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Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics
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We have performed a systematic calculation for the non-Markovian dynamics of a localized electron spin
interacting with an environment of nuclear spins via the Fermi contact hyperfine interaction. This work applies
to an electron in the-type orbital ground state of a quantum dot or bound to a donor impurity, and is valid for
arbitrary polarizatiorp of the nuclear spin system, and arbitrary nuclear $pmhigh magnetic fields. In the
limit of p=1 andl=:—2L, the Born approximation of our perturbative theory recovers the exact electron spin
dynamics. We have found the form of the generalized master equ&idit) for the longitudinal and trans-
verse components of the electron spin to all orders in the electron spin-nuclear spin flip-flop terms. Our
perturbative expansion is regular, unlike standard time-dependent perturbation theory, and can be carried out to
higher orders. We show this explicitly with a fourth-order calculation of the longitudinal spin dynamics. In zero
magnetic field, the fraction of the electron spin that decays is bounded by the smallness pafarhépéN,
whereN is the number of nuclear spins within the extent of the electron wave function. However, the form of
the decay can only be determined in a high magnetic field, much larger than the maximum Overhauser field.
In general the electron spin shows rich dynamics, described by a sum of contributions with nonexponential
decay, exponential decay, and undamped oscillations. There is an abrupt crossover in the electron spin asymp-
totics at a critical dimensionality and shape of the electron envelope wave function. We propose a scheme that
could be used to measure the non-Markovian dynamics using a standard spin-echo technique, even when the
fraction that undergoes non-Markovian dynamics is small.

DOI: 10.1103/PhysRevB.70.195340 PACS nuntper73.21.La, 76.20tq, 76.30-V, 85.35.Be

I. INTRODUCTION ing from the contact hyperfine interaction for a localized

Prospects for the development of new spintronic devices electron®-25The predicted effects include a dramatic varia-

and the controlled manipulation of electron or nuclear spin:%ion of T, with gate voltage in a quantum dot near the Cou-
for quantum information processiipave sparked substan- oMb blockade peaks or valley$ all-optical polarization of

tial research efforts in recent years. One of the major obN€ nuclear sgi[\:i use of the nuclear spin system as a quan-
stacles to achieving these goals is decoherence due to tid" Mmemory>i®and several potential spin relaxation and

: ' cyeral potet . .
influence of an uncontrollable environment. For quantumd€coherence mechanisiis®~2! This theoretical work is

computing tasks, the strict requirements for error corre%tionSpu”e‘]I'On by intriguing experiments that show localized

set strong limits on the degree of decoherence allowed iﬁlectncal detection of spin resonance phenonfémajclear

such devices. From this point of view, single-electron semi=PN polarization near guantum point contaCtsgate-

conductor quantum dots represent good candidates for Spicontrolled transfer of polarization between electrons and

based inf i ' . th h icul Irﬁ'l,lclei,28 nuclear spin polarization and manipulation due to
ased information processing since they Show partcularly, ica; numping in GaAs quantum wef$ and voltage-
long longitudinal relaxation timed;; =0.85 ms in a magnetic

; 4 controlled nuclear spin polarization in a field-effect
field of 8 T In GaAs quantum wells, the transverse dephasy ansistof? In addition, recent experiments have shown hy-

ing time T, for an ensemble of electron spins, which typi- perfine induced oscillations in transport current through a
cally provides a lower bound for the intrinsic decoherenceqoyple quantum ddt and long T, times for electrons
time T, of an isolated spin, has been measured to be in eXrapped at shallow donor impurities in isotopically purified
cess of 100 ns. 285j: P32 Our system of interest in this paper is an electron

Possible sources of decoherence for a single electron spitbnfined to a single GaAs quantum dot, but this work applies
confined to a quantum dot are spin-orbit coupling and theyuite generally to other systems, such as electrons trapped at
contact hyperfine interaction with the surrounding nuclearshallow donor impurities in Si:f.
spins® The relaxation rate due to spin-orbit couplingT}. is In this paper, we investigate electron spin dynamics at
suppressed for localized electrons at low temperatdrasd  times shorter than the nuclear dipole-dipole correlation time
recent work has shown thadb, due to spin-orbit coupling, 744 [74q=10*s in GaAs is given directly by the inverse
can be as long a¥; under realistic condition$However, width of the nuclear magnetic resonan®MR) line®3]. At
since spin-carrying isotopes are common in the semicondudhese time scales, the relevant Hamiltonian for a description
tor industry, the contact hyperfine interactiGn contrast to  of the electron and nuclear spin dynamics is that for the
the spin-orbit interactionis likely an unavoidable source of Fermi contact hyperfine interactigaee Eq(1), belowj. Dy-
decoherence, which does not vanish with decreasing termamics under the action of this Hamiltonian may be of fun-
perature or carefully chosen quantum dot geom@try. damental interest, since in zero magnetic field, &g.cor-

In the last few years, a great deal of effort has been foresponds to the well-known integrable Gaudin magnet,
cused on a theoretical description of interesting effects ariswhich is soluble via Bethe ansat%3* Though the Hamil-
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tonian appears simple, a detailed microscopic description for Il. MODEL
the dynamics of a spin coupled to a spin environment re-
mains an open questich3® A degree of success has been _ _ o _
achieved some time ago in bulk systems through the devel- We consider a localized electron spin interacting vhih
Opment Of phenomeno'ogica| modé_rsThese mode|s invoke nucle_al’ S_pInS via the Fermi C_OntaCt hyperflne interaction. The
certain approximations, namely, assumptions of Markoviariiamiltonian for this system is
dynamics and ensemble averaging. Care should therefore be _ )
taken in applying the same models to the problem of single- H=bS+&d,*h-S, @
spin decoherence for an electron spin strongly coupled to here S=(5.S,,S) is the electron spin operatorb
nuclear spin environment, where they may not apph. =g* ugB, (€,,=0,4\B,) is the electron(nucleay Zeeman
For nuclear spir1=§, an exact solution for the electron splitting in a magnetic fiel®,, with effectiveg-factorg* (g,)
spin dynamics has been found in the special casefafly  for the electron(nucle) and Bohr(nucleay magnetonug
polarized initial state of the nuclear spin syst&n This (un).- Further,h:(hx,hy,hz):Eﬁ';fg‘lAklkgives the(quantum)
solution shows that the electron spin only decays by a fracfig|q generated by an environment of nuclear spihs.
tionl *1/N of its ri.“iti?]' value, thireNl is the numbfer of —(1X.1Y,12) is the nuclear spin operator at lattice ditandA,
nuclear spins within the extent of the electron wave function; ; : ; z:
The decaying fraction was shown to have a nonexponentia‘litg:eZ ﬁ.:,:gzgztggt %pr?urglr;f :gipnlfng CoNStElicis the
tail for long times, which suggests non-Markovidmistory The nuclear Zeeman term can be formally eliminated
dependentbehavior. For an initial nuclear spin configuration .oy, the Hamiltoniar [Eq. (1)] by transforming to a ro-
that is not fully polarized, no exact solution is available a”dtating reference frame. Thecomponent of total angular mo-
standard time-dependent perturbation theory failSubse- mentum isJ,=S,+1,. Adding and subtracting, J, gives H

quent exact diagonalization studies on small spin sy§féms=7_[,+6 _J,. The Hamiltonian in the rotating framéy’, is
have shown that the electron spin dynamics are highly deg,qn, nee ’

pendent on the type of initial nuclear spin configuration, and
the dynamics of a randomly correlated initial nuclear spin H' =Hy+Hy, (2
configuration are reproduced by an ensemble average over
direct-product initial states. The unusugdonexponential r
form of decay, and the fraction of the electron spin that un- Ho=b'S,+hS, ®
dergoes decay may be of interest in quantum error correction L
(QEQ) since QEC schemes typically assume exponential de- Hy=5S +h.S), (4)
ca3|/ to ﬁgro. f | . bati whereb’=b-¢,, and we have introducell,=h,+ih,. The
n this paper we formulate a systematic pertur atlVeusual Heisenberg-picture operators in the rotating frame are
theory of electron spin dynamics under the action of the "~ "= " " ° =" 50 = ot oo e
Fermi contact hyperfine interaction. This theory is valid for (S€ttingA=1) S(t)=€™ 'S, X=z, +,§,=5£iS,. Not-
arbitrary nuclear spin polarization aratbitrary nuclear spin N9 that.gz'f"‘_]i;tq' we find they are related to the operators
| in high magnetic fields. For nuclear spir3 and a fully Sx(t)=€"Sce™™ in the rest frame by
polarized nuclear spin system, we recover the exact solution S/ =S/1) (5)
for the electron spin dynamics within the Born approxima- '
tion of our perturbative theory. Our approach follows a ) _
method recently applied to the spin-boson mddéP. This SL(t) = e S, (1). (6)
method does not suffer from unbounded secular terms th ; / , - ;
occur in standard perturbation the&rand does not involve % the following, (S)); and (SL), will be evaluated in the
Markovian approximations.

This paper is organized as follows. In Sec. Il we review
the model Hamiltonian and address the question of realistic Ak:Avo|¢(fk)|2- (7)
initial conditions. In Sec. Il we derive the form of the exact . ) o
generalized master equaticBME) for the electron spin dy- Here,vo is .the Volpme of a crystal unit cell containing one
namics. In Sec. IV we consider the leading-order electrofiuclear spin,y(r) is the electron envelope wave function,
spin dynamics in high magnetic fields. In Sec. V we proceedndA is the strength of the hyperfine coupling. In GaAs, all
to calculate the complete non-Markovian dynamics withinnaturally occurring isotopes carry sgin3. In bulk GaAs,A
the Born approximation. We describe a procedure that coulbias been estimatétito be A=90 ueV (A/|g* |ug=3.5T).
be used to measure the non-Markovian dynamics in Sec. VIThis estimate is based on an average over the hyperfine cou-
In Sec. VIl we show that our method can be extended tcpling constants for the three nuclear isotof#a, "‘Ga, and
higher orders without the problems of standard perturbatioﬁ5As, weighted by their relative abundances. Natural silicon
theory by explicitly calculating the corrections to the longi- contains 4.7%°Si, which carries =3, and 95%2°Si, with
tudinal spin self-energy at fourth order in the nuclear spin1=0. An electron bound to a phosphorus donor impurity in
electron spin flip-flop terms. We conclude in Sec. VIl with a natural Si:P interacts withl~10? surrounding®®Si nuclear
summary of the results. Technical details are deferred to Apspins, in which case the hyperfine coupling constant is on the
pendixes A—E. order of A=0.1 ueV.*® We consider a localized electron in

A. Hamiltonian

rotating frame, but we omit primes on all expectation values.
The hyperfine coupling constardg are given by°
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bound to a phosphorus donor in natural siliconti2A
=10 ns.

