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We review recent theoretical and experimental advances

toward understanding the effects of nuclear spins in confined

nanostructures. These systems, which include quantum dots,

defect centers, and molecular magnets, are particularly

interesting for their importance in quantum information

processing devices, which aim to coherently manipulate single

electron spins with high precision. On one hand, interactions

between confined electron spins and a nuclear-spin environ-

ment provide a decoherence source for the electron, and on the

other, a strong effective magnetic field that can be used to

execute local coherent rotations. A great deal of effort has been

directed toward understanding the details of the relevant

decoherence processes and to find new methods to manipulate

the coupled electron–nuclear system.A sequence of spectacular

new results have provided understanding of spin-bath decoher-

ence, nuclear spin diffusion, and preparation of the nuclear state
through dynamic polarization and more general manipulation

of the nuclear-spin density matrix through ‘‘state narrowing.’’

These results demonstrate the richness of this physical system

and promise many new mysteries for the future.
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction The last several years have seen a
series of breakthroughs in single-spin measurement and
manipulation, motivated in large part by the potential for
future quantum information processing devices [1, 2]. The
spin coherence times for confined electrons in semiconduc-
tor quantum dots [3–10], phosphorus donor impurities in
silicon [11, 12], nitrogen vacancy (NV) centers in diamond
[13–15], and in molecular magnets [16, 17] is typically
limited by the interaction between the electron and nuclear
spins in the host material. The coherent manipulation of
electron spins therefore requires a complete understanding of
the nuclear spins in these materials, typically in the presence
of localized electrons.

A great deal of work has been done many years ago on
ensembles of electron spins at donor impurities, including
experimental [18–20] and theoretical [21, 22] studies of
electron spin relaxation [21, 19] and dephasing [20],
dynamical nuclear polarization [18, 23, 24], and nuclear
spin diffusion [24]. Much can be learned (and has been
learned) from these past studies, but at the same time, new
experiments performed on single isolated spins in solids
provide a new system,which cannot be generically described
by previous work relying on inhomogeneous ensembles.

To avoid complications due to nuclear spins, it may
be advantageous to construct nanostructures from graphene
[25], carbon nanotubes [26, 27], or Si/SiGe [28], where
the majority isotopes carry no nuclear spin. However, in
addition to detrimental effects of nuclear spins (decoher-
ence), a polarized nuclear-spin system provides an effective
magnetic field, which can be used to split electron-spin
states, allowing for highly local control of single spins [29].
Alternatively, long-lived nuclear spin states may serve as a
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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robust quantum [30, 31], or classical [32] memory device.
Newfound understanding in methods of generating large
sustained nuclear polarization, coupled with knowledge of
the dissipation of this polarization may help significantly
advance the field of biomedical imaging using nuclear
magnetic resonance (NMR), which often relies on a large
nuclear polarization to enhance sensitivity [33]. Finally, a
careful analysis of electron–nuclear interactions as well as
dynamic polarization in nanostructures can reveal new
insights in strongly correlated electron systems, through the
use of innovative NMR techniques [34–41].

In this article, we do not set out to describe all of the
interesting physical effects involving nuclear spins in
nanostructures. Instead, we attempt to give a brief review
of the most important fundamental concepts needed to
understand the relevant phenomena and summarize what we
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feel to be some of the most important recent results from
the field.

The rest of this article is organized as follows: in
Section 2 we review the major sources of interaction for
nuclear spins in a solid, with a focus on nanostructures,
allowing for the possibility of a strongly interacting many-
electron system in the nuclear environment. Section 3 gives a
summary of recent results on dynamic nuclear polarization
(DNP) for nuclear spins in quantum dots. In Section 4, we
review the important problem of decoherence for a single
electron spin interacting with a bath of nuclear spins, and in
Section 5 we conclude with an overview of what we believe
to be some of the outstanding questions in this emerging
field.

2 Nuclear spin interactions Before moving on to a
survey of the recent literature, here we review the relevant
Hamiltonians for nuclear spins in a solid. A detailed
discussion of these interactions can be found, for instance,
in the well-known books by Abragam [42] and Slichter [43],
but here we focus on aspects of these interactions that are
specifically relevant to nanostructures, where confinement of
an electron system is important.

