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We have performed a systematic calculation for the non-Markovian dynamics of a localized electron spin
interacting with an environment of nuclear spins via the Fermi contact hyperfine interaction. This work applies
to an electron in thes-type orbital ground state of a quantum dot or bound to a donor impurity, and is valid for
arbitrary polarizationp of the nuclear spin system, and arbitrary nuclear spinI in high magnetic fields. In the
limit of p=1 and I = 1

2, the Born approximation of our perturbative theory recovers the exact electron spin
dynamics. We have found the form of the generalized master equation(GME) for the longitudinal and trans-
verse components of the electron spin to all orders in the electron spin-nuclear spin flip-flop terms. Our
perturbative expansion is regular, unlike standard time-dependent perturbation theory, and can be carried out to
higher orders. We show this explicitly with a fourth-order calculation of the longitudinal spin dynamics. In zero
magnetic field, the fraction of the electron spin that decays is bounded by the smallness parameterd=1/p2N,
whereN is the number of nuclear spins within the extent of the electron wave function. However, the form of
the decay can only be determined in a high magnetic field, much larger than the maximum Overhauser field.
In general the electron spin shows rich dynamics, described by a sum of contributions with nonexponential
decay, exponential decay, and undamped oscillations. There is an abrupt crossover in the electron spin asymp-
totics at a critical dimensionality and shape of the electron envelope wave function. We propose a scheme that
could be used to measure the non-Markovian dynamics using a standard spin-echo technique, even when the
fraction that undergoes non-Markovian dynamics is small.
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I. INTRODUCTION

Prospects for the development of new spintronic devices,1

and the controlled manipulation of electron or nuclear spins
for quantum information processing2 have sparked substan-
tial research efforts in recent years. One of the major ob-
stacles to achieving these goals is decoherence due to the
influence of an uncontrollable environment. For quantum
computing tasks, the strict requirements for error correction3

set strong limits on the degree of decoherence allowed in
such devices. From this point of view, single-electron semi-
conductor quantum dots represent good candidates for spin-
based information processing since they show particularly
long longitudinal relaxation times,T1=0.85 ms in a magnetic
field of 8 T.4 In GaAs quantum wells, the transverse dephas-
ing time T2

* for an ensemble of electron spins, which typi-
cally provides a lower bound for the intrinsic decoherence
time T2 of an isolated spin, has been measured to be in ex-
cess of 100 ns.5

Possible sources of decoherence for a single electron spin
confined to a quantum dot are spin-orbit coupling and the
contact hyperfine interaction with the surrounding nuclear
spins.6 The relaxation rate due to spin-orbit coupling 1/T1 is
suppressed for localized electrons at low temperatures7,8 and
recent work has shown thatT2, due to spin-orbit coupling,
can be as long asT1 under realistic conditions.9 However,
since spin-carrying isotopes are common in the semiconduc-
tor industry, the contact hyperfine interaction(in contrast to
the spin-orbit interaction) is likely an unavoidable source of
decoherence, which does not vanish with decreasing tem-
perature or carefully chosen quantum dot geometry.10

In the last few years, a great deal of effort has been fo-
cused on a theoretical description of interesting effects aris-

ing from the contact hyperfine interaction for a localized
electron.6,11–25The predicted effects include a dramatic varia-
tion of T1 with gate voltage in a quantum dot near the Cou-
lomb blockade peaks or valleys,14 all-optical polarization of
the nuclear spins,17 use of the nuclear spin system as a quan-
tum memory,15,16 and several potential spin relaxation and
decoherence mechanisms.11,18–21 This theoretical work is
spurred-on by intriguing experiments that show localized
electrical detection of spin resonance phenomena,26 nuclear
spin polarization near quantum point contacts,27 gate-
controlled transfer of polarization between electrons and
nuclei,28 nuclear spin polarization and manipulation due to
optical pumping in GaAs quantum wells,29 and voltage-
controlled nuclear spin polarization in a field-effect
transistor.30 In addition, recent experiments have shown hy-
perfine induced oscillations in transport current through a
double quantum dot,31 and long T2 times for electrons
trapped at shallow donor impurities in isotopically purified
28Si:P.32 Our system of interest in this paper is an electron
confined to a single GaAs quantum dot, but this work applies
quite generally to other systems, such as electrons trapped at
shallow donor impurities in Si:P.10

In this paper, we investigate electron spin dynamics at
times shorter than the nuclear dipole-dipole correlation time
tdd [tdd<10−4 s in GaAs is given directly by the inverse
width of the nuclear magnetic resonance(NMR) line33]. At
these time scales, the relevant Hamiltonian for a description
of the electron and nuclear spin dynamics is that for the
Fermi contact hyperfine interaction[see Eq.(1), below]. Dy-
namics under the action of this Hamiltonian may be of fun-
damental interest, since in zero magnetic field, Eq.(1) cor-
responds to the well-known integrable Gaudin magnet,
which is soluble via Bethe ansatz.10,34 Though the Hamil-
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tonian appears simple, a detailed microscopic description for
the dynamics of a spin coupled to a spin environment re-
mains an open question.35,36 A degree of success has been
achieved some time ago in bulk systems through the devel-
opment of phenomenological models.37 These models invoke
certain approximations, namely, assumptions of Markovian
dynamics and ensemble averaging. Care should therefore be
taken in applying the same models to the problem of single-
spin decoherence for an electron spin strongly coupled to a
nuclear spin environment, where they may not apply.11,12

For nuclear spinI = 1
2, an exact solution for the electron

spin dynamics has been found in the special case of afully
polarized initial state of the nuclear spin system.11,12 This
solution shows that the electron spin only decays by a frac-
tion ~1/N of its initial value, whereN is the number of
nuclear spins within the extent of the electron wave function.
The decaying fraction was shown to have a nonexponential
tail for long times, which suggests non-Markovian(history
dependent) behavior. For an initial nuclear spin configuration
that is not fully polarized, no exact solution is available and
standard time-dependent perturbation theory fails.11 Subse-
quent exact diagonalization studies on small spin systems13

have shown that the electron spin dynamics are highly de-
pendent on the type of initial nuclear spin configuration, and
the dynamics of a randomly correlated initial nuclear spin
configuration are reproduced by an ensemble average over
direct-product initial states. The unusual(nonexponential)
form of decay, and the fraction of the electron spin that un-
dergoes decay may be of interest in quantum error correction
(QEC) since QEC schemes typically assume exponential de-
cay to zero.

In this paper we formulate a systematic perturbative
theory of electron spin dynamics under the action of the
Fermi contact hyperfine interaction. This theory is valid for
arbitrary nuclear spin polarization andarbitrary nuclear spin
I in high magnetic fields. For nuclear spinI = 1

2 and a fully
polarized nuclear spin system, we recover the exact solution
for the electron spin dynamics within the Born approxima-
tion of our perturbative theory. Our approach follows a
method recently applied to the spin-boson model.38,39 This
method does not suffer from unbounded secular terms that
occur in standard perturbation theory11 and does not involve
Markovian approximations.

This paper is organized as follows. In Sec. II we review
the model Hamiltonian and address the question of realistic
initial conditions. In Sec. III we derive the form of the exact
generalized master equation(GME) for the electron spin dy-
namics. In Sec. IV we consider the leading-order electron
spin dynamics in high magnetic fields. In Sec. V we proceed
to calculate the complete non-Markovian dynamics within
the Born approximation. We describe a procedure that could
be used to measure the non-Markovian dynamics in Sec. VI.
In Sec. VII we show that our method can be extended to
higher orders without the problems of standard perturbation
theory by explicitly calculating the corrections to the longi-
tudinal spin self-energy at fourth order in the nuclear spin-
electron spin flip-flop terms. We conclude in Sec. VIII with a
summary of the results. Technical details are deferred to Ap-
pendixes A–E.

II. MODEL

A. Hamiltonian

We consider a localized electron spin interacting withNtot
nuclear spins via the Fermi contact hyperfine interaction. The
Hamiltonian for this system is

H = bSz + enzIz + h ·S, s1d

where S=sSx,Sy,Szd is the electron spin operator.b
=g* mBBz senz=gImNBzd is the electron(nuclear) Zeeman
splitting in a magnetic fieldBz, with effectiveg-factorg* sgId
for the electron(nuclei) and Bohr (nuclear) magnetonmB

smNd. Further,h=shx,hy,hzd=ok=0
Ntot−1AkI k gives the(quantum)

field generated by an environment of nuclear spins.I k
=sIk

x,Ik
y,Ik

zd is the nuclear spin operator at lattice sitek andAk

is the associated hyperfine coupling constant.Iz=okIk
z is the

total z component of nuclear spin.
The nuclear Zeeman term can be formally eliminated

from the HamiltonianH [Eq. (1)] by transforming to a ro-
tating reference frame. Thez component of total angular mo-
mentum isJz=Sz+ Iz. Adding and subtractingenzJz givesH
=H8+enzJz. The Hamiltonian in the rotating frame,H8, is
then

H8 = H08 + HV8 , s2d

H08 = b8Sz + hzSz, s3d

HV8 = 1
2sh+S− + h−S+d, s4d

where b8=b−enz and we have introducedh±=hx± ihy. The
usual Heisenberg-picture operators in the rotating frame are
(setting"=1) SX8std=eiH8tSXe−iH8t, X=z, + ,S±=Sx± iSy. Not-
ing that fJz,Hg=0, we find they are related to the operators
SXstd=eiHtSXe−iHt in the rest frame by

Sz8std = Szstd, s5d

S+8std = e−ienztS+std. s6d

In the following, kSz8lt and kS+8lt will be evaluated in the
rotating frame, but we omit primes on all expectation values.

The hyperfine coupling constantsAk are given by10

Ak = Av0ucsr kdu2. s7d

Here,v0 is the volume of a crystal unit cell containing one
nuclear spin,csr d is the electron envelope wave function,
andA is the strength of the hyperfine coupling. In GaAs, all
naturally occurring isotopes carry spinI = 3

2. In bulk GaAs,A
has been estimated33 to be A=90 meV sA/ ug* umB=3.5 Td.
This estimate is based on an average over the hyperfine cou-
pling constants for the three nuclear isotopes69Ga,71Ga, and
75As, weighted by their relative abundances. Natural silicon
contains 4.7%29Si, which carriesI = 1

2, and 95%28Si, with
I =0. An electron bound to a phosphorus donor impurity in
natural Si:P interacts withN<102 surrounding29Si nuclear
spins, in which case the hyperfine coupling constant is on the
order ofA<0.1 meV.10 We consider a localized electron in
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its orbital ground state, described by an isotropic envelope
wave function of the form

csrkd = cs0dexpF−
1

2
S rk

l0
DmG . s8d

Whenm=2, csrd is a Gaussian with Bohr radiusl0, and for
m=1, csrd corresponds to a hydrogenlikes state with Bohr
radiusa0=2l0. Ntot nuclear spins are in the system, but the
effective numberN of spins interacting appreciably with the
electron is smaller(see Fig. 1). N is defined as the number of
nuclear spins within radiusl0 of the origin and the integer
index k gives the number of spins within radiusrk. In d
dimensionssrk/ l0dd=k/N. It is convenient to work in energy
units such thatA0/2=1,whereA0 is the coupling constant at
the origin sr0=0d. In these unitsAk takes the simple form

Ak = 2 expF− S k

N
Dm

dG . s9d

B. Initial conditions

1. Sudden approximation

The electron spin and nuclear system are decoupled for
times t,0, and prepared independently in states described
by the density operatorsrSs0d and rIs0d, respectively. Att
=0, the electron and nuclear spin system are brought into
contact “instantaneously,” i.e., the electron spin and nuclear
system are brought into contact over a switching time scale
tsw,47 which is sufficiently small—see Eq.(11), below. The
state of the entire system, described by the total density op-
eratorrstd is then continuous att=0, and is given by

rs0−d = rs0+d = rSs0d ^ rIs0d. s10d

The evolution of the density operatorrstd for tù0 is gov-
erned by the HamiltonianH8 for an electron spin coupled to
an environment of nuclear spins. Since the largest energy
scale in this problem is given byub8+Au, in general the con-
dition

tsw!
2p"

ub8 + Au
s11d

should be satisfied for the sudden approximation[Eq. (10)]
to be valid. In bulk GaAs, 2p" /A.50 ps and for an electron

bound to a phosphorus donor in natural silicon, 2p" /A
.10 ns.