2. Dependence on the nuclear state: zeroth order dynamics

P Evolution of the electron spin for different initial nuclear
‘eve! configurations has been addressed previotsiyin Ref. 13
k=1(1)¢HHHHHHHMH:LTLHT: 7f m . it was found, through numerical study, that the dynamics of

the electron spin were highly dependent on the initial state of
FIG. 1. Schematic of the square modulus of the electron envethe nuclear system. The goal of this section is to shed more
lope wave function|y(r)]?> and nuclear spingarrows. k is the  light on the role of the initial nuclear configuration by evalu-
nuclear site indexN is the number of nuclear spins within radius ating the much simpler zeroth order dynamics, i.e., the elec-
r=lo, andN, is the total number of nuclear spins in the system. tron spin evolution is evaluated und@t’'=" alone, ne-
glecting the flip-flop termg+y,.

its orbital ground state, described by an isotropic envelope Since [H,S,1=0, (Sy, is constant. However{g,S.]

wave function of the form #0, so the transverse componentS,)=(S)+i(S), will
1/p\m have a nontrivial time dependence. We evaluate the expecta-
9(ry) = z//(O)exp[— E(I_k) } (8)  tion value (S,),=Tr{e™o's,eMolp(0)} with the initial state
0

given in Eq.(10). After performing a partial trace over the
Whenm=2, (r) is a Gaussian with Bohr radiug, and for  electron spin Hilbert space, we obtain an expression in terms
m=1, 4(r) corresponds to a hydrogenlilesstate with Bohr  ©f the initial nuclear spin state:

radiusap=2l,. Ni,; Nuclear spins are in the system, but the b

effecti\?g nur(;]betl?\tl of spins irFl)teracting apprec)i/ably with the (S0r=(S.)o Tr{e ™ ™' (0)}, (12)
electron is smallesee Fig. 1 N is defined as the number of where Ty is a partial trace over the nuclear spin space alone.
nuclear Spins within radiul:‘o of the Origin and the integer For S|mp||c|ty' here we Considdr_-%' and the Coup”ng con-
index k gives the number of spins within radiug. In d  stants are taken to be uniform. After enforcing the normal-
dimensiondr,/19)%=k/N. It is convenient to work in energy ization A= 2N in units whereAy/2=A/2N=1, the hyper-
units such thah,/2=1,whereA is the coupling constant at fine coupling constants are

the origin(ry=0). In these unit, takes the simple form
gintlo H P 2, k=0,1,...N-1,
d Ao, k=N (13
A =2 ex —(—) . 9) ' -
N The zeroth-order electron spin dynamics can now be evalu-
ated exactly for three types of initial nuclear spin configura-
B. Initial conditions tion:
1. Sudden approximation piY(0) = 410X (0)], (14)
The electron spin and nuclear system are decoupled for N
timest<0, and prepared independently in states described @(0) = .
by the density operatorss(0) and p,(0), respectively. Att P~ (0) %O PN, FDING (N, (15)
=0, the electron and nuclear spin system are brought into
contact “instantaneously,” i.e., the electron spin and nuclear pl(s)(o) = |n)(n. (16)

system are brought into contact over a switching time scale i
7w’ Which is sufficiently small—see Eq11), below. The " is a pure state, where |¢;(0)=TI,(\F|1}
state of the entire system, described by the total density op,:eiw\ﬁl_fmk)) is chosen to render the component of
eratorp(t) is then continuous at=0, and is given by nuclear spin translationally invariant:(y;(0)[1Z(0))
_1 _ _ _ _ . . .
p(07) = p(0%) = pg(0) ® p,(0). (10) =5(2f; 1)'—p/2, and p.—ZfT 1 is the polarlzatlon of the
. _ _ nuclear spin systemp, is an arbitrary site-dependent phase
The evolution of the density operatpft) for t=0 is gov- n e . . o
erned by the Hamiltoniaf(’ for an electron spin coupled to factor. P(x;n,f)=|_Jf(1-f)™* is a binomial distribution,
an environment of nuclear spins. Since the largest energynd|N;,) is a product state of the forf1 |- --) with N, spins
scale in this problem is given b’ +A|, in general the con- up andN-N; spins down.pfz)(O) then corresponds to a

dition mixed state; this is an ensemble of product states where the
2k N spins in each product state are selected from a bath of
Tow < o +A (11)  polarizationp=2f,-1. p\?, like p\", is a pure state, but for

this state|n) is chosen to be an eigenstatehpfwith eigen-
should be satisfied for the sudden approximafigg. (10)] value pN (corresponding to a nuclear system with polariza-
to be valid. In bulk GaAs, ##/A=50 ps and for an electron tion p): h,/Jny=pN|n). We insert the initial nuclear spin states
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TABLE I. Some symbols used in the text. The second columnGaussian decay with the time scatlg has been found
gives the value in dimensionless units, the third column gives theyreviously!!'?24Gaussian decay for a Hamiltonian with an

value in dimension-full units assumingy;=A/N, and the fourth

Ising coupling of electron and nuclear spins has been

column gives the value of each symbol in zero magnetic field. Thejemonstrated for a more general class plre initial states

values shown are the effective applied fidld the total effective
field (applied field and Overhauser fig¢ldeen by the electrom,,,
the smallness parametdr, which determines the perturbative re-
gime for electron spin dynamics, the smallness param&tahich

bounds the deviation of the electron spin from a Markovian solu-

tion, the coefficiente, andc_, in terms of the fraction of nuclear
spinslz% up in the initial statef;, the electron spin precession
frequency()g when the resonance conditias,=0 is satisfied, the

and for coupling constants, that may vary from site to site.
The initial state$)f1’2)(0) contain manmyh, eigenstates, and
hence, yield many electron spin precession frequencies. The
inhomogeneoutne broadenintf due tOpfl'z)(O) results in a
free-induction decay of the transverse electron spin as given
by (19). This decay is not irreversible. Indeed, the effect of
inhomogeneous line broadening can be remogatdzeroth

time scale for the decay of the electron spin in the presence of anorden with a standard Hahn spin ecfidin experimental

initial h, eigenstate of the nuclear system, and the time dgdte

situations, or for applications of quantum computation, it

the decay of the electron spin in the presence of an ensemble #hay not be practical to perform spin echoes between gating

initial nuclear spin states or a superposition lpf eigenstates at
zeroth order in the nuclear spin-electron spin flip-flop terms.

Symbol Ag/2=1,%=1 Ag=AIN B,=0
b’ b-en, 9* uB,~ 01 unB; 0
wp, b’ +2pIN b’ +plA plA
A N/ o Al2w, 1/2pl
s N/w? A2[4N?, 1/(2p1)®N
Cy 1-f;
(ol f;
0y \(N/2)(c,+c) A/ V8N A/#iv8N
the Thi 1 2N#i/A 2NA/A
t/e  1/\NQ-pD)  (2r/ANN/1-p2 (2h/ANN/1-p?

pfi)(O_) into (12) to obtain the associated time evolution
sy,
N

(SH=(S)0 2 PINGN, f) M,

N;=0

(17)

(S =(S,)ee ®"+PNL, (18)

M(N;)=2N;-N is the nuclear magnetization on a dot with
N; nuclear spins up.

The similarity in dynamics between randomly correlated

operations. In this case, the quantum superpositiorh,of
eigenstates can be removed, in principle, from the initial pure
statepfl)(O) by performing a strongvon Neumanhpmeasure-
ment on the nuclear Overhauser fig.*® After the nuclear
system is prepared in am, eigenstate, to zeroth order the
electron spin dynamics will be given l§§5+>i3), i.e., a simple
precession about theaxis with no decay.

When higher-order corrections are taken into account, and
the coupling constant8, are allowed to vary from site to
site, even an initiah, eigenstate can lead to irreversible de-
cay of the electron spin. This has been shbwfin an exact
solution for the specific case of a fully polarized system of
nuclear spin%- and by exact diagonalization on small
systemd3 The goal of the present work is to perform an
analytical calculation with a larger range of validity large
system of nuclear spins with arbitrary polarization and arbi-
trary nuclear spirl in a sufficiently strong magnetic field
that recovers previous exact results in the relevant limiting
cases. In the rest of this paper, the effect of higheyond
zerothy order corrections will be considered for a nuclear
spin system prepared in an arbitrahy eigenstate:p,(0)
:pl(3)(0), as given in Eq(16). Specifically, the initial state of
the nuclear systerin) can be written as an arbitrary linear
combination ofg,, degenerate product states:

n

Nior=1 :
j=1 i=

(entanglegl pure states and mixed states has been demoRghere|l m) is an eigenstate of the operatrwith eigen-

strated for evolution under the full HamiltoniatH'="]
+H,,) via exact diagonalizations of smalN=<19 spin

valuem, and h,Jn;)=[h,],n;) for all j, where we write the
matrix elements of any operat@ as(i|O|j)=[O]j;.

systemg? Here, the zeroth order electron spin dynamics are

identical for the pure statepfl)(O) and the mixed state
pfz)(O) even when the initial pure stafgy(0)) is a direct

product. Direct application of the central limit theorem gives

a Gaussian decay for lardé

1
IN(L-p?
Returning to dimension-full unit&f. Table ), the time scale

for this decay is given by,=(2N%/A)t.=5 ns for a GaAs
quantum dot withp?<1 containingN=1C nuclei and,

<S+>§1'2) ~ <S+>Oe—('[2/2t(2:)+i(b’+pN)t, t.= (19)

=100 ns for an electron trapped at a shallow donor impurityexact

IIl. GENERALIZED MASTER EQUATION

To evaluate the dynamics of the redugedectron spin
density operator, we introduce a projection superopettor
defined by its action on an arbitrary operatér. PO
=p,(0)Tr, O. P is chosen to preserve all electron spin expec-
tation values:(Sg)=Tr Sgp(t)=Tr SPp(t), B=x,y,z, and
satisfiesP?=P. For factorized initial condition$Eq. (10)],
Pp(0)=p(0), which is a sufficient condition to rewrite the
von Neumann equatiop(t)==i[H’,p(t)] in the form of the
Nakajima-Zwanzig generalized master equation

in Si:P, withN=10%. For an ensemble of nuclear spin states,(GME),*!
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t

Pp(t) = —iPLPp(t) - iJ dt' S(t-t)p(t),  (21)

0

S(t) = -iPLQe ™ RQLP, (22)

where3(t) is the self-energy superoperator a@e1-P is
the complement ofP (1 is the identity superoperatorL
=Ly+Ly is the full Liouvillian, wherelL, («=V, 0) is defined
by L,O=[H,,O]. When the initial nuclear state is of the
form p,(0)=|n)(n|, where|n) is an arbitrary eigenstate bf,
as in Eqg.(20), P obeys the useful identities

PL,P=0, (23

PLoP = LoP. (24)

We apply Egs.(23) and (24), and perform a trace o(21)
over the nuclear spins to obtain

t

ps(t)=—iL8ps(t)—if dt’ S4t-t")pgt’), (25

0

St) = —iTr, Le QL p,(0), (26)

where L§O=[Sw,,0] and w,=b’'+[h,],,. 2dt) is the
reduced self-energy superoperatopg(t)=Tr, p(t):%ao
+(S)ox (S oy +(S)i0; is the reduced electron spin den-
sity operator, wherer, 5=X,Y,z, are the usual Pauli matri-
ces andoy is the 2X 2 identity.