The HamiltonianHI for a collection of nuclear spins in a
solid divides naturally into five distinct terms:
Tab
coup
som
cent

69Ga
71Ga
75As
113In
115In
13C
29Si
14N
15N

Note
aSee
HI ¼ HZ þ Hhf þ Horb þ Hdd þ HQ: (1)
Here, HZ ¼ �
P

k g jk
IzkB describes the Zeeman energy in a

magnetic field B for a collection of nuclear spins of species
jk at sites k with associated gyromagnetic ratios g jk

(we set
�h ¼ 1, see Table 1 for numerical values of g j for some
relevant isotopes). The hyperfine interaction between a
collection of electron and nuclear spins is divided into two
terms:Hhf¼HcþHa whereHc is the isotropic (contact) part
(see Section 2.1) and Ha gives the anisotropic hyperfine
interaction (see Section 2.2). Horb describes the coupling of
nuclear spin to the electron orbital angular momentum
le 1 Nuclear spin, gyromagnetic ratios, contact hyperfine
ling strengths in InxGa1�xAs, and quadrupole moments for
e isotopes that appear in quantum dots and nitrogen vacancy
ers in diamond.

I g j (rad T
�1 s�1) Aj (m eV) Qj (mb)

3/2 6.43� 107 74 [49] a 171 [58]
3/2 8.18� 107 96 [49] a 107 [58]
3/2 4.60� 107 86 [49] a 314 [58]
9/2 5.88� 107 110 [50] a 759 [58]
9/2 5.90� 107 110 [50] a 770 [58]
1/2 6.73� 107 – 0
1/2 �5.32� 107 – 0
1 1.93� 107 – 20.44 [58]
1/2 �2.71� 107 – 0

that 1mb¼ 10�31m2;

footnote 2 on p. 3.
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Figure 1 (online colour at: www.pss-b.com) Schematic diagram
illustrating the electron envelope function c0(r), the k¼ 0 Bloch
amplitude u(r), and potential V(r) created by positively charged
nuclear cores.
(Section 2.3), Hdd gives the magnetic dipole–dipole
coupling between a collection of nuclear spins (Section
2.4) and HQ describes the quadrupolar interaction between
nuclear spins and an electric-field gradient (Section 2.5).

2.1 Contact hyperfine interaction The contact
interaction was first derived by Fermi [44] in 1930 to
describe the spectroscopically observed hyperfine splitting
of alkalimetals. The contact interaction is themost important
term for describing electron-spin coherence inmaterialswith
a primarily s-type conduction band (see Section 4). This
includes all III–V semiconductors and silicon. For many
electrons interacting with many nuclear spins in a solid, the
contact interaction can be written generally as:
1 Du

g-f
See

2 Sin

vol

to:

wit

res

ado

in a

app

int

nor

www
Hc ¼ �m0

4p
� 8p

3
gS

X
k

g jkSðrkÞ � Ik; (2)
where gS ¼ �2mB is the gyromagnetic ratio for a free
electron,1 Ik is the spin operator for a nucleus at atomic site
k, and the electron spin density operator S(r) is given by:
SðrÞ ¼ 1

2

X
s;s

0¼f";#g

cy
sðrÞsss

0cs
0 ðrÞ; (3)
with field operators defined by csðrÞ ¼
P

n fnðrÞcns and
here cns annihilates an electron in the state with spin s and
single-particle orbital fnðrÞ. sss0 ¼ sh js s0j i gives the matrix
elements for the vector of Pauli matrices. The wave
functions fnðrÞ are assumed to form a complete orthonormal
set.