2. Dependence on the nuclear state: zeroth order dynamics

Evolution of the electron spin for different initial nuclear
configurations has been addressed previously.12,13 In Ref. 13
it was found, through numerical study, that the dynamics of
the electron spin were highly dependent on the initial state of
the nuclear system. The goal of this section is to shed more
light on the role of the initial nuclear configuration by evalu-
ating the much simpler zeroth order dynamics, i.e., the elec-
tron spin evolution is evaluated underH8=H08 alone, ne-
glecting the flip-flop termsHV8.

Since fH08 ,Szg=0, kSzlt is constant. However,fH08 ,S±g
Þ0, so the transverse components,kS+lt=kSxlt+ ikSylt, will
have a nontrivial time dependence. We evaluate the expecta-

tion value kS+lt=TrheiH08tS+e−iH08trs0dj with the initial state
given in Eq.(10). After performing a partial trace over the
electron spin Hilbert space, we obtain an expression in terms
of the initial nuclear spin state:

kS+lt = kS+l0 TrIheisb8+hzdtrIs0dj, s12d

where TrI is a partial trace over the nuclear spin space alone.
For simplicity, here we considerI = 1

2, and the coupling con-
stants are taken to be uniform. After enforcing the normal-
ization okAk=2N in units whereA0/2=A/2N=1, the hyper-
fine coupling constants are

Ak = H2, k = 0,1, . . . ,N − 1,

0, k ù N.
J s13d

The zeroth-order electron spin dynamics can now be evalu-
ated exactly for three types of initial nuclear spin configura-
tion:

rI
s1ds0d = ucIs0dlkcIs0du, s14d

rI
s2ds0d = o

N↑=0

N

PsN↑;N, f↑duN↑lkN↑u , s15d

rI
s3ds0d = unlknu . s16d

rI
s1d is a pure state, where ucIs0dl=Pk=0

N sÎf↑u↑kl
+eifkÎ1− f↑u↓kld is chosen to render thez component of
nuclear spin translationally invariant:kcIs0duIk

zucIs0dl
= 1

2s2f↑−1d=p/2, and p=2f↑−1 is the polarization of the
nuclear spin system.fk is an arbitrary site-dependent phase

factor. Psx;n, fd=snx dfxs1− fdn−x is a binomial distribution,

and uN↑l is a product state of the formu↑↑↓¯l with N↑ spins
up and N−N↑ spins down.rI

s2ds0d then corresponds to a
mixed state; this is an ensemble of product states where the
N spins in each product state are selected from a bath of
polarizationp=2f↑−1. rI

s3d, like rI
s1d, is a pure state, but for

this stateunl is chosen to be an eigenstate ofhz with eigen-
value pN (corresponding to a nuclear system with polariza-
tion p): hzunl=pNunl. We insert the initial nuclear spin states

FIG. 1. Schematic of the square modulus of the electron enve-
lope wave functionucsrdu2 and nuclear spins(arrows). k is the
nuclear site index,N is the number of nuclear spins within radius
r = l0, andNtot is the total number of nuclear spins in the system.
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rI
sids0d into (12) to obtain the associated time evolution

kS+lt
sid,

kS+lt
s1,2d = kS+l0 o

N↑=0

N

PsN↑;N, f↑deisb8+MsN↑ddt, s17d

kS+lt
s3d = kS+l0e

isb8+pNdt. s18d

MsN↑d=2N↑−N is the nuclear magnetization on a dot with
N↑ nuclear spins up.

The similarity in dynamics between randomly correlated
(entangled) pure states and mixed states has been demon-
strated for evolution under the full HamiltoniansH8=H08
+HV8d via exact diagonalizations of smallsNtot&19d spin
systems.13 Here, the zeroth order electron spin dynamics are
identical for the pure staterI

s1ds0d and the mixed state
rI

s2ds0d even when the initial pure stateucIs0dl is a direct
product. Direct application of the central limit theorem gives
a Gaussian decay for largeN:

kS+lt
s1,2d < kS+l0e

−st2/2tc
2d+isb8+pNdt, tc =

1
ÎNs1 − p2d

. s19d

Returning to dimension-full units(cf. Table I), the time scale
for this decay is given bytc=s2N" /Adtc<5 ns for a GaAs
quantum dot withp2!1 containingN=105 nuclei andtc
<100 ns for an electron trapped at a shallow donor impurity
in Si:P, withN=102. For an ensemble of nuclear spin states,

Gaussian decay with the time scaletc has been found
previously.11,12,24Gaussian decay for a Hamiltonian with an
Ising coupling of electron and nuclear spins has been
demonstrated36 for a more general class ofpure initial states
and for coupling constantsAk that may vary from site to site.

The initial statesrI
s1,2ds0d contain manyhz eigenstates, and

hence, yield many electron spin precession frequencies. The
inhomogeneousline broadening48 due torI

s1,2ds0d results in a
free-induction decay of the transverse electron spin as given
by (19). This decay is not irreversible. Indeed, the effect of
inhomogeneous line broadening can be removed(at zeroth
order) with a standard Hahn spin echo.40 In experimental
situations, or for applications of quantum computation, it
may not be practical to perform spin echoes between gating
operations. In this case, the quantum superposition ofhz
eigenstates can be removed, in principle, from the initial pure
staterI

s1ds0d by performing a strong(von Neumann) measure-
ment on the nuclear Overhauser fieldpN.49 After the nuclear
system is prepared in anhz eigenstate, to zeroth order the
electron spin dynamics will be given bykS+lt

s3d, i.e., a simple
precession about thez axis with no decay.

When higher-order corrections are taken into account, and
the coupling constantsAk are allowed to vary from site to
site, even an initialhz eigenstate can lead to irreversible de-
cay of the electron spin. This has been shown11,12 in an exact
solution for the specific case of a fully polarized system of
nuclear spins-12 and by exact diagonalization on small
systems.13 The goal of the present work is to perform an
analytical calculation with a larger range of validity(a large
system of nuclear spins with arbitrary polarization and arbi-
trary nuclear spinI in a sufficiently strong magnetic field)
that recovers previous exact results in the relevant limiting
cases. In the rest of this paper, the effect of higher-(beyond
zeroth-) order corrections will be considered for a nuclear
spin system prepared in an arbitraryhz eigenstate:rIs0d
=rI

s3ds0d, as given in Eq.(16). Specifically, the initial state of
the nuclear systemunl can be written as an arbitrary linear
combination ofgn degenerate product states:

unl = o
j=1

gn

a junjl, unjl = ^
i=0

Ntot−1

uI,mi
jl, s20d

where uI ,mil is an eigenstate of the operatorI i
z with eigen-

value mi and hzunjl=fhzgnnunjl for all j , where we write the
matrix elements of any operatorO as ki uOu jl=fOgi j .

III. GENERALIZED MASTER EQUATION

To evaluate the dynamics of the reduced(electron spin)
density operator, we introduce a projection superoperatorP,
defined by its action on an arbitrary operatorO: PO
=rIs0dTrI O. P is chosen to preserve all electron spin expec-
tation values: kSblt=Tr Sbrstd=Tr SbPrstd, b=x,y,z, and
satisfiesP2=P. For factorized initial conditions[Eq. (10)],
Prs0d=rs0d, which is a sufficient condition to rewrite the
von Neumann equationṙstd=−ifH8 ,rstdg in the form of the
exact Nakajima-Zwanzig generalized master equation
(GME),41

TABLE I. Some symbols used in the text. The second column
gives the value in dimensionless units, the third column gives the
value in dimension-full units assumingA0=A/N, and the fourth
column gives the value of each symbol in zero magnetic field. The
values shown are the effective applied fieldb8, the total effective
field (applied field and Overhauser field) seen by the electronvn,
the smallness parameterD, which determines the perturbative re-
gime for electron spin dynamics, the smallness parameterd, which
bounds the deviation of the electron spin from a Markovian solu-
tion, the coefficientsc+ andc−, in terms of the fraction of nuclear
spins I = 1

2 up in the initial statef↑, the electron spin precession
frequencyV0 when the resonance conditionvn=0 is satisfied, the
time scalethf for the decay of the electron spin in the presence of an
initial hz eigenstate of the nuclear system, and the time scaletc for
the decay of the electron spin in the presence of an ensemble of
initial nuclear spin states or a superposition ofhz eigenstates at
zeroth order in the nuclear spin-electron spin flip-flop terms.

Symbol A0/2=1, "=1 A0=A/N Bz=0

b8 b−enz g* mBBz−gImNBz 0

vn b8+2pIN b8+pIA pIA

D N/vn A/2vn 1/2pI

d N/vn
2 A2/4Nvn

2 1/s2pId2N

c+ 1− f↑
c− f↑
V0 ÎsN/2dsc++c−d A/ "Î8N A/ "Î8N

thf /thf 1 2N" /A 2N" /A

tc/tc 1/ÎNs1−p2d s2"/AdÎN/1−p2 s2"/AdÎN/1−p2
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Pṙstd = − iPLPrstd − iE
0

t

dt8 Sst − t8drst8d, s21d

Sstd = − iPLQe−iLQtQLP, s22d

whereSstd is the self-energy superoperator andQ=1−P is
the complement ofP (1 is the identity superoperator). L
=L0+LV is the full Liouvillian, whereLa sa=V,0d is defined
by LaO=fHa8 ,Og. When the initial nuclear state is of the
form rIs0d= unlknu, whereunl is an arbitrary eigenstate ofhz,
as in Eq.(20), P obeys the useful identities

PLVP = 0, s23d

PL0P = L0P. s24d

We apply Eqs.(23) and (24), and perform a trace on(21)
over the nuclear spins to obtain

ṙSstd = − iL0
nrSstd − iE

0

t

dt8 SSst − t8drSst8d, s25d

SSstd = − iTrI Le−iQLtLVrIs0d, s26d

where L0
nO=fSzvn,Og and vn=b8+fhzgnn. SSstd is the

reduced self-energy superoperator.rSstd=TrI rstd= 1
2s0

+kSxltsx+kSyltsy+kSzltsz is the reduced electron spin den-
sity operator, wheresb, b=x,y,z, are the usual Pauli matri-
ces ands0 is the 232 identity.