We iterate the Schwinger—Dyson identity,

t
e—iQ(Lo+LV)t:e—iQLOt_if dt’ e—iQLo(t—t’)QLVe—iQLt’ (27)
0

PHYSICAL REVIEW B 70, 195340(2004)

TABLE Il. Sample numerical values for the symbols listed in
Table | for a GaAs quantum dot or an electron trapped at a donor
impurity in natural Si:P.

GaAs Si:P

A 90 weV 0.1ueV
N 10° 10
B, 7T 01T
p 0 0

A 0.25 0.25
) 10 103
Qg 108 st 10’ st
Thf 1us 1us
Te 5ns 100 ns

EZ£S) = ETT(S) - ETL(S) .

Explicit expressions for the matrix elemerfs.(s), 2(s),
andX;((s) are given in Appendix A. We find that the self-
energy at &+ 1)th order is suppressed at least by the factor
AX, where

(32)

(33

The paramete? and some other commonly used symbols
are given in dimensionless and dimension-full units in Table
| (Table Il. For high magnetic fields|b’|>N (|B
>|A/g* ug|), we havelA|=|N/b’| <1, and the expansion is
well controlled. The nonperturbative regime is given|ay
=1, and the perturbative regime | <1. Thus, a pertur-

on (26) to generate a systematic expansion of the reducebative expansion is possible when the electron Zeeman en-

self-energy in terms of the perturbation Liouvilliag,

34 =3P +35 W + -, (28)

ergy produced by the magnetic and/or Overhauser (jaio-
vided byN nuclear spinsis larger than the single maximum
hyperfine coupling consta. In the rest of this section we

where the superscript indicates the number of occurrences GPPY the Born approximatiois=2.¢" to the reduced self-

Ly. Quite remarkably, to all orders ihby, the equations for
the longitudinal ((S)) and transversé(S,);=(So:+i(S))

electron spin components are decoupled and take the form

t

(SH=NL(D) - f dt’ 3 At —t'NSH

0

(29)

t

<S+>t =iwn(So) — if dt’ 2, (t—t')(S)yp.

0

(30)

Details of the expansiofEq. (28)] are given in Appendix A.
It is most convenient to evaluate the inhomogeneous ter
N,(t) and the memory kernels,(t), >,.(t) in terms of their
Laplace transformst(s)=[{dt € S'(t), R s]>0. N(s) and

energy, and perform the continuum limit for a large uni-
formly polarized nuclear spin system. Later, we also consider
higher orders.

Born approximationin Born approximation, the memory
kernelsX, (1), %,.(t) and inhomogeneous terh,(t) in (29)
and(30) are replaced by the forms obtained from the lowest-
order self-energy, i.e., N ()—N2(t), 3,432 (),
2++(t)—>2i2+)(t). In Laplace spacezﬁ)(s), E(Tzl)(s), and
Eizz(s) are given for an arbitrary initiah, eigenstatén) [see
Eqg. (20)] in Appendix A, Egs.(A20)«A22). Inserting an
initial state|n) for a large nuclear spin system with uniform

rRolarization givegsee Appendix B

>.,4s) are given in terms of matrix elements of the reduced

self-energy by

N,(s) = - 2'—S(zﬁ<s> +3,,(9), (31)

32(s) = =iNC.[1.(s=iwy) +1_(s+iwy)], (34
33(9) =iNC[I_(s=iwy) + (s +iwy)], (39
3@(s) = —iN[c_l,(s) +c,l (9], (36)
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1 Aﬁ apply standard perturbation theory, where we encounter

lu(s) = =2 : (37)  known difficulties! (secular terms that grow unbounded in

ANS A . . : .

sTi— time). Second, we extract the leading-order spin dynamics

2 from the non-Markovian remainder term in a Born-Markov

In the above, the coefficients approximation performed directly on the GME. We find that
the secular terms are absent from the GME solution. We then
c.=1(1+1) - {(m(m=1))) (38)  give a brief description of the dependence of the spin decay

on the form and dimensionality of the electron envelope

H <!
have been introduced, wheté=(m)))==__,P,(mF(m) for wave function.

an arbitrary functior-(m). P,(m) is the probability of finding

a nuclear spin with z-projectionm. The polarizationp of ]

the initial nuclear state is defined through the relatim)) A. Perturbation theory

=pl. Without loss of generality, in the rest of this paper Applying standard time-dependent perturbation theory
p>0, butb’” may take on positive or negative values. As- (see Appendix Dto lowest(secongl order in,, performing
suming a uniform polarization in the nuclear spin system, wehe continuum limit, and expanding the result to leading or-
can evaluate the nuclear Overhauser field in terms of theer in 1/w,, we find

initial polarization,

(S0 = oF4t) + o) + 021, (44)
[h]nn= 22 AK(M)) = pIA, (39 o
' (S)1=(S)- + 03°11), (45)
where we have usel;A;=A. where
The continuum limit is performed by takindlq— o, .
while N> 1 is kept constant. For times< yN, this allows the oqt) =[1 - dlg(c, + ) (Sy)ee o, (46)
replacement of sums by integralg— [;dk, with small cor-
rections(see Appendix ¢ We insert the coupling constants o%89t) = [ CII_(1) + CHL(D)], (47)
A, from Eq. (9) into Eq. (37), perform the continuum limit
and make the change of variabbesA,/2 to obtain 5%°90) = iAlo(C, + € )(S )t (48)
1
d x|In x|” d and
L_,(S):—deQ, v=—-1. (40) _
m) Ts¥ix’ T om (S).=[1-28g(c, + c)KS)o+ 2p1dl,  (49)
We use the relatioh.(t=0)=limg_... sl.(s) to obtain the ini- 0%%qt) = 25 R “n(CZI_(t) + CZ1,(1))]. (50)

tial amplitude . 2
We have introduced the smallness param&=N/w;, and

d ( 1>d’mr< d ) the coefficients

lo=1.(t=0)=— (41)
i i - , . cX= Ct(<sz>oi%), X=z,
for an arbitrary ratiod/m. For parabolic confinement in two + =

2

m m
(51
H H _ = : : Ci<S+>O! X=+.
dimensionsm=d=2. The integral in(40) can then be per- o
formed easily, which yields (S is the sum of a constant contributi¢8,)., and a contri-
_ _. S bution that decays to zerd®{t) with initial amplitudeO( ).
.(s) =dllog(s + i) ~log(s)] £ i (m=d=2). (42) The transverse spi8,); is the sum of an oscillating compo-
In dimensionless unité,/2=1, we findA=S,A,— [dk A,  nento{t), a decaying component®{t) with initial ampli-

with the coupling constant, given in Eq.(9), tude O(8), and a secular term$°{t), which grows un-
bounded(linearly) in time. At fourth order inHy, (S, also
d_ (d d_ [d . T .
A=AN—T| = |=2N=T(=|. (43) contains a secular term. These difficulties, which have been
m im m \m reported previously-'2 suggest the need for a more refined
approach. In the next section these problems will be resolved
by working directly with the GMKin Born approximatioh
IV. HIGH FIELD SOLUTION to find the correct leading-order spin dynamics for high mag-

. . . , netic fields.
In the next section, we will obtain a complete solution to

the GME within the Born approximation. This complete so-
lution will exhibit nonperturbative featurgsvhich cannot be
obtained from standard perturbation theprin the weakly Markovian dynamics are commonly assumed in spin
perturbative regime for the self-energy, which we define bysystems&!%7 often leading to purely exponential relaxation
|A|=1. Here, we find the leading behavior in the stronglyand decoherence timds, andT,, respectively. For this rea-
perturbative(high magnetic fielg limit, defined by|A|<1,  son, it is important to understand the nature of corrections to
or equivalently,|b’|>N. We do this in two ways. First, we the standard Born-Markov approximation, and, as will be

B. Non-Markovian corrections
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demonstrated in Sec. VI on measurement, there are situatiopsrameters sufficiently small. However, the dynamics with
where the non-Markovian dynamics are dominant and obamplitude O(8) are completely neglected within a Markov

servable. approximation.

To apply the Born-Markov approximation 8S,);, we If we use(S,);=(S)o+R,1) and Eq.(54), and return to the
change variable$S));=e @ ®(S,) in (30) and substitute rest frame foKS,),, Egs.(56) and(57) recover the high-field
2++(t)—>2(+22(t), which gives results from standard perturbation theory, given in E44)

. gndd(45),twigh t(_)ne tChrucial diff?r_ence. The TeSl:It from r?tar?
QN i 1 ario(t-t)s (2 Ny ard perturbation theory contains a secular term, which is
(Sohe=—16(S0 - IJ; dt’ e UEEE-t)(S)e absenﬁ in the current cage. Thus, by performing an expansion

52 of the self-energy instead of the spin operators directly, the
(52) contributions that led to an unphysical divergence($y),
where w=w,¥w. We define the function ¢ (t) have been successfully resummed.

