The scaling factow in expression(39) for the Debye-

Waller exponent W. The curves 1 to 4 refer torg/a

In Eq. (38) we assumed that\ | is much larger than the ~ 0-+8:0:25.0.35.0.5¢/2m=10,20,39,79 GHz, respectively

half-width of the zero-ripplon lind"y. This condition is sat-

isfied in the interesting regiofAw|~w,, since from the radii of the electron statg4) and|2) decreases, and so does

above estimates, /T'y= 10, the difference in the ripplon equilibrium positions in the

The sideband intensity is determined by the facky;,. ~ States1) and|2).
For T=10 mK andw/27=20 GHz we haveS¢,~0.1. The The calculated value of the Debye-Waller factor for elec-

smallness o5, indicates that the sidebands formed by two-rostatically confined electrons 1/~0.1-0.05 for w)/2m
or many-ripplon processes are not important. =20 GHz ancE, varying from 0 to~300 V/cm. Itis close

The scaled absorption coefficient in the one-ripplon sidel0 the estimaté~0.05 given earliéf for the case of in-
band is shown in Fig. 5. It monotonically decreases with thé?/ane confinement by a magnetic field. This factor emerges
increasing distancéAw| from the zero-ripplon line. For also in the analysis of the operation of a quantum computer
small [Aw| (but [Aw|>T) we havea. boc|Aw|‘1’3 As ex- based on trapped atomic ioffsbecause optical transitions

S : o )
pected, decay of the sideband absorption with increasing;esjgr? r:r?g:jeedsﬁz Zﬁﬁf'?g?larg%jaensnojégz:éﬁaggmber
Aw| is much slower than decay of the Lorentzian tail of the ' . . .
lze:<)3|-ripplon linescT o/ (A )2 Fo% large| Ao/, , the side- In the context of quantum computing, 5|deb§md absorption
band absorption fa?ls off a.s efp (| Acwl/o )4,3/2f]’ because and the Debye-Waller reduction of the zero-ripplon absorp-
T L

. . . . tion strength differ qualitatively from electron decay and
coupling to short-wavelength ripplons is exponentially Weak'dephasing. Sideband absorption does not affect an electron

We note that the one-ripplon sidebands do not display Strqu#bit between quantum operations. In contrast to dissipative

ture, in contrast to si_debancj; in _electron-phonon systems | ects, it does not happen between operations. However, it
solids that reflect singularities in the phonon density ofShOWS that a fraction of electron transitions may go wrong,
states. as they are accompanied by excitation of ripplons. Therefore,
the Debye-Waller factor characterizes fidelity of quantum
A. Intensity of the zero-ripplon line operations. The number of “wrong” transitions, and there-
fore the role of the Debye-Waller factor, depends on the way
™ specific operation is performed. For example, it depends on
the spectral width of a microwave pulse. Optimal ways of

ripp:on ::oupling.dHovxée\t/)er, rghe integlzjral irgtensity of ;hﬁ Zerg'performing quantum operations in the presence of sideband
ripplon line is reduced by the coupling, because of the side; ; il ; ; licati
bands. This reduction is described by a Debye-WaIIer-typgbsorptlon will be discussed in a separate publication.

factor (the Pekar-Huang-Reese factor in the theory of
electron-phonon speciraexp(—=W). The parametefWV is VI. DECAY AND DEPHASING FROM COUPLING
given by the integral ofxg, over w, TO THE ELECTRODE

The integral intensity of the electron absorption spectru
(the oscillator strengbhis independent of the electron-