At low temperature, and neglecting possible valley
degeneracy, a single electron confined to a quantum dot
or bound to a donor impurity occupies a nondegenerate
ground-state orbital rjf0h i ¼ f0ðrÞ, which can be written
(in the envelope-function approximation [46]) as f0ðrÞ ¼ffiffiffiffiffi
n0

p
uðrÞc0ðrÞ, where v0 is the atomic volume,2 u(r) is the

lattice-periodic k¼ 0 Bloch amplitude, and c0ðrÞ is the
slowly varying ground-state envelope function (see Fig. 1).
When the electron orbital level spacing is large compared to
kBT and the scale of the hyperfine coupling, the electron–
nuclear spin system will be well-described by the effective
Hamiltonian, projected onto the ground-state orbital:
Heff
c ¼ f0h jH f0j i ¼

X
k

AkS � Ik; (4)
e to the short-ranged nature of the contact interaction, the free-electron

actor (g ’ 2) appears here, not the (renormalized) effective g-factor g�.
the discussion, e.g., by Yafet [45].

ce n0 is chosen to be the atomic volume (rather than the primitive-cell

ume), the Bloch amplitudes are normalized over a unit cellV accordingR
V
d3rjuðrÞj2 ¼ na, where na is the number of atoms in V, consistent

h Refs. [7, 47, 48]. This normalization has the advantage that the

ulting value of Aj is independent of na. However, it is different from that

pted by other authors [5, 49–51], who take
R
V
d3rjuðrÞj2 ¼ 1, resulting

hyperfine coupling constant Aj0 ¼ Aj=na. In III–V semiconductors, the

ropriate factor of na¼ 2 for a Zincblende primitive cell should be taken

o account when comparing Aj values calculated using the two distinct

malizations.

.pss-b.com
where Ak ¼ Ajkv0jc0ðrkÞj2, and
Ajk ¼ �m0

4p
� 8p

3
gSg jk juðrkÞj

2
(5)
is the total hyperfine coupling constant for a nucleus of
species jk at position rk within a crystal unit cell. The free-
electron gyromagnetic ratio is always negative (gS< 0), but
the nuclear gyromagnetic ratio g j can take either sign (see
Table 1), leading to a hyperfine coupling constant that is
either positive or negative [52].

The hyperfine coupling constant Aj depends on both the
nuclear isotope j (through g j) and electronic properies of
the relevant material (through the Bloch amplitude u(rj)).
The dependence of Aj on the electronic structure makes
estimates of hyperfine coupling constants particularly
challenging. When direct experimental values for Aj are
unavailable, it is often necessary to rely on comparisons to
related materials [49], tight-binding methods [48, 53, 54], or
ab initio calculations [55–57] for small clusters.

In a material containing several different nuclear
isotopic species j, each with associated abundance nj, it is
common to define an average hyperfine coupling constant.
Here, we take the r.m.s. average:
A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

njðAjÞ2
s

: (6)
Gated lateral quantum dots are typically formed in a
GaAs two-dimensional electron gas (2DEG). In GaAs, the
three naturally occurring isotopes, 69Ga, 71Ga, and 75As, all
have nuclear spin I¼ 3/2 and the relative abundances are
n69Ga ¼ 0:3, n71Ga ¼ 0:2, and n75As ¼ 0:5. Using these
abundances with the coupling constants listed in Table 1
gives an r.m.s. coupling strength A¼ 85meV. This coupling
is rather strong; a fully polarized nuclear spin system leads to
an effective magnetic (Overhauser) field of jIA/g�mBj � 5 T
in GaAs (using the bulk value of g�¼�0.4).

2.2 Anisotropic hyperfine interaction While the
contact interaction is dominant in the s-type conduction band
of III–V semiconductors and silicon, bands primarily
composed of p-orbitals (e.g., the valence band in III–V
semiconductors [48], or the p-orbitals in carbon nanotubes
and graphene [59]) have a wave function that vanishes at the
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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nuclear sites, resulting in a vanishing contact interaction. In
this case, the largest sources of electron–nuclear coupling are
provided by the anisotropic hyperfine interaction (see below)
and the coupling to orbital angular momentum (Section 2.3).
The anisotropic interaction is also important for defects in
diamond and molecular magnets, where the electronic
wavefunctions have low symmetry.

The anisotropic hyperfine interaction for a collection of
electron and nuclear spins can be written most generally in
terms of a Hamiltonian density: Ha ¼

R
d3rHaðrÞ, where
� 20
HaðrÞ ¼
X
k

SðrÞ � T$kðrÞ � Ik, (7)
and T
$
kðrÞ is a traceless tensor with components given by:
Tab
k ðrÞ ¼ m0

4p
gSg jk

dab � 3n̂ak n̂
b
k

� �
jr� rkj3

: (8)
Here, a, b¼ {x, y, z}, and n̂k ¼ ðr� rkÞ=jr� rkj is a unit
vector, written in terms of the electron position operator r.