We iterate the Schwinger–Dyson identity,41

e−iQsL0+LVdt = e−iQL0t − iE
0

t

dt8 e−iQL0st−t8dQLVe−iQLt8 s27d

on (26) to generate a systematic expansion of the reduced
self-energy in terms of the perturbation LiouvillianLV,

SSstd = SS
s2dstd + SS

s4dstd + ¯ , s28d

where the superscript indicates the number of occurrences of
LV. Quite remarkably, to all orders inLV, the equations for
the longitudinal skSzltd and transverseskS+lt=kSxlt+ ikSyltd
electron spin components are decoupled and take the form

kṠzlt = Nzstd − iE
0

t

dt8 Szzst − t8dkSzlt8 s29d

kṠ+lt = ivnkS+lt − iE
0

t

dt8 S++st − t8dkS+lt8. s30d

Details of the expansion[Eq. (28)] are given in Appendix A.
It is most convenient to evaluate the inhomogeneous term
Nzstd and the memory kernelsSzzstd, S++std in terms of their
Laplace transforms:fssd=e0

`dt e−stfstd, Refsg.0. Nzssd and
Szzssd are given in terms of matrix elements of the reduced
self-energy by

Nzssd = −
i

2s
sS↑↑ssd + S↑↓ssdd, s31d

Szzssd = S↑↑ssd − S↑↓ssd. s32d

Explicit expressions for the matrix elementsS++ssd, S↑↑ssd,
and S↑↓ssd are given in Appendix A. We find that the self-
energy at 2sk+1dth order is suppressed at least by the factor
Dk, where

D =
N

vn
. s33d

The parameterD and some other commonly used symbols
are given in dimensionless and dimension-full units in Table
I (Table II). For high magnetic fields ub8u@N suBzu
@ uA/g* mBud, we haveuDu.uN/b8u!1, and the expansion is
well controlled. The nonperturbative regime is given byuDu
ù1, and the perturbative regime byuDu,1. Thus, a pertur-
bative expansion is possible when the electron Zeeman en-
ergy produced by the magnetic and/or Overhauser field(pro-
vided byN nuclear spins) is larger than the single maximum
hyperfine coupling constantA. In the rest of this section we
apply the Born approximationSS.SS

s2d to the reduced self-
energy, and perform the continuum limit for a large uni-
formly polarized nuclear spin system. Later, we also consider
higher orders.

Born approximation: In Born approximation, the memory
kernelsSzzstd, S++std and inhomogeneous termNzstd in (29)
and(30) are replaced by the forms obtained from the lowest-
order self-energy, i.e., Nzstd→Nz

s2dstd, Szzstd→Szz
s2dstd,

S++std→S++
s2dstd. In Laplace space,S↑↑

s2dssd, S↑↓
s2dssd, and

S++
s2dssd are given for an arbitrary initialhz eigenstateunl [see

Eq. (20)] in Appendix A, Eqs.(A20)–(A22). Inserting an
initial stateunl for a large nuclear spin system with uniform
polarization gives(see Appendix B)

S↑↑
s2dssd = − iNc+fI+ss− ivnd + I−ss+ ivndg, s34d

S↑↓
s2dssd = iNc−fI−ss− ivnd + I+ss+ ivndg, s35d

S++
s2dssd = − iNfc−I+ssd + c+I−ssdg, s36d

TABLE II. Sample numerical values for the symbols listed in
Table I for a GaAs quantum dot or an electron trapped at a donor
impurity in natural Si:P.

GaAs Si:P

A 90 meV 0.1meV

N 105 102

Bz 7 T 0.1 T

p 0 0

D 0.25 0.25

d 10−6 10−3

V0 108 s−1 107 s−1

thf 1 ms 1 ms

tc 5 ns 100 ns
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I±ssd =
1

4N
o
k

Ak
2

s7 i
Ak

2

. s37d

In the above, the coefficients

c± = IsI + 1d − kkmsm± 1dll s38d

have been introduced, wherekkFsmdll=om=−I
I PIsmdFsmd for

an arbitrary functionFsmd. PIsmd is the probability of finding
a nuclear spinI with z-projectionm. The polarizationp of
the initial nuclear state is defined through the relationkkmll
=pI. Without loss of generality, in the rest of this paper
p.0, but b8 may take on positive or negative values. As-
suming a uniform polarization in the nuclear spin system, we
can evaluate the nuclear Overhauser field in terms of the
initial polarization,

fhzgnn = o
i

Aikkmll = pIA, s39d

where we have usedoiAi =A.
The continuum limit is performed by takingNtot→`,

while N@1 is kept constant. For timest!ÎN, this allows the
replacement of sums by integralsok→e0

`dk, with small cor-
rections(see Appendix C). We insert the coupling constants
Ak from Eq. (9) into Eq. (37), perform the continuum limit
and make the change of variablesx=Ak/2 to obtain

I±ssd =
d

m
E
0

1

dx
xuln xun

s7 ix
, n =

d

m
− 1. s40d

We use the relationI±st=0d=lims→` sI±ssd to obtain the ini-
tial amplitude

I0 ; I±st = 0d =
d

m
S1

2
Dd/m

GS d

m
D s41d

for an arbitrary ratiod/m. For parabolic confinement in two
dimensions,m=d=2. The integral in(40) can then be per-
formed easily, which yields

I±ssd = sflogss7 id − logssdg ± i sm= d = 2d. s42d

In dimensionless unitsA0/2=1, we findA=okAk→edk Ak,
with the coupling constantsAk given in Eq.(9),

A = A0N
d

m
GS d

m
D = 2N

d

m
GS d

m
D . s43d

IV. HIGH FIELD SOLUTION

In the next section, we will obtain a complete solution to
the GME within the Born approximation. This complete so-
lution will exhibit nonperturbative features(which cannot be
obtained from standard perturbation theory), in the weakly
perturbative regime for the self-energy, which we define by
uDu&1. Here, we find the leading behavior in the strongly
perturbative(high magnetic field) limit, defined by uDu!1,
or equivalently,ub8u@N. We do this in two ways. First, we

apply standard perturbation theory, where we encounter
known difficulties11 (secular terms that grow unbounded in
time). Second, we extract the leading-order spin dynamics
from the non-Markovian remainder term in a Born-Markov
approximation performed directly on the GME. We find that
the secular terms are absent from the GME solution. We then
give a brief description of the dependence of the spin decay
on the form and dimensionality of the electron envelope
wave function.

A. Perturbation theory

Applying standard time-dependent perturbation theory
(see Appendix D) to lowest(second) order inHV8, performing
the continuum limit, and expanding the result to leading or-
der in 1/vn, we find

kS+lt = s+
oscstd + s+

decstd + s+
secstd, s44d

kSzlt = kSzl` + sz
decstd, s45d

where

s+
oscstd = f1 − dI0sc+ + c−dgkS+l0e

ivnt, s46d

s+
decstd = dfC+

+I−std + C−
+I+stdg, s47d

s+
secstd = iDI0sc+ + c−dkS+l0t, s48d

and

kSzl` = f1 − 2dI0sc+ + c−dgkSzl0 + 2pIdI0, s49d

sz
decstd = 2d Refe−ivntsC+

zI−std + C−
zI+stddg. s50d

We have introduced the smallness parameterd=N/vn
2 and

the coefficients

C±
X = Hc±skSzl0 ± 1

2d , X = z,

c±kS+l0, X = + .
J s51d

kSzlt is the sum of a constant contributionkSzl` and a contri-
bution that decays to zerosz

decstd with initial amplitudeOsdd.
The transverse spinkS+lt is the sum of an oscillating compo-
nents+

oscstd, a decaying components+
decstd with initial ampli-

tude Osdd, and a secular terms+
secstd, which grows un-

bounded(linearly) in time. At fourth order inHV8, kSzlt also
contains a secular term. These difficulties, which have been
reported previously,11,12 suggest the need for a more refined
approach. In the next section these problems will be resolved
by working directly with the GME(in Born approximation)
to find the correct leading-order spin dynamics for high mag-
netic fields.

B. Non-Markovian corrections

Markovian dynamics are commonly assumed in spin
systems,21,37 often leading to purely exponential relaxation
and decoherence timesT1, andT2, respectively. For this rea-
son, it is important to understand the nature of corrections to
the standard Born-Markov approximation, and, as will be
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demonstrated in Sec. VI on measurement, there are situations
where the non-Markovian dynamics are dominant and ob-
servable.

To apply the Born-Markov approximation tokS+lt, we
change variableskS+9lt=e−isvn+ṽdtkS+lt in (30) and substitute
S++std→S++

s2dstd, which gives

kṠ+9lt = − iṽkS+9lt − iE
0

t

dt8 e−ivst−t8dS++
s2dst − t8dkS+9lt8,

s52d

where v=vn+ṽ. We define the function cstd
=et

`dt8 e−ivt8S++
s2dst8d, so thatcs0d=S++

s2dss= ivd. We find41

kṠ+9lt = − iscs0d + ṽdkS+9lt + i
d

dt
E

0

t

dt8 cst − t8dkS+9lt8.

s53d

The frequency shiftṽ is chosen to satisfyṽ=−Refcs0dg=
−Re[S++

s2dfs= isvn+ṽdg] to remove the oscillating part from
kS9lt. When uvu.1, and after performing the continuum
limit, we find a vanishing decay rateG=−ImfS++

s2dss= ivdg
=0, which shows that there is no decay in the Markovian
solution for uvu.1. After integrating the resulting equation,
we have

kS+9lt = kS+9l0 + R+std. s54d

The Markovian solution is given bykS+9lt=kS+9l0, and the re-
mainder termR+std= ie0

t dt8 cst− t8dkS+9lt8 gives the exact cor-
rection to the Markovian dynamics(within the Born approxi-
mation). We rewrite the remainder term as

R+std = iE
0

t

dt8 cst − t8dskS+9l0 + R+st8dd. s55d

Under the assumption thatR+std is associated with a small-
ness, we iterate the above expression and evaluate the
leading-order contribution toR+std in an asymptotic expan-
sion for largevn (through a repeated partial integration).
This yields

R+std , − dI0sc+ + c−dkS+l0 + e−ivnts+
decstd, s56d

with s+
decstd given in Eq.(47). The smallness of the remain-

der term for largevn fR+std=Osd=N/vn
2dg justifies the itera-

tion procedure in the high-field limit.
Due to the inhomogeneous termNzstd in (29), the kSzlt

equation does not have a simple convolution form, so it is
not clear if a Markov approximation forkSzlt is well defined.
However, applying the same procedure that was used on
kS+lt to determine the deviation ofkSzlt from its initial value
gives the remainderRzstd, to leading order in 1/vn,

Rzstd , − 2dI0sc+ + c−dkSzl0 + 2pIdI0 + sz
decstd. s57d

Here,sz
decstd is identical to the result from standard pertur-

bation theory, given by Eq.(50).
Corrections to the Markov approximation can indeed be

bounded for all times to a negligible value by making the

parameterd sufficiently small. However, the dynamics with
amplitudeOsdd are completely neglected within a Markov
approximation.