Relaxation of a confined electrdqubit) may result also
— — a from coupling to the underlying electrode. The correspond-
W=GgW, W= 2a‘|f dag *F2(q). (39 ing relaxation parameters can be found in the same way as in
the case of coupling to ripplons/phonons. Fluctuations of the
_ electrode potential modulate the interlevel distance and thus
The dependence of the scaling facWdron the fieldE,  give rise to dephasing. In addition, an electron can make a
and e is shown in Fig. 6. Itis clear from this figure and Eq. transition between the states, with energy being transferred
(39 that W weakly depends on the in-plane electron fre-to an excitation in the electroddor example, an electron-
quencyw| as long as the corresponding ripplon frequencyhole pair or a plasman
w,<kgT/fh. At the same timeW decreases with the increas-  The analysis of the dissipation can be formulated in fairly
ing pressing fielde, , because the difference in the effective general terms using the fact that the size of the wave function
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of the qubit~rg is small compared to the distance to the The decay rate of the qub(% is determined by the
electrodeh. Then the interaction with the electrode can beprobability of a field-induced transitiof2)—|1) between

described in the dipolar approximation, the electron states. This probability is determined, in turn, by
. quantum fluctuations of the fieldél(t) at frequencyQ,
Haip=—ed¢, z, (40 =(E,—Ey)/#. To the lowest order in the couplirtg g,
where 8&, is the fluctuating part of the field on the electron I'{9=e?|2,)*ReQ(Q1,)/ 2. (44)

normal to helium surface. This field comes from charge- ) o
density fluctuations in the electrode. Equatidf) is just the ~ Here we assumed that decay is due to spontaneous emission
linear inz/h term in the expansion of the Coulomb coupling ©NlY: i-€. that there are no induced processes with energy
energy of the electron and the charge density in the electrodéansferE,—E;. _ _
(retardation effects are not important for the frequencies of 10 estimate relaxation parameters of electrons on helium

interest. The field 52, is an operator with respect to the we will assume that the controlling electrode is a conducting

electrode charge density. Here and below we do not considcﬁphere of a small ra_diuse| sub_merged at depth beneath .
elium surface, as discussed in Sec. Il. For low frequencies

effects of fluctuations of the electrode potential on in-planehe surface of the sphere is equinotential. Then the fluctuat.
electron motion; they are weak and less important for qubif . P IS equip L .
Ing field of the electrode is simply related to its fluctuating

dynamics. RN - A )
Electron relaxation parameters can be expressed in ternotentialéVe), 6€, = Ve e/h®. o
of the correlation function of the fluctuating field Much of the low-frequency fluctuations is due to voltage

noise from an external lead attached to the electrode. The
© R R lead temperaturd,,; may largely exceed the helium tem-
Q(w)=f dte ”'(8E, (1) 6, (0)). (41)  perature in the cryostak. The voltage noise is white fap
0 <KgTen/fi. Its intensity is given by Nyquist's theorem and

As we will see, of interest is the behavior of the function iS determined by the lead resistarieg,;. From Eq.(43), the
Q(w) in two frequency regions: low frequenciess  dephasing rate is

<kgT/h and comparatively high frequencies~(E, (el)_ ) 2 21p204

—E,)/%. We will assume thaQ(w) is smooth in the both Iy = 2K T exiRex€ (202~ 21D “rgf i “h™. (45)
regions. _ _ B _

We will consider first the effect of the fluctuations of the ~ °F Rext—_zm' Tex=1 lﬁ;,)fvel_o'%({”f'l h=0.5um,
electric field with frequencieso<(E,—E;)/%. Such fluc- @NdZa2—211=rg we obtainl’y"~1x10"s™~. This shows
tuations result in loss of coherence of the electron states, i.&hat thermal electrode noise may be a major source of
dephasing. The dephasing rate can be found in the same w&§Phasing for a qubit. EquatidAS) indicates how to reduce
as it was done in Sec. IV for a fluctuating ripplon field. the dephasing rate. It can be accomplished by further cooling
Through linear Stark effect, a slowly varying fielif, (t) down external leads, reducing their resistance, and increasing

1 J_

) A ) the depth by which controlling electrodes are submerged be-
leads to an instantaneous changfe,; of the distance be- |gw helium surface.