As in Section 2.1, if the many-electron wave function is
known, and the energy gap to the first excited state is large
compared to the hyperfine coupling strength, we can form
an effective Hamiltonian using Eq. (7) from the expectation
value of the vector SðrÞ � T$kðrÞ with respect to the electron
state. For a single electron in a localized orbital that is far
from the nuclear sites, Eq. (7) reduces to the classical dipole–
dipole coupling between the magnetic moments of the
electron and nuclei. However, typically the largest contri-
bution comes from an ‘‘on-site’’ component, describing the
electron density localized near the nucleus due to the Bloch
amplitude u(r) (see Fig. 1) [45]. A spherically symmetric
distribution of electron density around the nucleus results in
an average of Eq. (7) to zero. Thus, for an electron in an s-
type conduction band, the on-site component of (7) vanishes
and the remaining contributions will be much weaker long-
ranged dipole–dipole interactions between the nuclear spin
and electron spin density at distant atomic sites.

2.3 Nuclear–orbital interaction The Pauli equation
for a nonrelativistic electronwithmomentump in the presence
of a vector potential A contains terms proportional to A � p. If
A is generated by the magnetic moments of nuclear spins Ik
located throughout a crystal, these terms can be rewritten as
Horb ¼ �m0

4p

X
k

gSg jk

Lk � Ik
jr� rkj3

: (9)
Here, Lk is the operator for the total electron orbital angular
momentum about the nuclear site rk. Equation (9) is
particularly important for describing the electron–nuclear
interaction for electrons in bands primarily composed of
atomic orbitals with nonzero angular momentum. For
example, this term, along with Eq. (7), provides the
dominant source of electron–nuclear interaction for
electrons in the p-type valence band of III–V semiconduc-
tors (i.e., for holes) [45, 48, 51, 60].
09 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2.4 Nuclear dipolar interaction In addition to
the electron–nuclear interactions discussed above, the
dipole–dipole interaction between individual nuclear spin
magnetic moments plays an important role. The dipole–
dipole Hamiltonian can be written as:
Hdd ¼
X
k 6¼l

Ik � T
$
kl � Il; (10)
where the components of the tensor T
$

kl are:
Tab
kl ¼ m0

4p
gjkg jl

dab � 3r̂aklr̂
b
kl

2r3kl
: (11)
Here, rkl ¼ rk � rl and r̂kl ¼ rkl=rkl. Equation (10) contains
terms that change the total z-component of spin, and can
therefore lead to local spin–flips. However, in a moderate
magnetic field (larger than a few Gauss), only the secular
part of Eq. (10) (that which commutes with the nuclear
Zeeman term HZ) contributes:
Hsec:
dd ¼

X
k 6¼l

dklI
z
kI

z
l �

1

2

X
k 6¼l;ðjk¼jlÞ

dklI
þ
k I

�
l ; (12)
where dkl ¼ m0=4pð Þg jk
g jl

1� 3 cos2 uklð Þ=2r3kl. The second
sum in Eq. (12) is restricted to run over pairs of sites with the
same isotopic species and ukl is the angle between the
magnetic field and the vector rkl. While Eq. (12) conserves
the total z-component of nuclear spin, the second term gives
rise to flip-flops between nuclear spins of the same species at
different sites. In combination with the hyperfine inter-
action, these flip-flops can cause electron-spin decoherence
through spectral diffusion [6, 22] (see Section 4), and can
redistribute nuclear spin polarization through nuclear spin
diffusion (see Section 3).