If we usekSzlt=kSzl0+Rzstd and Eq.(54), and return to the
rest frame forkS+lt, Eqs.(56) and(57) recover the high-field
results from standard perturbation theory, given in Eqs.(44)
and (45), with one crucial difference. The result from stan-
dard perturbation theory contains a secular term, which is
absent in the current case. Thus, by performing an expansion
of the self-energy instead of the spin operators directly, the
contributions that led to an unphysical divergence inkS+lt

have been successfully resummed.

C. Dependence on the wave function

The purpose of this section is to evaluate the dependence
of the non-Markovian dynamics on the form of the electron
envelope wave functioncsrd. The high-field dynamics, de-
scribed by Eqs.(56) and (57), depend only on the integrals
I±std. From Eq.(40) we find

I±std =
d

m
E

0

1

dxuln xunxe±ixt, n =
d

m
− 1. s58d

The time scalethf for the initial decay ofI±std is given by the
inverse bandwidth(range of integration) of the above inte-
gral. In dimension-full units,thf=2" /A0. The long-time
asymptotic behavior ofI±std depends sensitively on the di-
mensionalityd and the form of the envelope wave function
through the ratiod/m. Whend/m,2, the major long time
contribution to(58) comes from the upper limitx<1 corre-
sponding to nuclear spins near the origin, and the asymptotic
form of I±std shows slow oscillations with period 4p" /A0,

I±st @ 1d ~ S1

t
Dd/m

e±it,
d

m
, 2. s59d

Whend/mù2, the major contribution comes from the lower
limit x<0, i.e., nuclear spins far from the center, where the
wave function is small. The resulting decay has a slowly
varying (nonoscillatory) envelope,

I±st @ 1d ~
lnn t

t2
, n =

d

m
− 1 ù 1. s60d

Both of the above cases can be realized in physical systems.
For an electron with ans-type hydrogenic wave function
bound, e.g., to a phosphorus donor impurity in Si,m=1 and
d=3, which corresponds to the case in Eq.(60). For an elec-
tron trapped in a parabolic quantum dot, the envelope wave
function is a Gaussiansm=2d and fordø3, the asymptotics
of I±std are described by Eq.(59). These two cases are illus-
trated in Fig. 2, where RefI+std / I0g is shown ford=m=2 and
d=3, m=1.

V. NON-MARKOVIAN DYNAMICS

In this section we describe acompletecalculation for the
non-Markovian electron spin dynamics within the Born ap-
proximation. In the limit of a fully polarized initial state, our
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Born approximation applied tokS+lt recovers the exact solu-
tion of Ref. 11. All results of this section are, however, valid
for arbitrary polarization in high magnetic fields when the
condition uDu!1 is satisfied. In addition, we find that the
remainder term is bounded by the small parameterd,
uRXstduøOsdd, and the stationary limit(long-time average) of
the spin can be determined with the much weaker condition
d!1. In zero magnetic field, and for nuclear spinI = 1

2, the
relevant smallness parameter isd=1/p2N (see Table I).

We evaluate the Laplace transforms of(29) and (30):
SXssd=e0

`dt e−stkSXlt, Refsg.0, X=z, 1, to convert the
integro-differential equations into a pair of linear algebraic
equations which can be solved to obtain

Szssd =
kSzl0 + Nzssd
s+ iSzzssd

, s61d

S+ssd =
kS+l0

s− ivn + S++ssd
. s62d

When the functionsNzssd, Szzssd, S++ssd are known, the
Laplace transforms in(61) and(62) can be inverted by evalu-
ating the Bromwich contour integral:

kSXlt =
1

2pi
E

g−i`

g+i`

ds estSXssd, s63d

where all nonanalyticities ofSXssd lie to the left of the line of
integration. To simplify the calculation, here we specialize to
the case of an electron confined to a two-dimensional para-
bolic quantum dotsd=m=2d, where the coupling constant

integrals can be performed easily to obtain the explicit form
for I±ssd, given in Eq.(42).

Within the Born approximation,Szssd has six branch
points, located ativn, isvn±1d, −ivn, −isvn±1d. We choose
the principal branch for all logarithms, defined by logszd
=lnuzu+ i argszd, where −p,argszdøp, in which case there
are five poles in general. Three of these poles are located on
the imaginary axis and two have finite negative real part.
S+ssd has three branch points(at s=0, ±i), and three poles in
general. One pole has finite negative real part and two are
located on the imaginary axis.

Applying the residue theorem to the integral around the
closed contourC shown in Fig. 3, s1/2pidrCds estSXssd,
gives

kSXlt + bXstd = o
i

Pi
Xstd, X = z, + , s64d

where the pole contributionPi
Xstd=ResfestSXssd ,s=sig is the

residue from the pole atsi, and the branch cut contributions
are

bzstd = o
a=0,+,−

1

p
Imfe−ivntKa

zstdg, s65d

FIG. 2. (Color online) RefI+std / I0g determined numerically from
Eq. (58). For d=3, m=1 (solid line), this corresponds to a hydro-
genlike s-type envelope wave function, and ford=m=2 (dashed
line), corresponding to a two-dimensional Gaussian envelope wave
function. For the hydrogenlike wave function, nuclear spins far
from the origin, with small coupling constants, are responsible for
the slow (nonoscillatory) asymptotic behavior. In contrast, for the
Gaussian envelope wave function nuclear spins near the center, with
larger coupling constants, give rise to oscillations in the asymptotic
behavior ofI+std / I0.

FIG. 3. The closed contourC used for evaluation of the inverse
Laplace transforms ofSXssd, X=z, 1. All nonanalyticities of 1/Dssd
are shown above, whereDssd is given in Eq.(72). Branch cuts are
indicated by dashed lines, branch points by crosses, and open
circles mark pole positions. The contourCa surrounds the branch
cut extending from branch pointga=ai, a=0, 1, 2. When the arc
that closes the contour in the negative-real half-plane is extended to
infinity, CB becomes the Bromwich contour. The pole ats2 has finite
real part and is present forbÞ0. The poles ats1 ands3 are always
located on the imaginary axis.
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b+std =
1

2pi
o

a=0,+,−
Ka

+std, s66d

with branch cut integrals given by

Ka
zstd =E

Ca

ds estSzss− ivnd, s67d

Ka
+std =E

Ca

ds estS+ssd. s68d

The contourCa runs fromga−`+ ih, aroundga, and back to
ga−`− ih, where h→0+. The branch points are given by
ga=ai, a=0, 1, 2, as illustrated in Fig. 3. In(65) we have
used the fact that the branch cut integrals forSzssd come in
complex conjugate pairs, sinceSzss* d=fSzssdg*. This rela-
tionship follows directly from the definition for the Laplace
transform of the real quantitykSzlt.

Combining Eqs.(32), (34), (35), and (42), to obtain
Szz

s2dss− ivnd, and expanding in 1/vn gives

Szz
s2dss− ivnd = S++

s2dssd +
D

4
sc+ + c−d + Osdd, s69d

where we recallD=N/vn and d=N/vn
2. The termsD /4dsc+

+c−d gives rise to a small shift in the effective magnetic field
experienced bykSzlt. To simplify the presentation, this shift
is neglected, but it could easily be included by introducing a
slight difference in the denominators ofSzssd andS+ssd. This
gives

Szss− ivnd .
kSzl0 + Nz

s2dss− ivnd
Dssd

, s70d

S+ssd =
kS+l0

Dssd
. s71d

The denominator Dssd=s− ivn+ iS++
s2dssd and numerator

Nz
s2dss− ivnd are given explicitly by

Dssd = s− ib8 + Nsfc− logss− id + c+ logss+ id

− sc+ + c−dlogssdg, s72d

Nz
s2dss− ivnd = −

D

2
sc+ + c−d − iD

s

2
fc+ logss+ id

− c− logss− id + sc− − c+dlogssdg + Osdd.

s73d

The branch cuts and poles ofSzss− ivnd and S+ssd, as
given in Eqs.(70) and(71), are shown in Fig. 3. We note that
different analytic features will produce different types of dy-
namic behavior after the inversion integral has been evalu-
ated. The branch cut contributionsbXstd have long-time tails
that are nonexponential. Poles with finite negative real part
will give rise to exponential decay. Poles on the imaginary
axis away from the origin will lead to undamped oscillations,
and a pole at the origin will give a constant residue, indepen-
dent of time. The rest of this section is divided accordingly,

describing each type of contribution to the total time evolu-
tion of kSXlt.

A. Nonexponential decay

The contribution toKa
Xstd circling each branch pointga is

zero, so the branch cut integrals can be rewritten as

Ka
Xstd = egatE

0

`

dx e−xtjXsx,gad, s74d

where

jXsx,gad = lim
h→0+

fSXssa
Xsxd + ihd − SXssa

Xsxd − ihdg, s75d

with

sa
Xsxd = − x + ga + H− ivn, X = z,

0, X = + .
J s76d

The form ofKa
Xstd in Eq. (74) suggests a direct procedure

for evaluating the long-time asymptotics of the branch cut
contributions. For long times, the integrand of(74) is cut off
exponentially atx,s1/td→0. To find the asymptotic behav-
ior, we find the leadingx dependence ofjXsx,gad for x
→0+. We substitute this into(74), and find the first term in
an asymptotic expansion of the remaining integral. The
leading-order long-time asymptotics obtained in this way for
all branch cut integralsKa

Xstd are given explicitly in Appen-
dix E. Whenb8=0, the denominatorDssd→0 whens→0,
and the dominant asymptotic behavior comes fromK0

Xst
→`d~1/ ln t. For b8Þ0, Dssd remains finite at thes=0
branch point and the dominant long-time contributions come
from K±

Xst→`d~1/t ln2 t. In zero magnetic field, the
leading-order term in the asymptotic expansion is dominant
for timest@1, but in a finite magnetic field, the leading term
only dominates for timest@eub8u/N. In summary,

bXst @ 1d ~
1

ln t
, b8 = 0, s77d

bXst @ eub8u/Nd ~
1

t ln2 t
, b8 Þ 0. s78d

This is in agreement with the exact result12 for a fully-
polarized system of nuclear spinsI = 1

2 in a two-dimensional
quantum dot. This inverse logarithmic time dependence can-
not be obtained from the high-field solutions of Sec. IV. The
method used here to evaluate the asymptotics of the Born
approximation therefore represents a nontrivial extension of
the exact solution to a nuclear spin system of reduced polar-
ization, but withuDu,1 (see Table I).