tween the electron energy leves andE;. From Eq.(40), In contrast to low-frequency noise, high-frequency volt-
~ R age fluctuations from sources outside the thermostat can be
SE (1) = —€(Zop— 217 &, (1). (42)  filtered out. Much of high-frequency quantum fluctuations

that affect a qubit come from the underlying microelectrode
A random change of the interlevel distance causes diffuitself. They depend on the interrelation between the electron
sion of the phase differencégp,(t) of the wave functions relaxation timer in the electrode an€);,'. If 74Qq,<1,
|2) and|1). As explained in Sec. 1V, diffusion behavior is the electrode conductivity does not display dispersion up to
displayed on times that largely exceed the correlation time ofrequencies=(},,; it greatly exceed$), for typical 14,.
the field 52, (t). The corresponding dephasing rate of the An order-of-magnitude estimate of the decay rit§’
qubit T'? is equal to the phase diffusion coefficient. From ¢an be made by assuming that the controlling electrode is a

Egs.(31), (42) we obtain lead attached to a sphere, and this sphere is equipotential
(fluctuations of the total charge in the sphere make a major
)= e?(z5,—217)*ReQ(0) /%2, (43 contribution to the fields&, for small rg/h). Then from

Nyquist's theorem

The assumption of a short correlation time &, (t) is (el)_ 2. 1222 1% 204
equivalent to the assumption that the spectrun@QRe) (41) [17'=2(E;~ E1) Ree% 21 “ref i h*, (46)
is smooth at frequencies=<I"(" . If this is not the case or if where R, is the resistance of the lead. If we estimate it as
the noises&, (t) is non-Gaussian, decay of coherence of the0.1Q), then using the same parameters as in the estimate of
states|2) and |1) becomes nonexponential. Although the T'*) and settingE,—E; equal to the “Rydberg” energyR
analysis has then to be modified, H42) is still advanta- (1), we obtainI'{3’~5x 10? s~. Even though this estimate
geous as it relates dephasing to fluctuations of the fielgs very approximate, it is clear that the major effect of elec-
S6&, (t), which can be independently characterized. trodes on qubit relaxation is dephasing rather than decay.
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VIl. CONCLUSIONS depends on the source of these fluctuations and also on the

depth by which electrodes are submerged into helium. An

In this paper we have provided a comprehensive analys'éstimate for Johnson noise from a typical lead connected to

of parameters of qubits based on electrons on helium. Weh electrode gives dephasing ratd0® s-1. Our results in-

introduced a simple realistic model of electrodes, which argjicate how this rate can be significantly reduced. Quantum
submerged into helium in order to localize and control theqycryations of the electrode field give rise to decay of the
electrons. This model allowed us to estimate parameters Gfycited electron state. However, the corresponding decay rate
the electron energy spectrum and their dependence on the small.
electrode potential. Control of the qubits is performed by e also analyzed sidebands of the electron absorption
varying the fieldE, normal to helium surface. The field spectrum related to electron transitions accompanied by
changes the distance between the energy levels of a qub#mission or absorption of a ripplon. We found the Debye-
which are the ground and first-excited levels of motion nor-Waller factor that describes the intensity of the zero-ripplon
mal to the surface. It enables tuning qubits in resonance withbsorption line. It gives the overall probability of exciting a
each other and with externally applied microwave radiationripplon in an electron transition induced by a broadband sig-
The electrode potential determines not oEly, but also  nal, and therefore it characterizes the fidelity of qubit opera-
the in-plane electron confinement. We found the frequencyions. The shape of ripplon sidebands is important for opti-
w| of electron vibrations parallel to the helium surface andMizing control pulses in order to achieve maximal fidelity.
related it to the fielcE, . Typical frequenciesoy/27 are of The' results proylde a quantitative basis for using electrons
order of a few tens of GHz for typicalE,  ©n helium as qubits of a quantum computer. The cl_ock fre-
~100-300 V/cm. We analyzed both the cases of one elecduency of such computeyc is determined by the dipole-
trode and an electrode array, and investigated the effects giPole interelectron interaction and is in the range of
electrode geometry, including the interelectrode distance an#i0’~10° Hz even for interelectron distances1 um. It
the depth by which electrodes are submerged into helium. largely exceeds both decay and dephasing rates of a confined
We identified relaxation mechanisms, estimated decaglectron. Our results suggest ways of further reducing these
rates for a confined electron, and found their dependence diites. They show how to choose parameters of the system in
control parameters. In contrast to unconfined electrons studn optimal way. Because for electrons on heliiy—E;
ied previously, decay is due primarily to electron transitions > % w>%{Qqc>%1", there is an extremely broad range
in which energy is transferred to two ripplons propagating inwhere the qubit parameters can be dynamically controlled.
opposite directions or to a bulk phonon propagating nearly
normal to the surface. We found mechanisms of coupling to ACKNOWLEDGMENTS