2.5 Nuclear quadrupolar interaction The intrin-
sic electric dipole moment of a nucleus, if nonzero, must
be extremely small [61, 62]. Nuclear spins are therefore
immune to interactionwith constant electric fields.However,
a nucleus with spin I> 1/2 does have a finite electric
quadrupole moment, and can therefore couple to electric
field gradients through the electric quadrupole term due to a
nonuniform electrostatic potential V(r) [42]:
HQ ¼
X
k

X
ab

Vk
abQ

ab
k : (13)

D E�

We use the notation Vk

ab ¼ @2VðrÞ
@xa@xb

��
r¼rk

, where � � �h i
indicates an expectation value with respect to the electron
system and the quadrupole tensor is given by:
Qab
k ¼ eQjk

3
2

Iak I
b
k þ Ibk I

a
k

� �
� dabI

jkðIjk þ 1Þ
h i

6Ijkð2Ijk � 1Þ : (14)
Values of the quadrupole moment Qj for several important
isotopes j are given in Table 1. In a crystal with cubic
symmetry, Vxx¼Vyy¼Vzz, the electric field gradient (and
www.pss-b.com
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hence the quadrupolar term) must vanish due to Laplace’s
equation (VxxþVyyþVzz¼ 0) [42]. Crystal strain due to a
semiconductor heterostructure, dopants, or defects will,
however, give rise to nonzero electric-field gradients at the
positions of the nuclei, giving significant values for the
quadrupolar splitting. A strong quadrupolar splitting has
been seen in nanostructures, resulting in allowed multiple-
quantum transitions with Dm¼ �2 [63, 64], and a measured
shift in the nuclear spin resonance line of 010 kHz in a
GaAs 2DEG [65].

Nonsecular terms in Eq. (13) can lead to an important
spin–lattice relaxation mechanism (nuclear spin flips).
However, in a small applied magnetic field, the remaining
(secular) part ofHQ preserves the component of nuclear spin
along the magnetic field. Assuming axial symmetry for the
potential about some direction n̂, the secular quadrupolar
term is [42]:
www
Hsec:
Q ¼ 1

4

X
k

nkQf ðuÞ ðIzkÞ
2 � 1

3
IjkðIjk þ 1Þ

� �
; (15)
where f ðuÞ ¼ ð3 cos2 u � 1Þ and u is the angle between n̂
and the applied magnetic field (along z). The quadrupolar
coupling strength is:
nkQ ¼ 3eVk
nnQjk

8Ijkð2Ijk � 1Þ : (16)
Here, Vk
nn ¼ n̂ � rðn̂ � rVðrÞÞh ijr¼rk

is the (negative) elec-
tric field gradient along n̂.

For a single electron in a spherically symmetric s-orbital,
the electric field gradient due to the electron charge
distribution vanishes at the site of the nucleus. For states of
finite angular momentum (p-, d-, etc.), there is a non-
vanishing contribution, in general. The order ofmagnitude of
this interaction is, however, typically small compared to the
interactions given in Eqs. (4), (7), and (9). To estimate the
size of nkQ, we again employ the envelope function
approximation fðrÞ ¼ ffiffiffiffiffi

v0
p

uðrÞcðrÞ, which gives:
nkQ ¼ Ejk
Qv0jcðrkÞj

2: (17)
Here, Ejk
Q is given by Eq. (16), but with the expectation value

in Vnn taken with respect to the Bloch amplitude u(r) over a
single unit cell. To see the typical size of this term, we
estimate the quadrupolar splitting for a 69Ga nuclear spin
interacting with a heavy hole in the valence band of GaAs
(due purely to the electric field gradient due to the electron
density: VðrÞ ¼ e=4p�0r) as:
E
69Ga
Q ¼ e2

4pe0

Q69Ga

8

3 cos2 u � 1

r3

� �
4p

’ �0:01 meV:

(18)
This value can be compared directly with the strength of the
combined anisotropic hyperfine and orbital contributions for
a hole in GaAs, giving a coupling strength on the order of
[48] Ah � 10 meV. In Eq. (18), we have used that
.pss-b.com
1=r3
	 


4p
¼ 1=192ðaeffB Þ3 and cos2 u

	 

4p
¼ 1=5 for a hydro-

genic 4p orbital, with an effective Bohr radius
(aeffB ¼ 8.5� 10�12m for Ga [66]) that accounts for
screening due to the core-shell electrons. We emphasize
that Eq. (18) estimates only the on-site electronic
contribution to the quadrupolar splitting and that the overall
splitting due to lattice strain can be significant.