=[7dt e's(t'), so thaty(0)=3?(s=iw). We find*

C. Dependence on the wave function

¢ H -~ ’ H d ‘ ’ ’
(SHi=—1((0) + w)(S)) + Id_f dt’ g(t —t')(SDy . The purpose of this section is to evaluate the dependence
t)o . .
of the non-Markovian dynamics on the form of the electron
(53)  envelope wave functiom/(r). The high-field dynamics, de-

The frequency shif is chosen to satisfyo=—Re (0)]= Isc(ttl)belgrobn): Egs((f(g)vigii(r?g)’ depend only on the integrals
—Re[Eiz)[s:i(wnfE))]] to remove the oscillating part from '

+
(S’). When |w|>1, and after performing the continuum _d !
limit, we find a vanishingdecay rateF:—Im[Eff(s:iw)] (D) = mj
=0, which shows that there is no decay in the Markovian
solution for|w|> 1. After integrating the resulting equation, The time scaler for the initial decay ol.(t) is given by the
we have inverse bandwidti{range of integrationof the above inte-
gral. In dimension-full units,7=2//Ay. The long-time

(S =(Sho+Ru(1). (54 asymptotic behavior of.(t) depends sensitively on the di-
mensionalityd and the form of the envelope wave function
through the ratiad/m. Whend/m< 2, the major long time
contribution to(58) comes from the upper limit=1 corre-
sponding to nuclear spins near the origin, and the asymptotic
form of 1.(t) shows slow oscillations with periodi /A,

- d
dxIn x|"xe™, p=—-1, (58
O m

The Markovian solution is given b§8;),=(S}),, and the re-
mainder termR, (t) =i [{dt’ (t—t')(S}) gives the exact cor-
rection to the Markovian dynamigsvithin the Born approxi-
mation). We rewrite the remainder term as

t
R0 =i fo dt gt -t)(So+RUL)). (55 Lt 1) o (l)"’”‘gn, d_, 59
N t m

Under the assumption th&,(t) is associated with a small- \whend/m= 2, the major contribution comes from the lower
ness, we iterate the above expression and evaluate thgnit x~0, i.e., nuclear spins far from the center, where the
leading-order contribution t&,(t) in an asymptotic expan- \ave function is small. The resulting decay has a slowly

sion for large w, (through a repeated partial integratjon varying (nonoscillatory envelope,
This yields | g
n”t

Ru(t) ~ = dlo(c, + C)(S)o + €' "of"(t),  (56) (t> 1) =5 v= —1=1. (60)

with o2°{t) given in Eq.(47). The smglln.ess. of the remain- g, of the above cases can be realized in physical systems.
der term for largew, [R.()=O(6=N/wy)] justifies the itera-  £or an electron with ars-type hydrogenic wave function
tion procedure in the high-field limit. bound, e.g., to a phosphorus donor impurity ini851 and

Due to the inhomogeneous terhy(t) in (29), the (S);  ¢=3, which corresponds to the case in B80). For an elec-
equation does not have a simple convolution form, so it isron trapped in a parabolic quantum dot, the envelope wave
not clear if a Markov approximation fdsS,), is well defined.  function is a Gaussiaim=2) and ford<3, the asymptotics
However, applying the same procedure that was used ogf |,(t) are described by E¢59). These two cases are illus-
(S to determine the deviation ¢, from its initial value  trated in Fig. 2, where Re.(t)/1,] is shown ford=m=2 and
gives the remaindeR,(t), to leading order in 1d,, d=3, m=1.

R/(t) ~ = 281 (C, + CN(S)o + 2pI Sl + 024t).  (57)

Here, 09°t) is identical to the result from standard pertur-

bation theory, given by Eq50). In this section we describe @mpletecalculation for the
Corrections to the Markov approximation can indeed benon-Markovian electron spin dynamics within the Born ap-

bounded for all times to a negligible value by making theproximation. In the limit of a fully polarized initial state, our

V. NON-MARKOVIAN DYNAMICS

195340-7



W. A. COISH AND DANIEL LOSS PHYSICAL REVIEW B70, 195340(2004
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FIG. 2. (Color onling Re1,(t)/14] determined numerically from ¢
Eq. (568). Ford=3, m=1 (solid line), this corresponds to a hydro-
genlike stype envelope wave function, and fd=m=2 (dashed
line), corresponding to a two-dimensional Gaussian envelope wave
function. For the hydrogenlike wave function, nuclear spins far |~
from the origin, with small coupling constants, are responsible for

the slow(nonoscillatory asymptotic behavior. In contrast, for the

Gaussian envelope wave function nuclear spins near the center, with FIG. 3. The closed contou® used for evaluation of the inverse

larger coupling constants, give rise to oscillations in the asymptotid.aplace transforms dbs(s), X=z, +. All nonanalyticities of 1D(s)

behavior ofl ,(t)/1,. are shown above, whei®(s) is given in Eq.(72). Branch cuts are
indicated by dashed lines, branch points by crosses, and open

Born approximation applied t¢8,), recovers the exact solu- circles mark pole positions. The contoGy, surrounds the branch

tion of Ref. 11. All results of this section are, however, valid cut extending from branch point,=ai, =0, +, —. When the arc

. S - that closes the contour in the negative-real half-plane is extended to
for arbitrary polarization in high magnetic fields when the infinity, Cs becomes the Bromwich contour. The polesahas finite
condition |[A|<1 is satisfied. In addition, we find that the oy ' P

. - real part and is present far# 0. The poles ands; are always
remainder term is bounded by the small paramefer P P P a5, s y

. y . . located on the imaginary axis.
|Ry(t)| < O(6), and the stationary limilong-time averageof
the spin can be determined with the much weaker condition . . -
5<1. In zero madanetic field. and for nuclear spinl the integrals can be performed easily to obtain the explicit form
' 9 ' 5 2 for 1,(s), given in Eq.(42).
relevant smallness parameterdis 1/p°N (see Table)l e L :

We evaluate the Laplace transforms @9) and (30): W|th|n . qu _approxma_tlon,sz_(s) has six branch
S(9=/2dte(Sy), R4s]>0, X=z, +, to convert the pomts,' Io_cated atwy, i(wytl), o, —i(wyx 1).. We choose
integro-differential equations into a pair of linear algebraicthe F’”’?C'pa' branch for all Iogarlthn_]s, dgflned by (2g
equations which can be solved to obtain =In|Z+i arg2), where -r<argz) < =, in which case there

are five poles in general. Three of these poles are located on
(S)o+ Ny(s) the imaginary axis and two have finite negative real part.
S(s) = TSS9 (61)  S.(s) has three branch pointat s=0, +), and three poles in
z general. One pole has finite negative real part and two are
located on the imaginary axis.

S.(9) = (Sho 62) Applying the residue theorem to the integral around the
S—iwy+ 2,409 closed contourC shown in Fig. 3,(1/2mi)$cds €'S(s),
gives
When the functionsN,(s), 2,/s), 2..(s) are known, the
Laplace transforms it61) and(62) can be inverted by evalu- “
ating the Bromwich contour integral: (SOt B =2 P(1), X=2,+, (64)
i
yHion
1
(S = o J ds €'Si(s), (63) where the pole contributioﬁ’ix(t):Re$e3t3<(s),s:s] is the
d i residue from the pole &, and the branch cut contributions
are
where all nonanalyticities dbs(s) lie to the left of the line of
integration. To simplify the calculation, here we specialize to 1
the case of an electron confined to a two-dimensional para- BAt) = E = |m[e—iwntK§(t)], (65)

bolic quantum dotld=m=2), where the coupling constant a=0,+,-T

195340-8
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1
A=~ 2 K, (66)
Tl a=0,+,—
with branch cut integrals given by
<i0= [ dsesis-iap, 67)
Ca
KI(t) = f ds €'S,(s). (68
C(X

The contourC, runs fromy,—+i#, aroundy,, and back to

v,—®—in, where —0*. The branch points are given by

v,=ai, =0, +, —, as illustrated in Fig. 3. I165) we have
used the fact that the branch cut integrals $gs) come in
complex conjugate pairs, sin®(s*)=[S,s)]*. This rela-

tionship follows directly from the definition for the Laplace

transform of the real quanti§s,);.
Combining Egs.(32), (34), (35), and (42), to obtain
3'9(s-iw,), and expanding in b, gives
A
2Z(s-ioy) =389+ (e, +c) +0(), (69

where we recalA=N/w, and 5:N/wﬁ. The term(A/4)(c,

PHYSICAL REVIEW B 70, 195340(2004)

describing each type of contribution to the total time evolu-

tion of (Sy):.

A. Nonexponential decay

The contribution td(ﬁ(t) circling each branch poing, is
zero, so the branch cut integrals can be rewritten as

KX(t) = g7t J “ax EXEx(X, V), (74)
0

where

E(X, Vo) = lim [Sy(SKX) +i7) = S —in)], (75)
7—0"
with
—-lw,, X=2z,

sé(x):—x+n+{0" M (76)

The form ofKX(t) in Eq. (74) suggests a direct procedure
for evaluating the long-time asymptotics of the branch cut
contributions. For long times, the integrand(@#) is cut off
exponentially aix~ (1/t) — 0. To find the asymptotic behav-
ior, we find the leadingx dependence ogy(x,vy,) for x

+C_) gives rise to a small shift in the effective magnetic field — 0*. We substitute this int©74), and find the first term in
experienced byS,. To simplify the presentation, this shift an asymptotic expansion of the remaining integral. The
is neglected, but it could easily be included by introducing deading-order long-time asymptotics obtained in this way for

slight difference in the denominators 8f(s) andS,(s). This
gives

(S)o+ NP (s-iwy)

Sy = HEE I (70
_ S
s9=p5 (71

The denominator D(s)=s—iwn+i2i%2(s) and numerator
N?(s-iw,) are given explicitly by

D(s)=s—ib’ +Ngc_log(s—i) +c, log(s+i)

- (c, +c)log(s)], (72)

A
N2(s—iwy) = - E(C+ +c) - iAg[c+ log(s+i)

—-c_log(s—i)+ (c_.—cy)log(s)] + O(9).
(73)

The branch cuts and poles &(s—iw,) and S,(s), as

all branch cut integral&’(t) are given explicitly in Appen-
dix E. Whenb'=0, the denominatob(s) —0 whens—0,

and the dominant asymptotic behavior comes frm@‘(t
—o)ocl/Int. For b’ #0, D(s) remains finite at thes=0
branch point and the dominant long-time contributions come
from Kﬁ(t—mo)ocl/t In’t. In zero magnetic field, the
leading-order term in the asymptotic expansion is dominant
for timest>1, but in a finite magnetic field, the leading term
only dominates for timesseP'™. In summary,

1
,BX(t>1)ocm, b’ =0, (77)

, 1
BX(t> PNy o Ty b’ #0. (78)

This is in agreement with the exact resailfor a fully-
polarized system of nuclear spihs% in a two-dimensional
quantum dot. This inverse logarithmic time dependence can-
not be obtained from the high-field solutions of Sec. IV. The
method used here to evaluate the asymptotics of the Born

given in Eqs(70) and(71), are shown in Fig. 3. We note that approximation therefore represents a nontrivial extension of
different analytic features will produce different types of dy- the exact solution to a nuclear spin system of reduced polar-
namic behavior after the inversion integral has been evaluization, but with|A| <1 (see Table)l

ated. The branch cut contributio@(t) have long-time tails

The branch cut integrals can be evaluated for shorter

that are nonexponential. Poles with finite negative real partimes in a way that is asymptotically exact in a high mag-
will give rise to exponential decay. Poles on the imaginarynetic field. To do this, we expand the integrand of &) to
axis away from the origin will lead to undamped oscillations,leading nontrivial order in 1d,, taking care to account for
and a pole at the origin will give a constant residue, indepenany singular contributions. For asymptotically large positive
dent of time. The rest of this section is divided accordingly,magnetic fields, we fingsee Appendix E
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X

CZ
> KX(t) ~ —i278(CX1L,(1) + CHI_(1) - We_ZOt (79
with coefficientsCZ_f given in(51) and in the above,
2o =Xo~ i €(Xp), (80)
Wn
- , 81
X 27Nc. (81)
X c,+cC.
- 82
=5 oN T dmox (82)

In high magnetic fields, we will show that the exponentia
contribution to Eq.(79) cancelswith the contribution from
the pole ats,, P5(t). We stress that this result is only true in
the high-field limit (|b’|/N)>1, where the asymptotics are
valid.

