
ENERGY SPECTRUM IN THE FORCE FIELD OF AN ELECTROSTATIC IMAGE 

O. F. Dorofeev, B. A. Lysov, O. S. Pavlova, 
and I. M. Ternov 

A new model is proposed for describing localized electron states near the 
surface of liquid helium. It uses the ambiguity of the self-adjoint 
extension of the Hamiltonian of the problem of the motion of an electron 
in the force field of an electrostatic image at a flat insulator-vacuum 
interface. In contrast to the well-known model of Grimes, the model 
contains a single phenomenological parameter -- a mixing angle. It is 
shown that the necessary choice of the mixing angle makes it possible 
to explain completely the spectroscopic data on electric dipole 
transitions between single-particle electron states localized on a 
#He or 3He surface. 

The localization of electrons above the surface of cryogenized insulators, first 
predicted by Cole and Cohen [i] and independently by Shikin [2], is the subject of intense 
experimental and theoretical study [3]. Physically, localization of electrons occurs 
through the competing effect of long-range electrostatic-image forces and short-range 
exchange forces, which prevent penetration of electrons into the region filled with the 
insulator. 

This phenomenon is most clearly noted in the direct spectroscopic observation of the 
discrete electron spectrum. Such observations have been made for liquid #He [4] and 3He 
[5] and, recently, for solid hydrogen [6]. Similar observations are currently being made 
for cryogenized deuterium and neon [6]. 

As is well known [3], the simplest quasihydrogen phenomenological model with potential 

Q 
----, x>O, 

X 
v (x) = ( 1 ) 

already describes to 5% accuracy the observed energy spectrum of electrons localized above 
the surface of liquid helium. For better agreement between theory and experiment the 
Coulomb divergence in (i) is cut off in some manner, and a potential step of finite height 
V 0 is introduced to describe the short-range exchange forces. The most successful model 
potential of such kind was introduced by Grimes and collaborators [7]: 

l Q , x>O, 
V ( z )  = X+Zo 

Vo, x<~O, 
(2) 

where V 0 and x 0 are adjustable parameters of the theory. 

The method of eliminating the Coulomb singularity used in (2) can be justified by 
taking into account the spatial dispersion of the permittivity in the transition region 
between the liquid helium and the vapor of the liquid helium [8]. With regard to the 
jump of the potential V 0 at the insulator-vacuum boundary, numerous theoretical and 
experimental studies have been devoted to its determination (see, for example, [9] and 
the extensive literature quoted there). Depending on the employed model, the calculated 
values of V 0 vary from 0.5 eV to 1.5 eV, so that the currently adopted value V 0 = 1 eV for 
4He is actually based on the very good agreement of this value with the experimental data 
on the spectroscopy of resonance transitions between the lowest energy levels of electrons 
localized above liquid 4He under the condition that the frequencies of the resonance 
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transitions are calculated by means of the model potential (2). 

Although the potential (2) is more realistic than the potential (i), Grimes's model, 
as a phenomenological model, is not entirely satisfactory, since it contains excess 
information. The point is that the experimentalists (see, for example, [6]) are now 
convinced that the observed energy spectrum can be described by a formula that contains 
just one phenomenological parameter -- a Rydberg correction to the Balmer levels with, 
moreover, this Rydberg correction for liquid 4He and 3He 'and solid hydrogen being indepen- 
dent of the level number. 

It is therefore very natural to look for a phenomenological model that describes the 
physical situation reasonably well and contains just a single free phenomenological 
parameter and leads directly to the experimentally observed energy spectrum. As will be 
shown below, such a model can be obtained mathematically in a natural manner if one treats 
accurately the quantization of the energy in the force field of an electrostatic image 
without invoking extraneous information about the magnitude of the repulsive exchange 
forces that act on tile insulator-vacuum boundary. 

Suppose that a homogeneous insulator occupies the entire half-space x _-< 0. If a 
charge is in the region x > 0, then, as is well known [i0], it is subject to electrostatic- 
image forces, which are attractive; but if it is in the region x < 0, the electrostatic- 
image forces are repulsive, and the potential energy of the charge can be expressed in the 
form 

e - I  e ~ 
---  , x>0, 

V ( x ) =  4 ( e + t )  x 
~ - t  e ~ (3 )  

x<O. 
4e ( e + t )  x 

Here, r is the permittivity, and e is the magnitude of the charge (in what follows we shall 
take e to be the electron charge). 

We propose to use the potential (3) as a model phenomenological potential to describe 
electron states localized at the surface of cryogenized insulators. In this connection 
we shall assume that e = i, and we divide the Hamiltonian of the transverse motion of 
electron into two parts: 

B(o,= p2 e~ (e - l )  t (4 )  
2m 8e x 

e~ ( e - l )  2 t B ~1~ (5) 
8~(~+1) Ix l"  

We shall regard H(0) as an unperturbed Hamiltonian, and ~(i) as a perturbation. 