The branch cut integrals can be evaluated for shorter
times in a way that is asymptotically exact in a high mag-
netic field. To do this, we expand the integrand of Eq.(74) to
leading nontrivial order in 1/vn, taking care to account for
any singular contributions. For asymptotically large positive
magnetic fields, we find(see Appendix E)
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o
a

Ka
Xstd , − i2pdsC−

XI+std + C+
XI−stdd −

C−
X

Nc−
2e−z0t s79d

with coefficientsC±
X given in (51) and in the above,

z0 = x0 − iesx0d, s80d

x0 =
vn

2pNc−
, s81d

esxd =
x

2pc−N
+

c+ + c−

4pc−x
. s82d

In high magnetic fields, we will show that the exponential
contribution to Eq.(79) cancelswith the contribution from
the pole ats2, P2

Xstd. We stress that this result is only true in
the high-field limit sub8u /Nd@1, where the asymptotics are
valid.

B. Exponential decay

When b8=0, there are no poles with finite real part. For
b8Þ0, a pole(at s2 in Fig. 3) emerges from the branch point
at s=0. The pole contributionP2

Xstd decays exponentially
with rateG2=−Refs2g, and has an envelope that oscillates at
a frequency determined byv2=Imfs2g,

P2
zstd = e−G2te−isvn−v2dtP2

zs0d, s83d

P2
+std = e−G2teiv2tP2

+s0d. s84d

Settings2=−G2+ iv2, we find the decay rateG2, frequency
renormalizationv2, and amplitudes of these pole contribu-
tions from asymptotic solutions to the pair of equations
RefDss2dg=ImfDss2dg=0 and P2

Xs0d=ResfSXssd ,s=s2g for
high and low magnetic fieldsb8. G2, v2, andP2

Xs0d have the
asymptotic field dependences(for high magnetic fieldsb8
@N):

G2 , ±
vn

2pNc7

, vn _ 0, s85d

v2 , ±
G2

2pc7N
±

c+ + c−

4pc7G2
, vn _ 0, s86d

P2
Xs0d ,

C7
X /c7

1 7 i2pNc7

, vn _ 0. s87d

Although it does not correspond to the perturbative regime, it
is interesting to consider the behavior of the exponentially
decaying pole contributionP2

Xstd in the limit b8→0, since the
HamiltonianH in Eq. (1) is known to be integrable forBz
=0 sb8=0d.10 For vanishing positive magnetic fieldssb8
→0+d, with logarithmic corrections inb8 /Eb0, where b0

=Nsc++c−d andE=exph1+Os1/Ndj:

G2 ,
zb8/b0

ln2S b8

Eb0
D , s88d

v2 , −
b8/b0

lnS b8

Eb0
D , s89d

P2
+s0d , −

kS+l0

Nsc+ + c−dlnSb8

b0
D , s90d

P2
zs0d , −

kSzl0 − sc+ + c−d/2pI

Nsc+ + c−dlnSb8

b0
D , s91d

where z=pc−/ sc++c−d. The exponentially decaying contri-
bution vanishes only whenb8=0, and does so in an interval
that is logarithmically narrow. We have determined the rate,
frequency renormalization, and amplitude of the pole contri-
bution P2

+std numerically. The results are given in Fig. 4
along with the above asymptotics for high magnetic fields,
ub8u@N.

FIG. 4. (Color online) Top, numerically determined rateG2

(solid line) and frequency renormalizationv2 (dashed line) as a
function of magnetic fieldb8 /N. Bottom, N RefP2

+s0dg (solid line)
and N ImfP2

+s0dg (dashed line) as a function of magnetic field for
the initial statekS+l0=kSxl0= 1

2. The dotted lines give the asymptot-
ics for high magnetic fields from Eqs.(85)–(87). The parameters
used werep=0.6, N=105, I = 1

2.
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C. Undamped oscillations

The point s1 in Fig. 3 corresponds tos=0 for Szssd, so
undamped oscillations inkSzlt arise only from the pole ats3,

P3
zstd = e−isvn−v3dtP3

zs0d. s92d

Both poles on the imaginary axis give undamped oscillations
in kS+lt:

P1
+std + P3

+std = eiv1tP1
+s0d + eiv3tP3

+s0d. s93d

For high magnetic fields,ub8 /Nu@1,

v1/3 , b8 + 2pIN = vn, b8 _ 0, s94d

v3/1 , 7 1 7 f± expS−
ub8u
c±N

D, b8 _ 0, s95d

where f±= s 1
2

dsc7/c±ds1+Os1/Ndd. The frequency in Eq.(94)
corresponds to a simple precession of the electron spin in the
sum of the magnetic and Overhauser fields. The second fre-
quency, Eq.(95), describes the back-action of the electron
spin, in response to the slow precession of the nuclear spins
in the effective field of the electron.

For largeb8, the pole corresponding to simple precession
is dominant, while the other has a residue that vanishes ex-
ponentially,

P1/3
+ s0d ,

kS+l0

1 + 1
2sc+ + c−dd

, b8 _ 0, s96d

P3/1
+ s0d ,

kS+l0

Nc±
f± expS−

ub8u
c±N

D, b8 _ 0, s97d

P3
zs0d ,

b8

2c
8
N

f+ expS−
ub8u
c+N

D, b8 . 0. s98d

When the magnetic fieldb8 compensates the nuclear Over-
hauser fieldfhzgnn (vn<0, the usual ESR resonance condi-
tion in the rotating frame), the poles at pointss1 ands3 have
equal weight, and are the dominant contribution to the elec-
tron spin dynamics. Since the resonance condition corre-
sponds to the strongly nonperturbative regime,uDu@1, we
delay a detailed discussion of the resonance until Sec. VII.

D. Stationary limit

The contribution tokSzlt from the pole ats=0 gives the
long-time average valuekSzl`, which we define as the sta-
tionary limit,

kSzl` = lim
T→`

1

T
E
0

T

kSzlt dt = lim
s→0

sSzssd. s99d

Within the Born approximation, we find

kSzl` =

kSzl0 + pId + OS N

vn
4D

1 + sc+ + c−dd + OS N

vn
4D . s100d

The result in Eq.(100) follows from Eqs.(61), (31), (32),
(34), (35), and(37) by expanding the numerator and denomi-
nator in 1/vn, using the coupling constantsAk=2e−k/N and
performing the continuum limit.kSzl` gives the stationary
level populations for spin-up and spin-down:r̄↑/↓= 1

2 ± kSzl`,
which would be fixed by the initial conditions in the absence
of the hyperfine interaction. This difference inr̄↑/↓ from the
initial values can be regarded as leakage due to the nuclear
spin environment. We note that the stationary value depends
on the initial valuekSzl0, from which it deviates only by a
small amount of orderd. This means, in particular, that the
system is nonergodic. We will find that corrections tokSzl` at
fourth order in the flip-flop terms will be of orderd2, so that
the stationary limit can be determined even outside of the
perturbative regimeuDu,1, in zero magnetic field, whered
=1/p2N for I = 1

2, providedp@1/ÎN.

E. Summary

The results of this section for low magnetic fields are
summarized in Fig. 5, which corresponds to the weakly per-
turbative case,uDu&1, and displays all of the dynamical fea-
tures outlined here.

In very high magnetic fieldssb8@Nd, corresponding to
the strongly perturbative case, we combine Eqs.(79), (94),

FIG. 5. (Color online) Contributions to the inverse Laplace
transform ofkSzlt. We show the envelopes of the rapidly oscillating
functions 2N RefP3

zstdg+0.3, 2N RefP2
zstdg+0.2, and −Nbzstd, deter-

mined numerically. The long-time asymptotics ofbzstd from Appen-
dix E are also shown(dashed line). The sum of all contributions is
used to obtain the population of the spin-up state:r↑std= 1

2 +kSzlt

(inset). The electron spin begins down:kSzl0=−1
2. Other parameters

wereI = 1
2, N=105, b8=N/2 (this value ofb8 gives, e.g.,Bz.1 T in

GaAs), andp=0.6. The timet is given in units of 2" /A0=2N" /A
for d=m=2 in Eq. (43) (2N" /A.1 ms in GaAs). These values
correspond to the weakly perturbative regime, withD= 10

11,1. Note
that r↑std&1/N for all times.
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(96), and (100) to obtain the asymptotic forms to leading
order in 1/vn:

kS+lt , s+
oscstd + s+

decstd, s101d

kSzlt , kSzl` + sz
decstd, s102d

where the functionss+
oscstd, s+

decstd, kSzl`, sz
decstd, given in

Eqs.(46), (47), (49), and(50) are evaluated ford=m=2. We
stress thatsX

decstd~d!1 is a small fraction of the total spin.
The exponentially decaying contribution fromP2

Xstd is can-
celed by the exponential part of the high-field branch cut,
given in Eq.(79). This result is in agreement with the high-
field asymptotic forms found earlier in Sec. IV. Numerical
results for the level populationsr↑/↓std= 1

2 ± kSzlt are given in
Fig. 6 along with the above asymptotic forms. The secular
term that appeared at lowest order in the standard perturba-
tion expansion ofkS+lt is again absent from the result ob-
tained here via the GME. At fourth order,t-linear terms also
appear in the standard perturbation expansion for the longi-
tudinal spinkSzlt.

11,12Due to the numerator termNzssd in the
expression forSzssd [Eq. (61)], it is not clear if all diver-
gences have been resummed forkSzlt in the perturbative ex-
pansion of the self-energy. This question is addressed in Sec.
VII with an explicit calculation of the fourth-order spin dy-
namics.

In the next section we propose a method that could be
used to probe the non-Markovian electron spin dynamics ex-
perimentally.

VI. MEASUREMENT

In high magnetic fieldssb8@Nd, the decaying fraction of
the electron spin is very smallfOsd<N/b82dg. Nevertheless,
the large separation between the hyperfine interaction decay
time sthf=2" /A0<1 msd and the dipolar correlation time
(tdd<100 ms in GaAs) of the nuclear spins should allow one
to obtain valuable information about the electron spin decay
from a conventional spin echo technique applied to an en-
semble of electron spins.