B. Exponential decay

Whenb' =0, there are no poles with finite real part. For
b’ #0, a pole(ats, in Fig. 3) emerges from the branch point
at s=0. The pole contributiorP3(t) decays exponentially
with ratel’,
a frequency determined hy,=Im[s,],

P3(t) = e Tole7(en™e2tP(0), (83

P;(t) = e T2 2P} (0). (84)

Settings,=-T',+iw,, we find the decay rat&',, frequency
renormalizationw,, and amplitudes of these pole contribu-

tions from asymptotic solutions to the pair of equations

ReD(sp)]=Im[D(s)]=0 and P;(0)=Re$S(s),s=s,] for

high and low magnetic fields’. T',, w,, andP5(0) have the
asymptotic field dependencéfor high magnetic fields’

>N):

F2~12"’N“C 0,20, (85)
TINCx
I, CitC
~ % + 0, =0, 86
27 T meN 4me.l, " (86)
CXlc-
PO e =0 @

Although it does not correspond to the perturbative regime, i

is interesting to consider the behavior of the exponentially

decaying pole contributioﬁé(t) in the limitb’ — 0, since the
Hamiltonian/ in Eq. (1) is known to be integrable foB,

=0 (b'=0).1° For vanishing positive magnetic fieldd’

—0%), with logarithmic corrections inb’/Eb,, where b,

=N(c,+c_) andE=exp{1+O(1/N)}:

0’ I,

(2]

Ebo

Rds,], and has an envelope that oscillates at

PHYSICAL REVIEW B70, 195340(2004

I, o, [A/2NA]

)]

+
2

-

(0)], NIm[P,

+

2
S
o

S
w

NRe[P

S
S

b’/N

FIG. 4. (Color onling Top, numerically determined ratE,
(solid ling) and frequency renormalization, (dashed ling as a
function of magnetic fielcb’/N. Bottom, N Re P3(0)] (solid line)
and N Im[P(0)] (dashed lingas a function of magnetic field for
the initial statd&>02<&>02%. The dotted lines give the asymptot-
ics for high magnetic fields from Eq$85—(87). The parameters

used werep=0.6,N=1C", 1=3.

b'/b,
wp = T (89)
|n(50)
P3(0) ~ - Y oy (90)
N(c, + c_)In<b—0)
t P2(0) ~ - (Sho— (e, + c_)/?pl (o1)

b\
N(c, + c_)In< b0>
where (=mc_/(c,+c_). The exponentially decaying contri-
bution vanishes only wheb’ =0, and does so in an interval
that is logarithmically narrow. We have determined the rate,
frequency renormalization, and amplitude of the pole contri-
bution P5(t) numerically. The results are given in Fig. 4
along with the above asymptotics for high magnetic fields,
|b’|>N.
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C. Undamped oscillations 04 T T T T T T T T

The points; in Fig. 3 corresponds te=0 for S(s), so
undamped oscillations i{55,); arise only from the pole at;,

P4(t) = e(@n"3tpZ(), (92
Y '/‘\“_fo'\ e S S
Both poles on the imaginary axis give undamped oscillations ’ 08 T T T

in (Sp¢ 06 ]
<- i -

+ + jotp* iogtpt 2 04f Ny

Pi(t) + P3(t) = €“1'P1(0) + €“3'P3(0). (93 02 ]
For high magnetic fieldgb’/N|>1, 0002030 i 50

| t[2Nh'/1;\]
w3~ b +2pIN=w,, b' =0, 94 20 ' 30 ' ' 50
1/3 p n = (94 { 2NH/A]

b’ . FIG. 5. (Color onling Contributions to the inverse Laplace

N/’ b’ =0, (95) transform of(S,);. We show the envelopes of the rapidly oscillating
functions N ReP5(t)]+0.3, N ReP5(t)]+0.2, and NBA(t), deter-

where fi=(%)(cilci)(l+0(1/N)). The frequency in Eq(94) mined numerically. The long-time asymptoticsgi{t) from Appen-

corresponds to a simple precession of the electron spin in th%x Eare alsq show(ndasheql ling: The sum of all Conmbft'ons 1S
. ) used to obtain the population of the spin-up statgt)=3+(Sy

sum of the magnetic and Overhauser fields. The second frei-n The electron spin begins dow(&).=—2 Other ? meter

quency, Eq.(95), describes the back-action of the electron’ Sre?'_; ?\ﬁi& Ob’fillz (:r?i 3 IOWtBD\fb(’)_iVZ. © gial Teir? S

spin, in response to the slow precession of the nuclear spirlv.%e el=3, N=11, b =N (this value ofb" gives, e.g. z,

in the effective field of the electron aA9, and p.—0.6. The timet is given |n.un|ts of Z2/Ag=2NAi/A

For laraeb’ . th | " nd.in to simple or i nfor d=m=2 in Eq. (43) (2NA/A=1 us in GaA3. These values

or 'argeb’, the poie correspo g l0 Simple precessio correspond to the weakly perturbative regime, vﬁthi—g<1. Note

is dominant, while the other has a residue that vanishes e)fﬁatpT(t)sllN for all times

w3~ + 1= fi eX[<_

Cs

ponentially,
+ <S+>O N
Pls(0)~ —5 ——— b’ =0, (96) ~ (Spo+plé+O =
1+35(c,+c)é (S)..= ?\I (100
o 1+(c++c_)5+o(—4>
! w,
P:.(0) ~ %fi exp<— u) b'=0, (97 , "
Nc, c:N The result in Eq(100) follows from Egs.(61), (31), (32),
(34), (35), and(37) by expanding the numerator and denomi-
b’ Ib’| nator in 1w, using the coupling constants.=2e™N and
2(0) ~ ﬂf" exp(— c N)' b’ >0. (99) performing the continuum limit{S,),. gives the stationary

level populations for spin-up and spin—dowﬁ;f%t@w,
When the magnetic fielth’ compensates the nuclear Over- Which would be fixed by the initial conditions in the absence
hauser fieldh,],, (o,~0, the usual ESR resonance condi- ©f the hyperfine interaction. This difference pry, from the
tion in the rotating framp the poles at points, ands; have mmal va[ues can be regarded as Ieaka_ge due to the nuclear
equal weight, and are the dominant contribution to the elecSPIn environment. We note that the stationary value depends
tron spin dynamics. Since the resonance condition corre?" the initial value(Syo, from which it deviates only by a
sponds to the strongly nonperturbative regire>1, we small amount of ordeb. This means, in particular, that the
delay a detailed discussion of the resonance until Sec. VII.System is nonergodic. We will find that correctiong®).. at
fourth order in the flip-flop terms will be of ordef, so that
the stationary limit can be determined even outside of the
perturbative regimeA| <1, in zero magnetic field, wheré

The contribution t(Sy; from the pole ats=0 gives the  =1/p?N for |:%, providedp> 1/4N.
long-time average valués,).., which we define as the sta-
tionary limit, E. Summary

D. Stationary limit

T The results of this section for low magnetic fields are
_ 1 summarized in Fig. 5, which corresponds to the weakly per-
(S = lim 'I_'f (SHrdt=1lim sS(s). (990 turbative caselA|<1, and displays all of the dynamical fea-
E 50 tures outlined here.
In very high magnetic fieldg¢b’>N), corresponding to
Within the Born approximation, we find the strongly perturbative case, we combine H@$), (94),
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0.005 T T T T T T T T T ] VI. MEASUREMENT
0.004 - _

o 0003 - ] In high magnetic fieldgb’ > N), the decaying fraction of

Z oomb _' the electron spin is very smdlD(5~N/b’?)]. Nevertheless,
- ] the large separation between the hyperfine interaction decay

0.005 |-

time (m,=2f/Ag=~1 us) and the dipolar correlation time
(794~ 100 us in GaAs of the nuclear spins should allow one
from a conventional spin echo technique applied to an en-
semble of electron spins.
] should be visible in the electron spin echo envelope obtained
% by applying the conventional Hahn echo sequefider/2)
_ , _This can be done by conventional means for an electron
FIG. 6. (Color online Envelope of the time-dependent spin trapped at donor impurities in a soffdor from a measure-
merical im’erSion of th.e Laplace tr?nSfor(BOHd. ”n.e) and the. effect of this echo sequence can be summarized as follows.
asymptotic branch cut integral for high magnetic fields comblned.l_he electron spins are initially aligned along the external
line). Top, spin-down level population when the electron begins in ) . . -
: N I x-y plane with an initiakr/ 2 pulse. Each spin precesses in its
the up state, along the nuclear spin polarization dlrecf@z)o ov%//nplocal effective magnet?c field.. The ghage factog ont
e
. . . . . _ 1
Ing in the opposite dlreC“Oﬂsﬁo__E)' The parameters used were (direction of the local magnetic fields then effectively re-
—14 T in GaAs. 2 versed with ar pulse along the axis: w,— —w,. The phase
. . . electron spin magnetization refocuses to give an echo when
(96), e}nd (100 to obtain the asymptotic forms to leading i, phase factog“n2"=1 simultaneously for all spins in the
order in 1/w,:
and measurement time during the echo to be neglidtble.
(S ~ a%t) + o%eqt), (101) The spin echo envelope gives the ensemble magnetization
as a function of the free evolution timer before the echo.
We note that the decaying fraction €8,),, o2°{t), also pre-
pulse sequence can also be applied to measure the decay of
the longitudinal spin, omitting the initiatz/2 pulse. The
Egs.(46), (4(,7,3)’ (49), and_(50) are evaluqted fod=m=2. We_ O(¥) in a time scaler,; due to the contact hyperfine interac-
stress thav$°(t) = <1 is a small fraction of the total spin. tion, followed by a slow decay due to spectral
C?'ed k_)y the expon(_antial Paf‘ (.)f the high-field_ branch_ cut, rapid initial decay of the Hahn echo envelope has been mea-
given in Eq.(79). This result is in agreement with the high- o for natural Si:P, but is absent in isotopically enriched
. _1 . .
results for the level populations (t) =3 +(S); are given in The fraction of the spin that decays in the timg is
Fig. 6 along with the above asymptotic forms. The seculaimg|l, of orders, in the perturbative regime. It may be dif-
tion expansion ofS,), is again absent from the result ob- Hann echo. This problem can be reduced by taking advan-
tained here via the GME. At fourth ordetlinear terms also  tage of the quantum Zeno effect, using the Carr-Purcell-
tudinal gpin(SZ>t.11v12Due to the_nl_Jmerator termz(s) in.the ~ECHO-7-m_y— 7~ ECHO) ¢peat During each free evolu-
expression forS(s) [Eq. (61)], it is not clear if all diver-  tion time between echoes, the electron decays by an amount
pansion of the self-energy. This question is addressed in Semagnetization is performed. For a large ensemble of electron
VII with an explicit calculation of the fourth-order spin dy- spins, this measurement determines the gigtef the elec-
In the next section we propose a method that could begroduct of electron and nuclear states, as in @€q). Rep-
used to probe the non-Markovian electron spin dynamics exetition of such measurement cycles will then reveal the spin