In the coordinate representation the unperturbed SchrSdinger equation is 

h2 d2~ ~ Ze2 + E ~~ ~ = 0 ,  Z =  , ( 6 )  
2m dx  ~ x 8e ' 

an ordinary differential equation for which the point x = 0 is a regular singular point 
of the type of a limit circle, and the minimal symmetric operator generated by the formal 
differential operator ~(0) has deficiency indices (i.i) and, therefore, by yon Neumann's 
well-known theorem [ii], admits a single-parameter family of self-adjoint extensions. We 
note that Eq. (6) is identical to the radial SchrSdinger equation in the nonrelativistic 
problem of the s states of the hydrogen atom though in that case the "redundant" extensions 
are filtered out by requiring the total three-dimensional Hamiltonian to be self-adjoint 
[ii]. It is obvious that in the considered case this argument is invalid. 

We obtain one of the possible self-adjoint extensions of ~(0) by requiring that at the 
singular point x = 0 the boundary condition 9(0) = 0 hold. For such a boundary condition 
the solution of Eq. (6) that belongs to L2(R) vanishes in the region x S 0, this being 
equivalent to the simple quasihydrogen model with potential (i). 

Our basic idea is very simple -- instead of reconciling the theory with experiment by 
changing the form of the potential (3), replacing it, for example, by a potential of the 
form (2), we achieve agreement by the choice of a suitable self-adjoint extension of the 
formal Hamiltonian ~(o). 
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To parametrize the family of self-adjoint extensions in which we are interested, it 
is convenient to introduce the mixing angle [12,13] ~, augmenting Eq. (6) with an additional 
boundary condition at the singular point x = 0: 

2 n m Z s  
O' (+0) - 0 '  (-0) = - -  ctg a@ (0). ( 7 ) h2 

Going over to the dimensionless variables 

Z~e"m 2 x ~2 
E (~ ~ = - - - -  xo = - -  

2~=• = ' ~ x zo ' Z e Z m  ' 

we write Eq. (6) in the form 

( 8 )  

a:O) + (  t • ) q)=O. (9) 
d~ ~ 4 

Equat ion (9) i s  a s p e c i a l  case of  W h i t t a k e r ' s  e q u a t i o n ,  and i t s  s o l u t i o n s  t h a t  van i sh  a t  
p lus  and minus i n f i n i t y  (we are  i n t e r e s t e d  on ly  in the  d i s c r e t e  spectrum) are  the  Whi t taker  
f u n c t i o n s  W,.v2(~) and W-, ,j,([~[), r e s p e c t i v e l y .  A wave f u n c t i o n  pos se s s ing  the  n e c e s s a r y  
behavior  a t  i n f i n i t y  and con t inuous  a t  the  o r i g i n  can be w r i t t e n  in the  form 

t 2 x )  x >0 
@(x)=B r ( l ~ •  W " v ' ( - ~ x o  ' (10) 

where B is a normalization constant. This function belongs to the space L2(R) for all 
negative values of E (all positive values of • Requiring further that the wave function 
(i0) satisfy the boundary condition (7), we can readily obtain the relation 

I ~ Z s  l ~  2 m  \ [ ~Ze~ ] /  2 m  \ 
cos k - 7  ~ - ~ )  + etg c~ sin ~- -2h  VIE[-- ]  = O. ( i i )  

For the energy levels of the transverse motion of the electron in the field of the 
electrostatic-image forces we obtain 

Z2e~m 
E~= 2h2(n_~/~)2, n=1,2 ..... 0<~<n. (12) 

We see that the mixing angle determines a Rydberg correction to Balmer levels of electron 
states localized over the surface of liquid helium. 

The question of the choice of a definite value of the mixing angle, in other words, the 
question of the choice of a particular self-adjoint extension of the formal Hamiltonian, is 
of course not a mathematical but a physical question, and the answer to it must be given 
by the microscopic theory of the interaction of the electron with the atoms of the 
insulator. Since we do not dispose of an exhaustive quantitative theory of such an 
interaction, we are forced to regard the mixing angle ~ as a macroscopic phenomenological 
parameter and determine its value from experimental data. 

To clarify the physical meaning of the mixing angle ~, we note that the additional 
boundary condition (7), which fixes a definite self-adjoint extension of the operator ~(0) 
is actually equivalent to the fact that the initially existing, so to speak unrenormalized 
potential of the electrostatic-image forces is augmented with a 8-function potential 
barrier (or well, if a > ~/2). Indeed, with allowance for the boundary condition (7) 
Eq. (6) can be written in the form [14] 

. _ .  (13) 
2 m  d x  ~ " x  " 

where ~ is the principal value symbol. Thus, cot a determines the penetrability of the 
induced 6-function potential. 