In principle, the non-Markovian electron spin dynamics
should be visible in the electron spin echo envelope obtained
by applying the conventional Hahn echo sequence,40 sp /2d
−t−px−t−ECHO to a large ensemble of electron spins.
This can be done by conventional means for an electron
trapped at donor impurities in a solid,32 or from a measure-
ment of transport current through a quantum dot.42,43 The
effect of this echo sequence can be summarized as follows.
The electron spins are initially aligned along the external
magnetic fieldBz. At time t=0 the spins are tipped into the
x-y plane with an initialp /2 pulse. Each spin precesses in its
own local effective magnetic fieldvn. The phase factoreivnt

winds in the “forward” direction for a timet. The sign ofvn
(direction of the local magnetic field) is then effectively re-
versed with ap pulse along thex axis:vn→−vn. The phase
factore−ivnt unwinds in the following time intervalt, and the
electron spin magnetization refocuses to give an echo when
the phase factore−ivn2t=1 simultaneously for all spins in the
ensemble. As is usually assumed, we take the pulse times
and measurement time during the echo to be negligible.40

The spin echo envelope gives the ensemble magnetization
(the electron spin expectation value) at the time of the echo
as a function of the free evolution time 2t before the echo.
We note that the decaying fraction ofkSzlt, sz

decstd, also pre-
cesses with the phase factoreivnt [see Eq.(50)], so the same
pulse sequence can also be applied to measure the decay of
the longitudinal spin, omitting the initialp /2 pulse. The
Hahn echo envelope should show a small initial decay by
Osdd in a time scalethf due to the contact hyperfine interac-
tion, followed by a slow decay due to spectral
diffusion21,22,44with a time scaletdd<10−4 s. We note that a
rapid initial decay of the Hahn echo envelope has been mea-
sured for natural Si:P, but is absent in isotopically enriched
28Si:P, in which no nuclei carry spin.45

The fraction of the spin that decays in the timethf is
small, of orderd, in the perturbative regime. It may be dif-
ficult to detect this small fraction using the conventional
Hahn echo. This problem can be reduced by taking advan-
tage of the quantum Zeno effect, using the Carr-Purcell-
Meiboom-Gill (CPMG) echo sequencesp /2d−st−px−t
−ECHO−t−p−x−t−ECHOdrepeat. During each free evolu-
tion time between echoes, the electron decays by an amount
of orderd. At each echo, a measurement of the electron spin
magnetization is performed. For a large ensemble of electron
spins, this measurement determines the staterS of the elec-
tron spin ensemble, forcing the total system into a direct
product of electron and nuclear states, as in Eq.(10). Rep-
etition of such measurement cycles will then reveal the spin
decay due to the hyperfine interaction(by orderd after each

FIG. 6. (Color online) Envelope of the time-dependent spin
level populations in high magnetic fields. We give results from nu-
merical inversion of the Laplace transform(solid line) and the
asymptotic branch cut integral for high magnetic fields combined
with numerical results for the pole positions and residues(dashed
line). Top, spin-down level population when the electron begins in
the up state, along the nuclear spin polarization directionskSzl0

= 1
2d. Bottom, spin-up population for an electron that begins point-

ing in the opposite directionskSzl0=−1
2d. The parameters used were

N=105, p=0.6, I = 1
2, and b8=8N, corresponding to a field ofBz

=14 T in GaAs.
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measurement) until the magnetization envelope reaches its
stationary value. If the electron spin decays during the free
evolution time due to spectral diffusion with a Gaussian en-
velope, then we require the conditions2t /tddd2!d!1 for
the effect of spectral diffusion to be negligible compared to
the effect of the hyperfine interaction.50 The non-Markovian
remainder term gives the total change in electron spin that
has occurred during the free evolution time
2t : uRXs2tdue±ivn2t=1= ukSXl2t−kSXl0ue±ivn2t=1=MXs2td−MXs0d,
whereMXstd is the CPMG magnetization envelope. In high
magnetic fields, and when there are many echoes before the
magnetization envelope decays, the CPMG magnetization
envelopesMXstd will therefore obey the differential equa-
tions

d

dt
MXstd = URXs2td

2t
U

kSXl0=MXstd,e±ivn2t=1
, X = + ,z,

s103d

where the high-field expressions forRXstd, given in Eqs.(56)
and(57), should be used. Thus, the decay rate of the CPMG
echo envelopeMX, as a function of the free evolution time
2t, is a direct probeof the non-Markovian remainder term
RXstd.

Since the magnetization envelopesMXstd are found as the
result of an ensemble measurement, it is necessary to per-
form an average over different nuclear initial statesunl that
may enter into the solutions to Eq.(103). The local field-
dependent phase factors have been removed by the echo se-
quence, so the only effect of the ensemble average is to
average overd=N/vn

2 and c±, which appear in the overall
amplitude ofsd/dtdMXstd. The relative fluctuations in these
quantities are always suppressed by the factor 1/ÎN for a
large nuclear spin system.

In the high-field limit, we find the longitudinal and trans-
verse magnetization envelopesMzstd andM+std decay expo-
nentially with time constantsT1

M andT2
M =2T1

M, respectively.
M+std decays to zero, andMzstd decays to the limiting value

Mzs`d =
1

2

c− − c+

c− + c+
=

pI

c− + c+
. s104d

For nuclear spinI = 1
2, Mzs`d=p/2, i.e., the electron magne-

tization acquires the polarization of the nuclear spin bath.
However, sincec± ~ I2, Mzs`d→0 in the large-spin limit.
Thus, alarger fraction of the electron spin decays in the limit
of large nuclear spin. We give plots of the longitudinal spin
decay rate forMzstd, 1 /T1

M, as a function of the free evolu-
tion time 2t for two types of envelope wave function in Fig.
7. These plots have been determined by integrating Eq.(103)
using the high-field expression forRzstd given in Eq.(57).
No ensemble averaging has been performed to generate these
plots. When 2t!thf, the envelope decay rate increases as a
function of 2t as more of the electron spin is allowed to
decay before each measurement. The rates reach a maximum
at some time 2t<thf, and for 2t@thf, the electron spin satu-
rates at its stationary value and the envelope decay rates
~1/2t are determined only by the free evolution time. Note
that there are slow oscillations in the CPMG decay rate for

an electron in a GaAs quantum dot, with a Gaussian wave
function, but none for an electron trapped at a donor impurity
in Si:P.

VII. BEYOND BORN

The goal of this section is to address the range of validity
of the results obtained in Sec. V. First, we show that the Born
approximation forkS+lt recovers the exact solution forI = 1

2,
p=1. We then discuss the behavior of the Born approxima-
tion near the ESR resonance, wherevn<0. Finally, we con-
sider the expression forkSzlt, obtained by including all
fourth-order corrections to the reduced self-energy, and show
that our expression is well behaved in the continuum limit.

A. Recovery of the exact solution

When I = 1
2 and p=1, we havec−=1 and c+=0, which

gives

S++
s2d = −

i

4o
k

Ak
2

s− i
Ak

2

from Eq. (A22). We insert this into(62) and usevn=b8
+ 1

2okAk=b8+sA/2d to obtain

S+ssd =
kS+l0

s− iSb8 +
A

2
D +

1

4ok

Ak
2

s− iAk/2

. s105d

The Schrödinger equation for a state of the form
ucstdl=a⇑stdu⇑ ↑ ↑¯ l+a⇓stdu⇓ ↑ ↑¯ l+okbkstdu⇑ ↑¯↓k↑ l,

FIG. 7. Longitudinal decay rate 1/T1
M of the CPMG echo enve-

lope as a function of the free evolution time 2t betweenp pulses
for an electron trapped at a phosphorus donor impurity in Si:P(top)
and in a two-dimensional GaAs quantum dot(bottom). The free
evolution time is given in units of 2" /A0<2N" /A [the equality is
exact ford=m=2 in Eq. (43)]. In a GaAs quantum dot containing
N=105 nuclei or for an electron trapped at a shallow donor impurity
in Si:P with N=100 nuclear spins within one Bohr radius, 2N" /A
<1 ms. We have usedI = 1

2, p=0.6, and magnetic field values from
Table II to determine the frequency units on the vertical axis.
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where the large arrow gives the state of the electron spin and
the thin arrows give the states of the nuclear spins, has been
written and solved[for a fully polarized nuclear spin initial
state,bkst=0d=0∀k] in Laplace space to find the long-time
asymptotic electron spin dynamics previously.12 In Ref. 12
the symbolastd was used in place ofa⇓std. The fully polar-
ized stateu⇑ ↑ ↑¯ l is an eigenstate of the full Hamiltonian
H8, so a⇑std=e−si/2dfb8+sA/2dgta⇑s0d, which allows us to write
S+ssd=a⇑

* st=0da⇓ss−si /2dfb8+sA/2dgd. We solve the time-
dependent Schrödinger equation forucstdl in Laplace space,
giving

a⇓ss8d =
a⇓st = 0+d

s− iSb8 +
A

2
D +

1

4ok

Ak
2

s− iAk/2

, s106d

wheres8=s−si /2dfb8+sA/2dg. Thus, in the limit of full po-
larization of the nuclear system, the Born approximation ap-
plied to kS+lt becomes exact. For a fully polarized nuclear
spin systemkSzlt is given by the relationshipkSzlt=

1
2s1

−2ua⇓stdud= 1
2s1−2ukS+lt /a⇑

* st=0du2d. Unfortunately, this re-
sult is not recovered directly from the Born approximation
for kSzlt, as we will show in the next section.

B. Resonance

On resonance,vn=0, i.e., the external fieldb8 compen-
sates the Overhauser fieldfhzgnn. The resonance is well out-
side of the perturbative regime, defined byuDu= uN/vnu,1,
but we proceed in the hope that the Born approximation
applied to the self-energy captures some of the correct be-
havior in the nonperturbative limit. On resonance, the major
contributions tokSzlt come from three poles, ats=0, s=s3,
ands=s3

* ,

kSzlt < kSzl` + 2 RefP3
zstdg. s107d

Before applying the continuum limit, the stationary limit for
kSzlt is

kSzl` =
kSzl0 + 1

4sc− − c+dNtot

1 +
c+ + c−

2
Ntot

s108d

After applying the continuum lmit,Ntot→`, we obtain

kSzl` =
1

2

c− − c+

c− + c+
=

pI

c− + c+
. s109d

For I = 1
2, kSzl`=p/2, which appears to be an intuitive result.

However, evaluating the remaining pole contributions at the
resonance, we find, for a two-dimensional quantum dot,

2 RefP3stdg = FkSzl0 −
2pI

c− + c+
GcossV0td + OS 1

N
D ,

s110d

where

V0 =ÎN

2
sc+ + c−d. s111d

The results in(109) and (110) do not reproduce the exact
solution in the limitp=1, I = 1

2, and do not recover the correct
t=0 value ofkSzlt. The Born approximation forkSzlt, as it has
been defined here, breaks down in the strongly nonperturba-
tive limit, although the transverse components are better be-
haved.

On resonance, the poles ats1 ands3 are equidistant from
the origin, and the major contributions tokS+lt come from
these two poles:kS+lt< P1std+P3std. Evaluating the residues
at these poles,

kS+lt = kS+l0S1 − OS 1

N
DDcossV0td, s112d

which suggests that a fractionOs1/Nd of the spin undergoes
decay, and the rest precesses at a frequencyV0. When I
=1/2, and inproper energy units we haveV0=A/Î8N from
Eq. (111). While it does not violate positivity, as in the case
of kSzlt, this expression should not be taken seriously in gen-
eral, since this result has been obtained well outside of the
perturbative regime. The above does, however, recover the
exact solution in the limitp=1. We show the stationary limit
of kSzlt in Fig. 8, using typical values for an electron con-
fined to a GaAs quantum dot.

C. Fourth-order corrections

The fourth order expansion of the self-energy forkSzlt is
given in Appendix A. The discrete expression for the nu-
merator termNz

s4dssd contains second order poles(secular
terms). The fourth-order expression forSzssd inherits these
second order poles[see Eq.(61)]. When the Laplace trans-
form is inverted, this will result in pole contributions that

FIG. 8. (Color online) kSzl` evaluated within Born approxima-
tion near the resonance, from Eq.(100) whereBz

0=−pA/2g* mB. We
have used the value ofA for GaAs,g* =−0.44, N=105, and I = 1

2.
kSzl0=−1

2 for all three curves and results are given forp=0 (solid
line), p= 6

10 (dotted line), and p=1 (dashed line). The vertical
dashed–dotted lines indicate the magnetic fields where the relevant
smallness parameter is unity:udu=1.
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grow linearly in time. However, when the continuum limit is
performed, which is strictly valid for times shorter thant
<ÎN (see Appendix C), all poles inNz

s4dssd are replaced by
branch cuts. The integrals around the branch cuts can then be
performed to obtain a solution forkSzlt, valid for times t
&ÎN.