to obtain valuable information about the electron spin decay
In principle, the non-Markovian electron spin dynamics
20 30 40
t[2NA/A =1 ps] -7—m—7-ECHO to a large ensemble of electron spins.
level populations in high magnetic fields. We give results from NU-ment of transport current through a quantum B8 The
with numerical results for the pole positions and resid(geshed magnetic fieldB,. At time t=0 the spins are tipped into the
:%)' Bottom, spin-up popujation for an electron that begins pOint-Winds in the “forward” direction for a time. The sign ofw,
N=1C, p=0.6, =1 andb’=8N, corresponding to a field oB,
factore™“n unwinds in the following time intervat, and the
ensemble. As is usually assumed, we take the pulse times
(the electron spin expectation vajuat the time of the echo
(S~ (S + 02°90), (1020 cesses with the phase facet [see Eq(50)], so the same
where the functione*{), o{*0), @“ Ugec(t)’ given in Hahn echo envelope should show a small initial decay by
The exponentially decaying contribution froR¥(t) is can- diffusior?1:2244with a time scaleryy~10" s. We note that a
field asymptotic forms found earlier in Sec. IV. Numerical 285i:P, in which no nuclei carry spi.
term that appeared at lowest order in the standard perturbgcyit to detect this small fraction using the conventional
appear in the standard perturbation expansion for the longiMeiboom-Gill (CPMG) echo sequence/2)-(7- M=
gences have been resummed 8y, in the perturbative ex- of order 8. At each echo, a measurement of the electron spin
namics. tron spin ensemble, forcing the total system into a direct
perimentally. decay due to the hyperfine interactigoy orderd after each
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measurementuntil the magnetization envelope reaches its S I ' I y I ' T
stationary value. If the electron spin decays during the free~ 2°[ Si:P
evolution time due to spectral diffusion with a Gaussian en—~§ 2T
velope, then we require the conditig@r/ ryq)>< 5<1 for s F
the effect of spectral diffusion to be negligible compared to € [
the effect of the hyperfine interacti6f The non-Markovian 03 ]
remainder term gives the total change in electron spin thai % %6 % % w0 %
has occurred during the free evolution time 5 - T - T y T - T
27 Ry(27)|etion2r=1= (S2-~(Sxoletivnzr=1=Mx(27) ~Mx(0), -
whereMy(t) is the CPMG magnetization envelope. In high 5 ;[
magnetic fields, and when there are many echoes before th =
magnetization envelope decays, the CPMG magnetizatior &
envelopesMy(t) will therefore obey the differential equa- ~
tions 0 ' 10

d Rx(27

ao= -

(So=My(D) etion2r=1

20 ' 30
2t [2}i/A0 =1 ps]

=+
» X G FIG. 7. Longitudinal decay rate IR" of the CPMG echo enve-

lope as a function of the free evolution time Betweens pulses
(103 for an electron trapped at a phosphorus donor impurity in &)

where the high-field expressions (1), given in Eqs(56) ~ 2nd in a two-dimensional GaAs quantum dbbttom). The free
and(57), should be used. Thus, the decay rate of the CPMC?VOIUt'On time is given in units Off2/ Ag~2Nh/A [the eq”al'tY 'S
echo en’velopa/lx as a functioﬁ of the free evolution time exact ford=m=2 in Eq.(43)]. In a GaAs quantum dot containing

. . . . N=1CP nuclei or for an electron trapped at a shallow donor impurity
2, is adirect probeof the non-Markovian remainder term in Si:P with N=100 nuclear spins within one Bohr radius\/2/ A

RX(I)_' L ~1 us. We have uselj:%, p=0.6, and magnetic field values from
Since the magnetization envelopds(t) are found as the  rapje || to determine the frequency units on the vertical axis.
result of an ensemble measurement, it is necessary to per-

form an average over different nuclear initial stai@sthat an electron in a GaAs quantum dot, with a Gaussian wave

may enter into the solutions to E¢LO3). The local field- f ion. b f | d d . .
dependent phase factors have been removed by the echo slér-lc.t_'on’ utnone for an electron trapped at a donor impurity
.0 SitP.
quence, so the only effect of the ensemble average is to
average over5=N/wﬁ and c,, which appear in the overall
amplitude of(d/dt)M(t). The relative fluctuations in these
quantities are always suppressed by the factofNLfor a The goal of this section is to address the range of validity
large nuclear spin system. of the results obtained in Sec. V. First, we show that the Born
In the high-field limit, we find the longitudinal and trans- approximation for(S,), recovers the exact solution f(b':%,
verse magnetization envelopBg(t) andM.(t) decay expo- =7 e then discuss the behavior of the Born approxima-
nentially with time constant$y' andT'=2TY', respectively.  tion near the ESR resonance, wherg=0. Finally, we con-
M.(t) decays to zero, ankll,(t) decays to the limiting value  sider the expression fotS,), obtained by including all
lc -c, pl fourth-order corrections to the reduced self-energy, and show

Mj(0) = =—— = ———, (109 that our expression is well behaved in the continuum limit.
2c_+c, c_+c,

VII. BEYOND BORN

For nuclear spin:%, M ()=p/2, i.e., the electron magne- A. Recovery of the exact solution
tization acquires the2 polarization of the nuclear spin bath. \ypqp |:% and p=1, we havec_=1 andc,=0, which
However, sincec, 1%, M,(«)—0 in the large-spin limit. gives

Thus, alarger fraction of the electron spin decays in the limit

of large nuclear spin. We give plots of the longitudinal spin @_ | AZ
decay rate foM (1), 1/T§", as a function of the free evolu- 2=- Z% A
tion time 2r for two types of envelope wave function in Fig. S— iE

7. These plots have been determined by integrating Hif)

using the high-field expression f@&,(t) given in Eq.(57).  from Egq. (A22). We insert this into(62) and usew,=b’
No ensemble averaging has been performed to generate theséEkAk:bw(A/z) to obtain

plots. When 2<< 7, the envelope decay rate increases as a

function of 2r as more of the electron spin is allowed to S.(s) = (Sho (105)
decay before each measurement. The rates reach a maximum (., A} 1 A2
at some time 2= 7;;, and for 2-> 7,4, the electron spin satu- s—ilb +2 |+ sz S—iA/2 A2

rates at its stationary value and the envelope decay rates
«1/27 are determined only by the free evolution time. NoteThe Schrodinger equation for a state of the form
that there are slow oscillations in the CPMG decay rate fot(t))=a(t)| 07 1) +ag®)| 07 1) +Z BB 07 - [ 1),

195340-13



W. A. COISH AND DANIEL LOSS PHYSICAL REVIEW B70, 195340(2004

where the large arrow gives the state of the electron spin and L R I

the thin arrows give the states of the nuclear spins, has been %4 I
written and solvedfor a fully polarized nuclear spin initial / \
state, B, (t=0)=00K] in Laplace space to find the long-time
asymptotic electron spin dynamics previousyn Ref. 12

the symbola(t) was used in place of(t). The fully polar- A8
ized statg 07 7--) is an eigenstate of the full Hamiltonian ¢ °f
H', s0 ay(t)=e 12D+ W2ty _(0), which allows us to write

02} -

S.(9)=a(t=0)ar(s—(i/2)[b'+(A/2)]). We solve the time- o2l .

dependent Schrodinger equation fgtt)) in Laplace space,

giving DAl -
D N W RS-

, a(t=0% 002 0015 001  -0.005 0 0005 001 0015 002
ap(s') = - >—, (106 B -B’ [T
S—i(b’+é)+lz A t
4K s—iA /2 FIG. 8. (Color onling (S,).. evaluated within Born approxima-

. . L tion near the resonance, from E#00) WhereBg:—pAIZQ* up- We
wheres'=s—(i/2)[b’+(A/2)]. Thus, in the limit of full po- | ve used the value ¥ for GaAs, g* =-0.44, N=10F, and|=%_
larization of the nuclear system, the Born approximation aps,),=-1 for all three curves and results are given fsx0 (solid
plied to (S,); becomes exact. For a fully polarized nuclear jine), p=2 (dotted ling, and p=1 (dashed ling The vertical
spin system(S)); is given by the relationshi[:(SZ)F%(l dashed—dotted lines indicate the magnetic fields where the relevant
-2lay(1)])=3(1-2(S.)/ a(t=0)]%). Unfortunately, this re- smaliness parameter is unityj=1.

sult is not recovered directly from the Born approximation

for (S);, as we will show in the next section. N
Q= E(C++C")' (111

B. Resonance .
The results in(109 and (110 do not reproduce the exact

On resonancep,=0, i.e., the external fiel#d’ compen-  goytion in the limitp=1,1=3, and do not recover the correct
sgtes the Overhause.r fldjtiﬂ'nn. The resonance is well out- =0 value of(S,). The Born approximation fofS,),, as it has
side of the perturbative regime, defined 8=|N/wi| <1,  peen defined here, breaks down in the strongly nonperturba-

but we proceed in the hope that the Born approximationye |imit, although the transverse components are better be-
applied to the self-energy captures some of the correct bg;gyeq.

havior in the nonperturbative limit. On resonance, the major

o On resonance, the poles §itands; are equidistant from
contributions to(S,); come from three poles, &=0, s=s;,

the origin, and the major contributions {&,); come from

ands=s;, these two polestS, )=~ P,(t) +P4(t). Evaluating the residues
()= (S)..+ 2 ReP3(1)]. (107 2 these poles,
LBSeZ;‘o_re applying the continuum limit, the stationary limit for (S = (&)0(1 —O(N»cos(ﬂot), (112
1 which suggests that a fractigd(1/N) of the spin undergoes
@ _ (S0 + (-~ C)Nigt (108) decay, and the rest precesses at a frequedgyWhen |
” C.+cC. =1/2, and inproper energy units we hae,=A/8N from
1+ 2 Neot Eqg. (111). While it does not violate positivity, as in the case

of (S, this expression should not be taken seriously in gen-
After applying the continuum ImitlN,,.— o, we obtain eral, since this result has been obtained well outside of the
perturbative regime. The above does, however, recover the
- - _ (109) exact solution in the limip=1. We show the stationary limit
2c_+c, c_+tc, of (S); in Fig. 8, using typical values for an electron con-
fined to a GaAs quantum dot.