In the above we took into account only some of the electrostatic-image forces, ignoring 
entirely the contribution to the spectrum from the operator H(1). It is readily seen that 
standard perturbation theory already leads to a divergence in the first order. This is 
because we must here deal with a singular perturbation of a singular potential [12,15]. 
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The contribution to the spectrum from the singular perturbation could be calculated by 
means of regularized perturbation theory, as is done in quantum field theory [16] and was 
done, for example, in [12] for the exactly solvable model problem considered there. 
However, in our case it is simpler to go over to the momentum representation, bearing in 
mind that in the sense of generalized functions the Fourier transform of the function 
Ix[ -z is given by [17] 

F[lxl-'l=-2(~§ Itl), (14) 
where ~ is Euler's constant. 

In the p representation R ~ is an integral operator whose kernel can be represented 
by means of (14) in the form 

Ze 2 f 
<p]/1c. jp'> = l 

where po=l~/xo, xo i s  de te rmined  in (8 ) .  

]p-p'l }, (15) 
P~ 

Thus, in the first order of perturbation theory the correction to the n-th level can 
be calculated in accordance with the formula 

" I 
a/~ e+ t  ? J'%~(p)dp + ~ * " dpdp' , (16) ~,~ (p)xp.(p )ln Po 

where ~n(P) is the unperturbed wave function of the n-th stationary state in the p 
representation. 

Bearing in mind that 

, .  (p) = ]/2n~o [ t +(•  p~-) 21-'  exp [--2i• arctg (• i )  ] , • (17) 

we obtain after simple but laborious calculations 

L,, = 2 e +  - ~ h2a~ • • ~=, k ( U - •  2 j"  

In (18) for small mixing angles a << 1 the term with the number k = n is significantly 
greater than all the remaining terms, and it is therefore expedient to make a certain 
regrouping of the terms in the sum E(~ ci~, expressing for this the charge number Z in 
terms of the charge number Q defined by 

Q= 4(8+1)" (19) 
We then obtain 

where 

E,,=Rn(o~+AE, (,7, ( 20 ) 

•(o) 
Q z6~ 

= 2h~(n_~)2, 6=~/n ,  

"--~ 482 n=x- k=, k(k'-• 2 " 

The e x p r e s s i o n  (21) d e s c r i b e s  we l l  t he  e x p e r i m e n t a l l y  obse rved  energy  spect rum f o r  
l i q u i d  "He and SHe, and a l s o  f o r  s o l i d  hydrogen.  According to  [6 ] ,  t he  measured v a l u e s  
of  t he  Rydberg c o r r e c t i o n  6 in t h e s e  ca se s  were found to  be 0 .022,  0 .014,  and 0 . 1 i .  The 
c o r r e c t i o n s  to  the  f i r s t  t h r e e  energy  l e v e l s  (21 ) ,  c a l c u l a t e d  by means of  ( 2 2 ) ,  do no t  
exceed hundred ths  of  a p e r c e n t  f o r  4He and ZHe, whi le  f o r  s o l i d  hydrogen the  e x p r e s s i o n  
(21) i s  v a l i d  f o r  the  lowes t  l e v e l s  wi th  o n e - p e r c e n t  accu racy .  

Thus, our model i s  in e x c e l l e n t  agreement  wi th  the  c u r r e n t l y  known expe r i men t a l  da ta  
on the  energy  spec t rum of  e l e c t r o n s  l o c a l i z e d  above the  s u r f a c e  of  c ryogen ized  i n s u l a t o r s .  
I t  d i f f e r s  a d v a n t a g e o u s l y  from the  p r e v i o u s l y  p roposed  models in c o n t a i n i n g  on ly  one f r e e  
phenomenologica l  pa ramete r .  F i n a l l y ,  in our model the  exchange f o r c e s  t h a t  a c t  on the  
i n s u l a t o r - v a c u u m  i n t e r f a c e ,  and have no c l a s s i c a l  ana log ,  a re  taken  i n to  account  p u r e l y  

(21) 

(22) 
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quantum mechanically, namely, by means of the choice of a suitable self-adjoint extension 
of the operator H~0> and not by a modification in the SchrSdinger equation of the potential 
of the electrostatic-image forces, as was done earlier. 
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ONE-DIMENSIONAL STEADY MIGRATION OF QUANTUM PARTICLES 

A. A. Serikov and V. N. Kharkyanen* 

The formalism of nonequilibrium density matrices is used to investigate 
transmembrane transport of quantum particles along a molecular chain. 
For a homogeneous chain analytic expressions that describe a steady flux 
of particles and their distribution are found. The features of the 
transport are analyzed for the case of a disordered chain. 

Introduction 

The problem of the transport of particles (or quasiparticles) traditionally occupies 
one of the central positions in the physics the condensed state. It is sufficient to 
mention here the motion of charged particles responsible for the conduction of metals and 
electrolytes, the migration of excitons that determines the heat conduction of crystalline 
substances and is responsible for processes of sensitized luminescence, electrophoresis in 
colloidal systems, the transport of reactants in chemical reactions, the migration of 
radiation defects in crystals and other such phenomena. 

In connection with the successes of molecular biology, investigators are now turning 
their attention to transmembrane transport of particles in natural and synthesized 
biopolymers. Membranes, which separate regions of space with different physical and 
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