phonons. In the cases of both ripplon and phonon scattering, . .
helium excitations with comparatively large wave numbersf Wel arkejlgrg_teful to A. D_?E_m, B. Golorl]lng, and J. G:)%dlgm?h
are involved. For different coupling mechanisms we found or valuable discussions. 1Nis research was supported by the
the dependence of the decay rate on the parameters of'\SSF through Grant No. ITR-0085922.
confined electron. The decay rate is essentially independent

of temperature, for low temperatures.

. 1 . . . . .
_The o_verall qlecay rgte is of ord_er“l@ for typIC6}| | . Besides relaxation, coupling to ripplons leads also to a
This estimate is obtained assuming that the typical wavgoaronic effect. Because ripplon frequencies are low, the
numbers of excitations into which an electron may scatter argajor contribution comes from processes in which a ripplon

V om~ 1 i i i . .
=10" cm " We conjecture that coupling to ripplons and is created or annihilated, but the state of the electron system
phonons with much shorter wavelengths is small. Then the

decay rate can be significantly decreased by localizing elec- 0.2
trons more strongly in the plane. This will lead to a larger

level spacing of the in-plane electron vibrations, and there-

fore helium excitations with higher energies and wave num- p
bers will be required for decay. The localization can be in-
creased electrostatically through electrode design or by
applying a magnetic field perpendicular to the helium sur-

face.

The major mechanism of dephasing due to coupling to
excitations of the helium is scattering of thermal ripplons off :
an electron. We calculated the scattering rate and showed ) 0.2 04 0.6 08 1
that it displays an unusudl® temperature dependence. The eFr /R
most significant contribution to the dephasing rate comes 1B
from processes which involve virtual transitions between pig. 7. The factorf,, in the Franck-Condon polaronic shift of
electron states. The ripplon-induced dephasing rate ige transition frequency of a quiiifl) as a function of the pressing
~107 s~ * for typical w; and T=10 mK. field E, for typical values of the in-plane localization lengah.

An important mechanism of dephasing is voltage fluctua-The curves 1 to 4 correspond itg /a=0.18,0.25,0.35,0.5; the re-
tions of controlling electrodes. The dephasing rate stronglgpective values of/2m are~10, 20, 39, and 79 GHz.

APPENDIX: ONE-RIPPLON POLARONIC EFFECT

0.1

-
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is not changed. Polaronic shift of the electron transition fre- P=Pyfy(a.E), Pi= R2/4W2ﬁgré,

guency is then determined by the diagonal matrix elements . (A1)
of HM (9) on the wave function$l,0,0),/2,0,0). Keeping f :(4”‘7/’)”4[ dqRFA(q)w; 2

only these terms itH®) corresponds to the adiabatic ap- P o a

proximation in which ripplons have different equilibrium po- wheref, is a dimensionless factor determined by the matrix
sitions depending on the presence of an electmre can elements ol (10) on the wave functions of out-of-plane
think of a “dimple” made by an electron on helium motion. It depends on the dimensionless paramedgfsg
surface® and on the electron state. Of primary interest to usand €E, rg/R, and is numerically small for typical param-
is the state dependence, as it characterizes the strength &ter values, see Fig. 7.
coupling of the electron transition to ripplons. The corre- The numerical value of the factdP,, is P1/27~2.2
sponding coupling is described by the Franck-Condon interx 10" Hz. The energy: P, is much less than the distance
action Hamiltonian(37). between the electron energy levels. The sliiftis also
The Franck-Condon polaronic shift of the transition fre- smaller than the typical frequeney, of ripplons coupled to
quency 1-2 due to coupling37) is given by a simple per- the electron(28). The inequality|P|<w, indicates that the

turbation theory, |1)—|2) transition is weakly coupled to ripplons.
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