All relevant nonanalytic features(branch points and
poles) of Szssd occur in two regions of the complex plane:
about the origins<0, and at high frequencies, arounds
< ± ivn. Inserting an initial nuclear stateunl for a large uni-
form system(see Appendix B), expanding the fourth-order
self-energy to leading order in 1/vn about the pointss=0
ands=−ivn, performing the continuum limit, and evaluating
the integrals over coupling constants, we obtain(where the
overbar and “conj” indicate complex conjugate fors real):

Nz
s4dss− ivnd . −

D2

2
hc+c−fL1ssd + L2ssd − L3ssd − conjg

+ c+
2L1ssd − c−

2L̄1ssdj, s113d

Szz
s4dss− ivnd . − NDhc+c−fL1ssd + L2ssd − L3ssd + conjg

+ c+
2L1ssd + c−

2L̄1ssdj, s114d

Nz
s4dssd .

d2

2
sc+

2 − c−
2dS3

4
+ s2L4ssdD , s115d

Szz
s4dssd . isd2f3spId2 + sc+

2 + c−
2 + 14c+c−ds2L4ssdg,

s116d

with coupling constant integralsLissd given by

L1ssd =
i

2ss+ id
−

1

2
flogss+ id − logssdg, s117d

L3ssd = fs logss+ id − s logssd − ig2, s118d

L4ssd =
1

6
−

1

6s
fs3 + 3s+ 2igflogss+ id − logssdg

−
1

6s
fs3 + 3s− 2igflogss− id − logssdg, s119d

and

L2ssd = logss+ id − logssd − ifss+ idlogss+ id − ss+ 2id

3logss+ 2id + s logssd − ss− idlogss− idg

+ isE
s

s+i

du
logs2u − s− id − logs2u − sd

u
. s120d

Noting that lims→0 s2L4ssd=0, we find the corrections to
the stationary limit forkSzlt. At fourth order in the flip-flop
terms, this gives

kSzl` =

kSzl0 + pId +
3

8
sc+

2 − c−
2dd2 + OS N

vn
4D

1 + sc+ + c−dd − 3spId2d2 + OS N

vn
4D . s121d

The fourth-order corrections to the self-energy at high fre-
quency ss<−ivnd are suppressed relative to the Born ap-
proximation by an additional factor of the smallness param-
eterD, as expected from the analysis given in Appendix A.
However, the low frequencyss<0d part of the fourth-order
self-energy is suppressed by the much smaller parameterd.
This allows us to determine the stationary limit ofkSzlt with
confidence even when the magnetic field is small or zero,
provided the polarization is sufficiently large. Whenb8=0
and I = 1

2, we haved=1/p2N, so the stationary limit can be
determined wheneverp@1/ÎN.

It is relatively straightforward to find the time dependence
as t→` for the Sz branch cut integrals at fourth order. Ne-
glecting contributions from the branch cuts nears.0, which
are suppressed by the factord2, and whenp,1 so that the
coefficientc+Þ0 [cf. Eq. (38)], we find the major contribu-
tions at long times come from the branch points ats= ± i,
whereL2ssd~ log2ss+ id. For any magnetic field, we find

Rzst → `d ~
1

t ln3 t
. s122d

For b8@2pIN, this time dependence will be dominant when
t@expsub8u /Nd. Thus, we find that the fourth-order result has
a faster long-time decay than the Born approximation, and
that the associated asymptotics are valid at the same times as
the Born approximation asymptotics[see Eq.(78)]. Thus,
higher-order corrections may change the character of the
long-time decay in the weakly perturbative regime, where
they are not negligible. In contrast, in the strongly perturba-
tive regime uDu!1, the fourth- and higher-order terms are
negligible, so the Born approximation dominates for all
times t,expsub8u /Nd.

VIII. CONCLUSIONS

We have given a complete analytical description for the
dynamics of an electron spin interacting with a nuclear spin
environment via the Fermi contact hyperfine interaction. In a
large magnetic field, our calculation applies to a nuclear spin
system of arbitrary polarizationp and arbitrary spinI, pre-
pared in an eigenstate of the totalz component of the(quan-
tum) nuclear Overhauser field. In the limit of full polariza-
tion p=1 and nuclear spinI = 1

2, the Born approximation
applied to the self-energy recovers the exact dynamics for
kS+lt and kSzlt, with all nonperturbative effects. We have
shown explicitly that the dynamical behavior we calculate in
the Born approximation is purely non-Markovian, and can be
obtained in the limit of high magnetic fields directly from the
remainder term to a Born-Markov approximation. By per-
forming our expansion on the self-energy superoperator, we
have resummed secular divergences that are present in stan-
dard perturbation theory at lowest(second) order for the
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transverse componentskS+lt and at fourth and higher order
for the longitudinal spinkSzlt. For low magnetic fieldsb8
&N, but still within the perturbative regimesuDu,1d, the
Born approximation for the electron spin shows rich dynam-
ics including nonexponential(inverse logarithm) decay, ex-
ponential decay, and undamped oscillations. For high mag-
netic fieldsb8@N, and ford/m,2, the electron spin shows
a power-law decay(,s1/tdd/m in d dimensions for an isotro-
pic envelope wave function of the formcsrd~exp
f−1

2sr / l0dmg) to its stationary value with a time scalethf

<2N" /A, in agreement with the exact solution for a fully
polarized nuclear spin system.11,12 Above a critical ratio,
d/mù2, the spin decay asymptotics undergo an abrupt
change, signaled by a disappearance of slow oscillations in
the decay envelope. We have summarized these results in
Table III. We have also suggested a method that could be
used to probe the non-Markovian electron spin dynamics di-
rectly, using a standard spin-echo technique. We emphasize
that the electron spin only decays by some small fraction of
its initial value, of orderd (see Tables I and II), and the
decay is generically nonexponential at long times(see Table
III ). The results of this work may therefore be of central
importance to the development of future quantum error cor-
rection schemes, which typically assume an exponential de-
cay to zero. The fact that the stationary value of the spin
depends on the initial value implies that this system is non-
ergodic. Based on this observation, we postulate a general
principle, that nonergodic quantum systems can preserve
phase coherence to a higher degree than systems with er-
godic behavior. It would be interesting to explore this con-
nection further.
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APPENDIX A: SELF-ENERGY EXPANSION

To expand the self-energy superoperatorSS in powers of
LV, we have found it convenient to work in terms of a super-
operator matrix representation. Here we give a brief descrip-
tion of its use and apply it to generate the reduced self-
energy at second order inLV for all spin components, and the
fourth order for the longitudinal spin.

Any operatorO that acts on both the electron spin and
nuclear spin Hilbert spaces can be written in terms of the 2
32 identity, s0, and the Pauli matricessi, i =sx,y,zd,

O = o
i=s0,x,y,zd

cisi , sA1d

where the coefficientsci are operators that act only on the
nuclear spin space. Equivalently,O can be written in terms
of the operatorsr↑/↓= 1

2ss0±szd, S±= 1
2ssx± isyd, i.e.,

O = k↑r↑ + k↓r↓ + k+S− + k−S+ sA2d

with operatorskj that act on the nuclear spin space. We have
labeled the coefficientskj in this way so that whenO=rS is
the electron spin density operator,k±=kS±l. A superoperator
S acting onO maps it to the operatorO8 with new coeffi-
cients:

SO = O8 = k↑8r↑ + k↓8r↓ + k+8S− + k−8S+. sA3d

This allows us to writeO as a vector andS as a 434 matrix,
the elements of which are superoperators that act on the
nuclear spin space, and are determined by(A2) and (A3),

OW = sk↑,k↓,k+,k−dT, sA4d

OW 8 = sk↑8,k↓8,k+8,k−8dT, sA5d

OW 8=fSgOW andka8 =obSabkb, wherea ,b= ↑ , ↓ , + ,−.
Laplace transforming the reduced self-energy given in

(26) yields

SSssd = − i TrI L
1

s+ iQL
LVrIs0d, sA6d

which is expanded in powers ofLV

TABLE III. Results for the decaying fraction of the spinsuRXstdu,Osdd∀ td in various parameter regimes. Results are given for both
remainder termsRXstd, X=z, 1, within the Born approximation for the self-energySS.SS

s2d and for Rzstd at fourth order in the nuclear
spin-electron spin flip-flop termsSS.SS

s2d+SS
s4d whenpÞ1. The first three columns are exact in the limit of full polarizationsp=1d of the

nuclear spin system, but still may describe the correct electron spin dynamics in the weakly perturbative regime,uDu&1. The last two
columns give the correct electron spin dynamics in the strongly perturbative regime,uDu!1.

SS.SS
s2d

SS.SS
s2d

SS.SS
s2d

SS.SS
s2d+SS

s4d
SS.SS

s2d
SS.SS

s2d

b8=0 b8Þ0 b8Þ0 pÞ1 uDu!1 uDu!1

d/m=1 d/m=1 d/m=1 d/m=1 d/m,2 d/mù2

t@1 G2
−1* t@1 t@eub8u/N@G2

−1 t@eub8u/N, b8@2pIN t@1 t@1

RXstd~ 1/ ln t eiv2te−G2t 1/t ln2 t 1/t ln3 t, X=z s1/tdd/me±it lnn t / t2, n= d/m−1
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1

s+ iQL
= o

k=0

`
1

s+ iQL0
S− iQLV

1

s+ iQL0
Dk

. sA7d

To obtain these higher order terms in the self-energy, we
form products of the free propagator 1/ss+ iQL0d and the
perturbationQLV. The free propagator is diagonal in the ba-
sis of hr↑/↓ ,S±j, and is given in terms of 232 blocks by

F 1

s+ iQL0
G = SGI

0ssd 0

0 GI
08ssd

D , sA8d

where

GI
0ssd = SG↑

0ssd 0

0 G↓
0ssd

D , sA9d

GI
08ssd = SG+

0ssd 0

0 G−
0ssd

D . sA10d

In the above,

G↑/↓
0 ssd =

1

s± i
Q

2
Lv

−

, sA11d

G±
0ssd =

1

s7 i
Q

2
Lv

+

, sA12d

where we define the new(nuclear spin) Liouvillians by their
action on an arbitrary operatorO :Lv

±O=fv ,Og±, v=b8+hz.
The perturbation term contains only off-diagonal elements
when written in terms of 232 blocks:

fQLVg = S 0 VI

VI8 0
D , sA13d

where we find

VI =
Q

2
S h−

L − h+
R

− h−
R h+

L D, VI8 =
Q

2
S h+

L − h+
R

− h−
R h−

L D . sA14d

In the above expression, we have introduced superoperators
for right and left multiplication,

ORA = AO, sA15d

OLA = OA. sA16d

Only even powers ofLV can contribute to the final trace
over the nuclear system, so we consider a general term in the
expansion of the self-energy,

SfQLVgF 1

s+ iQL0
GD2k

= SSk 0

0 Sk8
D , sA17d

Sk = sVIGI
08VI8GI

0dk, Sk8 = sVI8GI
0VIGI

08dk. sA18d

By inspection of the form ofVI, VI8, we find that the 232
matrix TrI Sk8rIs0d is diagonal whenrIs0d= unlknu, and unl is
an eigenstate ofhz [as in Eq.(20)], since the off-diagonal
components always contain terms proportional toh+

2 or h−
2.