_lc-c_ pl

(S)-

Forl :%, @w:plz, which appears to be an intuitive result.
However, evaluating the remaining pole contributions at the C. Fourth-order corrections
resonance, we find, for a two-dimensional quantum dot, - rou !

The fourth order expansion of the self-energy {8p); is
2pl <1> given in Appendix A. The discrete expression for the nu-
2RdP4(t)] = - cogOpt) +Of — |, ) .
4Ps(v)] [<SZ>° c_+c+} 10 N merator termNi“)(s) contains second order polgsecular
(110  terms. The fourth-order expression f@(s) inherits these
second order polegsee Eq.(61)]. When the Laplace trans-
where form is inverted, this will result in pole contributions that
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grow linearly in time. However, when the continuum limit is

performed which is strictly valid for times shorter than
~\N (see Appendix ¢ all poles |nN( )(s) are replaced by

branch cuts. The integrals around the branch cuts can then be

performed to obtain a solution fdiSy);, valid for timest
S\J"N.
All relevant nonanalytic featuregbranch points and

poles of S(s) occur in two regions of the complex plane:

about the origins=0, and at high frequencies, aroursd
~ *iw,. Inserting an initial nuclear stata)y for a large uni-

form system(see Appendix B expanding the fourth-order

self-energy to leading order in & about the points=0

ands=-iw,, performing the continuum limit, and evaluating

the integrals over coupling constants, we obtaimere the
overbar and “conj” indicate complex conjugate foreal):

2

NS = ) = = (6. ILy(9) + LafS) ~ Lo(S) - con]

+C2Ly(s) - PLy(9)}, (113

S W(s—iwy) = — NA{Cc,c[Ly(9) + Ly(S) — Lg(s) + conf

+C2Ly(s) + CPLy(9)}, (114

NS (s) = %2<c3 - cf)(g + s2L4(s)), (119

309(9) = issT3(pN)? + (c3 + €2 + 14c,C)PLy(9)],
(116)
with coupling constant integrals(s) given by
i
L= 5577, ~logs)],  (117)
Ls(s) =[slog(s+i) - slog(s) —i]?, (118
1 1 . .
Ly(s) = 6~ 6—5[53 +3s+ 2i][log(s+i) — log(s)]
- 6—18[33 +3s-2i][log(s—i) - log(s)], (119
and
L,(s) =log(s+i) —log(s) —i[(s+i)log(s+i) — (s+ 2i)
Xlog(s+ 2i) +slog(s) — (s—i)log(s—i)]
+isf 'dulog(2u—s—izj— Iog(2u—s). (120

Noting that lim,_,s?L,(s)=0, we find the corrections to

the stationary limit foS,),. At fourth order in the flip-flop
terms, this gives

PHYSICAL REVIEW B 70, 195340(2004)

(S)o+ plo+ §<c§—cﬁ)52+0(34>
8 w,

(S)..= (121)

1+(c, +c.)5-3(pl)25 + O(%)

The fourth-order corrections to the self-energy at high fre-
quency (s=-iwp,) are suppressed relative to the Born ap-
proximation by an additional factor of the smallness param-
eterA, as expected from the analysis given in Appendix A.
However, the low frequencys=0) part of the fourth-order
self-energy is suppressed by the much smaller parandeter
This allows us to determine the stationary limit(&), with
confidence even when the magnetic field is small or zero,
provided the polarization is sufficiently large. Wheéh=0
and| :%, we haves=1/p®N, so the stationary limit can be
determined whenever> 1/\N.

It is relatively straightforward to find the time dependence
ast—oo for the S, branch cut integrals at fourth order. Ne-
glecting contributions from the branch cuts near0, which
are suppressed by the factét, and whenp<1 so that the
coefficientc, # 0 [cf. Eq. (38)], we find the major contribu-
tions at long times come from the branch pointssatti,
whereL,(s) «log?(s+i). For any magnetic field, we find

(122

RZ(t—m)octln%'
For b’ > 2plN, this time dependence will be dominant when
t>exp(|b’|/N). Thus, we find that the fourth-order result has

a faster long-time decay than the Born approximation, and
that the associated asymptotics are valid at the same times as
the Born approximation asymptotigsee Eq.(78)]. Thus,
higher-order corrections may change the character of the
long-time decay in the weakly perturbative regime, where
they are not negligible. In contrast, in the strongly perturba-
tive regime|A|<1, the fourth- and higher-order terms are
negligible, so the Born approximation dominates for all
timest<exp(|b’|/N).

VIIl. CONCLUSIONS

We have given a complete analytical description for the
dynamics of an electron spin interacting with a nuclear spin
environment via the Fermi contact hyperfine interaction. In a
large magnetic field, our calculation applies to a nuclear spin
system of arbitrary polarizatiop and arbitrary spin, pre-
pared in an eigenstate of the toratomponent of théquan-
tum) nuclear Overhauser field. In the limit of full polariza-
tion p=1 and nuclear spin:%, the Born approximation
applied to the self-energy recovers the exact dynamics for
(S and (S, with all nonperturbative effects. We have
shown explicitly that the dynamical behavior we calculate in
the Born approximation is purely non-Markovian, and can be
obtained in the limit of high magnetic fields directly from the
remainder term to a Born-Markov approximation. By per-
forming our expansion on the self-energy superoperator, we
have resummed secular divergences that are present in stan-
dard perturbation theory at lowesgsecond order for the
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TABLE Ill. Results for the decaying fraction of the spi[Rx(t)| <O(8)0t) in various parameter regimes. Results are given for both
remainder term$Ry(t), X=z, +, within the Born approximation for the self-ener@gzzg) and for R,(t) at fourth order in the nuclear
spin-electron spin flip-flop termsg= 2(32)+2(S4) whenp# 1. The first three columns are exact in the limit of full polarizatips1) of the
nuclear spin system, but still may describe the correct electron spin dynamics in the weakly perturbative [fdgirhe The last two
columns give the correct electron spin dynamics in the strongly perturbative reigdijrel.

3e=32 3e=32 3e=32 Se=32+3Y 3e=32 Ss=32
b'=0 b’#0 b’ #0 p#1 |Al<1 |Al<1
d/m=1 d/m=1 d/m=1 d/m=1 d/m<2 d/m=2
t>1 F£12t>1 t>e|b’|/N>r£1 t> ld’lN, b’ > 2pIN t>1 t>1
Ry(t) 1/Int glelg T2t 1/tIn?t 1/tIn%t, X=z (1/t)d/metit In*t/t2, v=d/m-1
transverse component§,); and at fourth and higher order APPENDIX A: SELF-ENERGY EXPANSION

for the longitudinal spirS,);. For low magnetic field$’ To expand the self-energy superoperatarin powers of
=N, but still within the perturbative f¢9'm€4A|<_1>’ the | we have found it convenient to work in terms of a super-
Born approximation for the electron spin shows rich dynam-gperator matrix representation. Here we give a brief descrip-
ics including nonexponentidinverse logarithmdecay, €X-  tion of its use and apply it to generate the reduced self-
ponential decay, and undamped oscillations. For high Magsnergy at second order iy, for all spin components, and the
netic fieldsb’> N, and ford/m<2, the electron spin shows f5urth order for the longitudinal spin.

a power-law decay~(1/t)9™ in d dimensions for an isotro- Any operator© that acts on both the electron spin and
pic envelope wave function of the formj(r)cexp  nuclear spin Hilbert spaces can be written in terms of the 2
[-3(r/l9™]) to its stationary value with a time scalg; X 2 identity, o, and the Pauli matrices;, i=(x,y,2),

=2N#/A, in agreement with the exact solution for a fully

polarized nuclear spin systeth? Above a critical ratio, 0= > c¢o, (A1)
d/m=2, the spin decay asymptotics undergo an abrupt i=0xy.,2)

change, signaled by a disappearance OT slow oscillations i\W/here the coefficients; are operators that act only on the
the decay envelope. We have summarized these results Miclear spin space. Equivalentty, can be written in terms
Table 1ll. We have also suggested a method that could bgf the operatorg,; =1(cot o), Su=L(otioy), i.e

used to probe the non-Markovian electron spin dynamics di- P P11172(002 07 2= 0cEl0y), 1€

rectly, using a standard spin-echo technique. We emphasize O=kip; +kp +kS +k S, (A2)
that the electron spin only decays by some small fraction of

its initial value, of orders (see Tables | and )J and the Wwith operators; that act on the nuclear spin space. We have
decay is generically nonexponential at long tintese Table labeled the coefficientk; in this way so that whed=pg is
lIl). The results of this work may therefore be of centralthe electron spin density operatég,=(S,). A superoperator
importance to the development of future quantum error corsS acting onO maps it to the operata®’ with new coeffi-
rection schemes, which typically assume an exponential desients:

cay to zero. The fact that the stationary value of the spin L , , ,

depends on the initial value implies that this system is non- SO=0"=kip; +kip +KS +kS. (A3)

ergodic. Based on this observation, we postulate a generghis aliows us to write? as a vector and as a 4x 4 matrix,

principle, that nonergodic quantum systems can Preserv@e glements of which are superoperators that act on the
phase coherence to a higher degree than systems with

Hacl i , and are determi d(A3),
godic behavior. It would be interesting to explore this con- Uclear spin space, and are determinedAg) and(A3)

nection further. O = (ky ke k)T, (A4)
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k
) . (A7)

)

1 1
s+iQL o s+iQLg

(“ IQLv, iQL,

To obtain these higher order terms in the self-energy, w:

form products of the free propagator (§#iQLy) and the

perturbationQLy,. The free propagator is diagonal in the ba-

sis of {py;, S}, and is given in terms of 2 2 blocks by

1 _(GXs) 0 )
[s+iQLJ_< 0 G%9)/’ (A8)
where
G%s) O )
0/ — T
G,(s)-( 0 s (A9)
GO'()—(GE(S) 0 ) (A10)
A W G%(s)
In the above,
1
G (9= 9 (A11)
sti~L,
2
O —— (A12)
in%L;

where we define the neynuclear spin Liouvillians by their
action on an arbitrary operat®:L:O=[w,O]., w=b’+h,.

The perturbation term contains only off-diagonal elements

when written in terms of X 2 blocks:

( 0 V| )
where we find

Q( ht —hf) , Q( ht —hR>
V== , V== Al4
A P 2\-nR (A1)

In the above expression, we have introduced superoperators

for right and left multiplication,

ORA= A0, (A15)

3(s) = (2 [ T[N g LT [ o (2 = 8 ) s

PHYSICAL REVIEW B 70, 195340(2004)

O"A=0A.