Thus, to all orders in the perturbationLV, the reduced self-
energy takes the form

SSssd =1
S↑↑ssd S↑↓ssd 0 0

S↓↑ssd S↓↓ssd 0 0

0 0 S++ssd 0

0 0 0 S−−ssd
2 . sA19d

The number of matrix elements left to calculate can be fur-
ther reduced with the relationshipsS↑↑ssd=−S↓↑ssd, S↑↓ssd
=−S↓↓ssd, which follow directly from the condition TrṙS

=0⇒ ṙ↑std=−ṙ↓std and the GME ṙa=−iob=↑,↓e0
t dt8 Sabst

− t8drbst8d, a= ↑ ,↓. By direct calculation we find

S↑↑
s2dssd = −

i

4o
k

fh−gnkfh+gknS 1

s− iv̄nk

+
1

s+ iv̄nk
D ,

sA20d

S↑↓
s2dssd =

i

4o
k

fh+gnkfh−gknS 1

s− iv̄nk

+
1

s+ iv̄nk
D ,

sA21d

S++
s2dssd = −

i

4o
k

sfh+gnkfh−gkn + fh−gnkfh+gknd
1

s− idvnk
.

sA22d

In the above,v̄nk=
1
2svn+vkd, dvnk=

1
2svn−vkd, and v j =b8

+fhzg j j . At fourth order,

S↑↑
s4dssd =

i

16S o
k1k2k3

fh−gnk3
fh+gk3k2

fh−gk2k1
fh+gk1nfs1 − dnk2

ds4A
k1k2k3ssd + s4B

k1k2k3ssdg −
1

s
o
k1k2

fh−gnk2
fh+gk2nfh+gnk1

fh−gk1ns4C
k1k2ssdD ,

sA23d

S↑↓
s4dssd = −

i

16S o
k1k2k3

fh+gnk3
fh−gk3k2

fh+gk2k1
fh−gk1nfs1 − dnk2

ds̄4A
k1k2k3ssd + s̄4B

k1k2k3ssdg −
1

s
o
k1k2

fh+gnk2
fh−gk2nfh−gnk1

fh+gk1ns4C
k1k2ssdD ,

sA24d

where the overbar indicates complex conjugation fors real and
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s4A
k1k2k3ssd =

1

s− idvnk2

1

s− iv̄nk1

S 1

s− iv̄nk3

+
1

s+ iv̄k2k3

D +
1

s+ idvnk2

1

s+ iv̄nk3

S 1

s+ iv̄nk1

+
1

s− iv̄k1k2

D , sA25d

s4B
k1k2k3ssd =

1

s− idvk1k3

S 1

s− iv̄k1k2

+
1

s+ iv̄k2k3

DS 1

s+ iv̄nk3

+
1

s− iv̄k1n
D , sA26d

s4C
k1k2ssd =

4s2

ss2 + v̄nk1

2 dss2 + v̄nk2

2 d
. sA27d

Every two powers of the perturbationLV beyond the Born
approximation are associated with an additional sum over
<N nuclear spin sites, since every spin flip up must be paired
with a flop down. Nonanalyticities(poles) of the self-energy
occur in two regions of the complex plane: at high frequen-
cies, nears< ± ivn, and at low frequency, arounds<0. Ex-
panding near either of these two points gives an extra factor
1/vn for every two orders ofQLV1/ss− iQL0d beyond the
Born approximation. The self-energy at 2sk+1dth order is
then suppressed at least by the factorDk, whereD=N/vn,

SS
s2sk+1ddss< 0d ~ Dk, sA28d

SS
s2sk+1ddss< ± ivnd ~ Dk. sA29d

Thus, in general, for the perturbation series to be well con-
trolled, we requireuDu!1.

APPENDIX B: COEFFICIENTS c±

We are interested in evaluating the expressions given in
Eqs. (A20)–(A22). To do this, we investigate objects of the
form

o
k

fh±gnkfh7gknf7skd, sB1d

where f7skd is a function of the state indexk. Insertingunl,
as given in Eq.(20), into (B1), we find

o
k

fh±gnkfh7gknf7skd = o
k

Ak
2c7

k f7skd, sB2d

where the state indexk now labels sites at which a nuclear
spin has been raised or lowered, and with the help of the
matrix elements, kI ,m±1uI±uI ,ml=ÎsI 7mdsI ±m+1d, we
have

c±
k = o

j=1

gn

ua ju2fIsI + 1d − mk
j smk

j ± 1dg. sB3d

We assume the initial nuclear system is uniform, so thatc±
k is

independent of the site indexk, and for a large number of
degenerate statesgn@1 that contribute tounl, we replace the
sum over weighting factorsua ju2 by an appropriate probabil-
ity distribution. This givesc±

k =c± with c± defined in Eq.(38)
of the main text.

APPENDIX C: CONTINUUM LIMIT

Here, we find a rigorous bound on corrections to the
memory kernels, after we have changed sums to integrals.
We consider the real-time version of the functionsI±ssd,
given in (37), with coupling constants for a Gaussian wave
function in two dimensions[m=d=2 in Eq. (9)],

I±std =
1

4N
o
k

Ak
2e±iAkt/2, Ak = 2e−k/N. sC1d

The Euler-MacLauren formula gives an upper bound to the
corrections involved in the transformation of sums to inte-
grals for a summand that is a smooth monotonic function of
its argument. For timest@1, the summand ofI±std is not
monotonic on the intervalk=1, . . . ,N, where it has appre-
ciable weight. We divide the sum intot subintervals of width
Dk<N/ t. The summand is then monotonic over each of the
t subintervals, and the Euler-MacLauren formula gives a re-
mainder Rø2/N when the sum over each subinterval is
changed to an integral. Adding the errors incurred for each
subinterval, we find(for t@1),

I±std = Fse±it − 1d
1

t2
7

ie±it

t
G + Rstd. sC2d

The remainder termuRstduø2t /N, so the corrections can be-
come comparable to the amplitude of the integral itself when
t<ÎN/2. This represents a strict lower bound to the time
scale where the continuum limit is valid form=d=2.

APPENDIX D: PERTURBATION THEORY

In this Appendix we apply standard perturbation theory to
the problem of finding the electron spin dynamics. We do
this to illustrate the connection between our perturbative ex-
pansion of the self-energy and the standard one, and to dem-
onstrate the need for a nonperturbative approach.

We choose the initial state

uil = sÎr↑s0du↑l + eifÎ1 − r↑s0du↓ld ^ unl, sD1d

where unl is an eigenstate ofhz and kSzl0= 1
2sr↑s0d−r↓s0dd,

kS+l0=Îr↑s0ds1−r↓s0ddeif. We then apply standard interac-
tion picture perturbation theory to evaluatekSXlt, X= + ,z. To
lowest nontrivial(second) order in the perturbationHV, we
find
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kS+lt = eivntkS+l0 −
kS+l0

4 o
k

„fh−gnkfh+gkngk
−std

+ fh+gnkfh−gkngk
+std…, sD2d

gk
± =

teivnt

ivnk

−
1

v̄nk
2 se±isAk/2dt − eivntd, sD3d

kSzlt = kSzl0 +
1

2o
k

†„1 − r↑s0d…fh+gnkfh−gkn

− r↑s0dfh−gnkfh+gkn‡
f1 − cossv̄nktdg

v̄nk
2 . sD4d

The expression forkSzlt has been given previously,11,12

where it was noted that the perturbative expression for the
transverse componentskS+lt contains a term that grows un-
bounded in time(as above). Inserting an initial nuclear state
unl with uniform polarization, performing the continuum
limit, and expanding to leading order in 1/vn gives the final
result, presented in Eqs.(44) and (45).

APPENDIX E: BRANCH CUT ASYMPTOTICS

1. Long times

Here we give explicit expressions for the leading-order
terms in asymptotic expansions of the branch cut integrals
for long times,

K0
zst → `d = − i

p

sc+ + c−dN
f2kSzl0 − Dsc+ + c−dg

1

ln t
+ OS 1

ln2 t
D, b8 = 0, sE1d

K0
zst → `d =

ip

b8
F N

b8
sc+ + c−df2kSzl0 − Dg − 2pIDG 1

t2
+ OS 1

t3
D, b8 Þ 0, sE2d

K±
zst → `d = 7

pe±it

Nc7
F2kSzl0 7 DSb8

N
± sc+ + c−d 7 c±2 ln 2DG 1

t ln2 t
+ OS 1

t ln3 t
D , sE3d

K0
+st → `d = − i

2p

sc+ + c−dN
kS+l0

1

ln t
+ OS 1

ln2 t
D, b8 = 0, sE4d

K0
+st → `d = i2psc+ + c−d

N

sb8d2kS+l0
1

t2
+ OS 1

t3
D, b8 Þ 0, sE5d

K±
+st → `d = 7

2pe±it

Nc7

kS+l0
1

t ln2 t
+ OS 1

t ln3 t
D . sE6d

2. High fields

For asymptotically large magnetic fields, thex depen-
dence of the denominator termDs−x+ga± ihd that appears in
the branch cut integrals[Eq. (74)] is dominated by the con-
stant contribution,−ivn, except at very large values ofx,
where it may be thatDs−x+ga± ihd<0. We expand the nu-
merator Nzssa

Xsxd± ihd and denominator in 1/x, retaining
terms up toOs1d in the numerator andOs1/xd in the de-
nominator. Expanding to leading order in 1/x0~1/vn, except
where there is the possibility of a near-singular contribution
sD.0d, and assumingb8.0, we find the branch cut inte-
grals

K+
Xstd . 2pidC−

Xx0E
−i

−i+`

dz
ze−zt

z− z0
, sE7d

K0
Xstd . − 2pidsC+

X + C−
Xdx0E

0

`

dz
ze−zt

z− z0
, sE8d

K−
Xstd . − 2pidC+

XE
i

i+`

dz ze−zt, sE9d

wherez0 andx0 are defined in Eqs.(80) and(81). The coef-
ficients C±

X are given by Eq.(51). The sum over all three
branch cut integrals can now be written in terms of two con-
tour integrals,

o
a=s0,+,−d

Ka
Xstd = − 2pidC−

Xx0E
C9

dz
ze−zt

z− z0

− 2pidC+
XE

C8
dz ze−zt. sE10d
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C9 runs clockwise from the origin toz=` along the real axis,
then returns toz=−i, enclosing the pole atz=z0. C8 runs
from z= i to z= i +`, then returns along the real axis toz=0.
These integrals can be evaluated immediately by closing the

contours along the imaginary axis. The sum of the contribu-
tions along the imaginary axis and from the residue of the
pole atz=z0 gives the result in Eq.(79).
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