Only even powers of,, can contribute to the final trace

(A16)

over the nuclear system, so we consider a general term in the
eexpansion of the self-energy,

1 (3 o)
<[QLV]L+iQLO]> _<o s (A1)

3= (VG VIGDK Si=(V(GV,GY K. (A18)

By inspection of the form oW, V|, we find that the X 2
matrix Tr 2;p,(0) is diagonal wherp,(0)=|n)(n|, and|n) is
an eigenstate o, [as in Eq.(20)], since the off-diagonal
components always contain terms proportionahfoor h?.
Thus, to all orders in the perturbatidy, the reduced self-
energy takes the form

21(8) 24(9) 0 0
2(9 2 (9 O

0 0 Z.(9 O

0 0 0 2_(s

NECE (A19)

The number of matrix elements left to calculate can be fur-

ther reduced with the relationshis(s)=-2;(s), %;(s)
=-2/(s), which follow directly from the condition Tpg
=00 p,()==p(t) and the GME p,==iZ,; [tdl’ 3 4t
-t")pg(t'), @=T7,|. By direct calculation we find

(s E[h ]nk[m]kn( o )

lwp ST lwng

(A20)

i 1 1
E(TZL)(S) = Z% [h+]nk[h—]kn< s—ia + — >,

—lwpk ST lwpg
(A21)
252(5) == _2 ([hyJnd h-]n + [N- ]nk[h+]kn) —idw k
(A22)

In the above wn =3 Lont o)), 5wnk—2(wn wy), and w;=b’
+[h,];;. At fourth order

(5) + oh?o(s)] - EE [h_]nkz[h+]kzn[m]nkl[h_]klnoiak%s)) ,

16\ ks kik
(A23)
3(s) =~ 1—6<kk2k [, Tk [T [ T [T (1 = 814 TEAZN(S) + 03 2(9)] - ;kik [h.Jniglh-Jialh- ]nkl[m]klnoklk%s))
(A24)

where the overbar indicates complex conjugationsfoeal and
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Kok 1 1 1 1 1 1 1 1
0.41A2 3(s) = . — — + — + - — — + — ) (A25)
S—idwn, S~iwn \S~iwn,  Stiwgk,/ S+idwn,S+iog \S+tion, S—iog,
1 1 1 1 1
TiE(s) = — ———— |, (A26)
S— |5wklk3 S—iwgk, Stiogk,)\Stion, S—iwgn
452

Ko@) —
o R2(s) = . A27
4C() (Sz+a§kl)(82+5§k2) ( )

Every two powers of the perturbatidr, beyond the Born

approximation are associated with an additional sum over
=N nuclear spin sites, since every spin flip up must be paired

with a flop down. Nonanalyticitiegpoleg of the self-energy

occur in two regions of the complex plane: at high frequen

cies, neas= tiw,, and at low frequency, arourgk0. Ex-

panding near either of these two points gives an extra facto

1/w, for every two orders ofQL,1/(s—iQLy) beyond the
Born approximation. The self-energy atkz 1)th order is
then suppressed at least by the facir whereA=N/ w),

32k (s~ ) o« AK, (A28)

S (s~ +imy) o A, (A29)

Thus, in general, for the perturbation series to be well con*

trolled, we requirdA|<1.

APPENDIX B: COEFFICIENTS c.

APPENDIX C: CONTINUUM LIMIT

Here, we find a rigorous bound on corrections to the
memory kernels, after we have changed sums to integrals.
We consider the real-time version of the functiohss),

given in (37), with coupling constants for a Gaussian wave
qunction in two dimension$m=d=2 in Eq.(9)],

- iz AZgHA2 = 2N,

() =75
k

(CY

The Euler-MacLauren formula gives an upper bound to the
corrections involved in the transformation of sums to inte-
grals for a summand that is a smooth monotonic function of
its argument. For time$>1, the summand of,(t) is not
monotonic on the intervak=1, ... N, where it has appre-
ciable weight. We divide the sum intasubintervals of width
Ak=N/t. The summand is then monotonic over each of the
t subintervals, and the Euler-MacLauren formula gives a re-
mainder R<2/N when the sum over each subinterval is

We are interested in evaluating the expressions given ighanged to an integral. Adding the errors incurred for each
Egs. (A20)«A22). To do this, we investigate objects of the subinterval, we findfor t> 1),

form

g [y Tl h=Jinf = (K), (B1)

wheref-(k) is a function of the state indek Inserting|n),
as given in Eq(20), into (B1), we find

% [y Jnd N Jinf = (K) = % ALK (K), (B2)

where the state indek now labels sites at which a nuclear
spin has been raised or lowered, and with the help of th

I,my=y(Fm)(ltm+1), we

matrix elements, (I, m+1|l*
have

9n
ck= 2 |10 + 1) - m(ml £ 1)]. (B3)
j=1
We assume the initial nuclear system is uniform, so tfias
independent of the site indeg and for a large number of
degenerate statgg> 1 that contribute tdn), we replace the
sum over weighting factorsy;|? by an appropriate probabil-
ity distribution. This gives;=c, with c. defined in Eq(38)
of the main text.

) 1 ietit
|i(t)=[(et't—l)t—2 + T:| +R(1). (C2
The remainder ternR(t)| <2t/N, so the corrections can be-
come comparable to the amplitude of the integral itself when
~N/2. This represents a strict lower bound to the time
scale where the continuum limit is valid fon=d=2.

APPENDIX D: PERTURBATION THEORY

In this Appendix we apply standard perturbation theory to

the problem of finding the electron spin dynamics. We do

this to illustrate the connection between our perturbative ex-
pansion of the self-energy and the standard one, and to dem-
onstrate the need for a nonperturbative approach.

We choose the initial state

iy = (o, (01 + €41 =p,(0)] 1)) ® ),

where|n) is an eigenstate dfi, and (S)o=3(p;(0)—p,(0)),
<S+>o=\,'pT(O)(l—pl(O))ei‘f’. We then apply standard interac-
tion picture perturbation theory to evalud®);,, X=+,z. To

lowest nontrivial(second order in the perturbatioftty, we
find

(D1)
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o (Suo B The expression fokS); has been given previoush!?
(S =€e"(S,)o - 4 % ([h-Jnd D JirGic(®) where it was noted that the perturbative expression for the
transverse components,); contains a term that grows un-
+[h, ] h-JknG (D) (D2)  bounded in timgas abovg Inserting an initial nuclear state
In) with uniform polarization, performing the continuum
, telent 1 ) limit, and expanding to leading order in &/ gives the final
Ok = — — = (e" A gy, (D3)  result, presented in Eq&dd) and (45).
lopg  Op
1 APPENDIX E: BRANCH CUT ASYMPTOTICS
(S)=(Sho+ 5% [(1 = p; (O[N]l h Jkn 1. Long times
[1- cogwd)] Here we give explicit expressions for the leading-order
_PT(O)[h—]nk[thn]Tnk- (D4) terms in asymptotic expansions of the branch cut integrals
Wi for long times,
|
T 1 1
ot =—-i———[2 -A(c,+c. —+O<—>, b’'=0, El
Bt ) = i RS A+ e+ O o (ED)
im| N 1 1
K(t— o) = bif[g(c++c_>[2<sao—A] - 2plAL—2 +0(t—3), b’ # 0, (E2)
_ et _ (v _ 1 1
Ki(t— )= F Nc. {Z(S)O ¥ A(N t(c,+c)Fc2ln 2)} Tt + O<m> , (E3)
27 1 1
Ko(t— ) =—i————(S)s— +0| 5|, b'=0, E4
olt =) (c++c_)N<S+>0Int (In2t> (E4
+ . N 1 1
Ko(t — ) =i2m(c, + C—)(b—,)2<S+>ot—2 + O(t_3> b"# 0, (ES)
2me*t 1 ( 1 )
Kit— )= F +0 . E6
t=o)= % " Soay T Ol sy (E6)
[
2. High fields © gt
K3(t) = — 27 8(CY + CX)xqo f dz , (E8)
For asymptotically large magnetic fields, tixedepen- o 2%
dence of the denominator tefld(—x+ vy, *i7) that appears in -
the branch_cut_ mteg_raIEEq. (74)] is dominated by the con- KX(t) = — 271 5CX dz z62t (E9)
stant contribution~-iw,, except at very large values af i

where it may be thab(-x+vy,ti7)~0. We expand the nu-
merator Nz(sﬁ(x)irin) and denominator in X/ retaining
terms up toO(1) in the numerator and’)(1/x) in the de-
nominator. Expanding to leading order inx4# 1/ w,, except

where there is the possibility of a near-singular contributionfOUr integrals,

(D=0), and assumindp’ >0, we find the branch cut inte-
grals

—i+oe ze2t
KX(t) = 271 8C*x, f dz ,
—i Z— 7

(E7)

wherez, andx, are defined in Eq980) and(81). The coef-
ficients C;( are given by Eq(51). The sum over all three
branch cut integrals can now be written in terms of two con-

zet
> KXt =-27sC% | d
a=(0,+,-) c I
- 27 8Ct f dz ze*. (E10)
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C” runs clockwise from the origin te=cc along the real axis, contours along the imaginary axis. The sum of the contribu-
then returns taz=—i, enclosing the pole at=z,. C’' runs tions along the imaginary axis and from the residue of the
from z=i to z=i+c, then returns along the real axisze0.  pole atz=z, gives the result in Eq.79).

These integrals can be evaluated immediately by closing the
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(Niot=15) spin systems that the resonance is indeed centered at a silicon nuclei carry spin :%. In contrast to the CPMG echo
magpnetic field corresponding to the negative nuclear Overhauser sequence, only a single measuremgntsingle echpis made
field, even for a nuclear spin system with< 1. Alternatively, a following each preparation in the Hahn technique. We assume
state where all nuclear spin; are aligned along. the magneti.c field {he echo envelope is the product of a Gaussian with time scale
can be genfetrﬁted bly aIIovv_lnglj E?e n_ut;learspms to relax in the rqgand a parf(27)=1-0(8), 27= ., that gives the decay due
5°A%r§seetngla. (ORef.e4r;JChZ?/resgge?tl;cinlgairuargior; pure Gaussian tolthe con';act hyperflne. Interaction: éxé(z# Tdd)z]f(zﬂgi
decay of the Hahn spin-echo envelope with time scale given by =227/ 7ad __0(5)’ for Imes 7= 27< 7qq: When (27/74)
the dipolar correlation timegy~ 10" s for electrons trapped at <4, the dominant contribution comes frokt27) at each echo of
phosphorus donors in isotopically enriché®i:P, where all the CPMG sequence.
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