The primary effect of the secular quadrupole term
(Eq. 15) is to give an unequal spacing to the nuclear Zeeman
levels in an applied magnetic field. As a consequence, it is
possible to individually address transitions between, e.g.,
m ¼ 1=2 $ �1=2 andm ¼ 1=2 $ 3=2 states with different
excitation frequencies, allowing for full control of the
single-spin Hilbert space and the execution (in principle)
of quantum algorithms [67]. An inhomogeneous quadrupo-
lar splitting can also suppress dipolar nuclear spin flip-
flops due to the secular dipole–dipole coupling (Eq. 12)
when jnkQ � nlQj0jdklj. This effect can significantly
reduce nuclear spin diffusion in a strained sample [68] (see
Section 3.3).

3 Dynamic nuclear polarization Hyperfine cou-
pling to electron spins can serve as a pathway for the nuclear
spin system to relax to its thermal equilibrium state, or for the
production of highly nonequilibrium DNP states when
certain external forcing mechanisms are applied. DNP was
first observed by Carver and Slichter in 1953 [69], who
confirmed the theory of Overhauser [70] for microwave-
driven polarization of nuclei in metals. Later seminal work
on DNP was carried out by Abragam and Proctor [23] on the
so-called ‘‘solid-effect’’ involving electronic defect centers
in dielectric materials. The situation in semiconductor
quantum dots more closely resembles that of conduction
electrons in metals, since a single electron is simultaneously
coupled to N� 104–106 nuclear spins through the contact
hyperfine interaction (Eq. 4).

Although here we focus on DNP, we note that an
intriguing alternative to dynamic polarization is the possi-
bility of a nuclear-spin ferromagnetic phase transition below
the Curie temperature Tc due to a coupling mediated by
the hyperfine interaction with an electron system, first
predicted for metals by Fröhlich [71] in 1940. Recent theory
suggests that Tc for this transition may reach reasonable
dilution-refrigerator temperatures in strongly correlated
low-dimensional systems [72–74], but this transition has
yet to be verified experimentally.

3.1 Optical pumping of nuclear spins in
quantum dots Dynamic nuclear polarization was first
observed in single quantum dots via optical pumping of
electron spins [75]. Optical pumping can be thought of as a
two-step process: first, excitation by circularly polarized
light transfers angular momentum to electron spins, creating
a net electronic polarization; second, angular momentum is
transferred to the nuclear spin system via the hyperfine
interaction together with processes that either remove or
relax the electron spin. The nuclear spin polarization then
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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acts back on the electron spin through an effective magnetic
field, the Overhauser field [70]:
Figu
proc
occu
nati
can
the h
etry
dot,
obse

� 20
BN ¼
P

k Ak Izk
	 


g�mB

; (19)
where here, � � �h i indicates an expectation value with respect
to the nuclear spin state. BN has the effect of either
increasing or decreasing the electronic Zeeman spin
splitting, depending on its sign, and so can be observed
spectroscopically. In Bracker et al. [76], Zeeman splittings
were observed in photoluminescence spectra of excitons in a
single charge-tunable self-assembled quantum dot in a
longitudinal magnetic field (see Fig. 2). When pumped with
circularly polarized light, Bracker et al. report Overhauser
shifts of the splittings as large as 81meV, corresponding to a
nuclear polarization PN¼ 81meV/IA¼ 60% (IA¼ 135meV
for GaAs has been estimated in Ref. [49]). By controlling
the charge state of the dot prior to excitation, they are able to
measure the electronic and nuclear polarizations for neutral
(X0) and charged (Xþ, X�) excitons, demonstrating that the
nuclear polarization tracks the electron polarization in
each case, and that both can be tuned with applied
bias. In these and earlier experiments, it was assumed
that an external magnetic field larger than the nuclear
dipole–dipole couplings was necessary for DNP, so that
non-spin-preserving (i.e., nonsecular) terms in the dipolar
Hamiltonian would be suppressed [77]. However, Lai et al.
[78] demonstrated that DNP could be achieved by optical
pumping in the absence of an external magnetic field, due to
the effective magnetic field of the polarized electrons
(Knight field) acting on the nuclear spins, suppressing the
nonsecular dipolar interactions and providing a quantization
axis along which the nuclei can polarize. Lai et al. estimate
that this Knight field to be �100–200 Gauss for a fully
polarized electron, about an order of magnitude larger than
re 2 (online colour at: www.pss-b.com) (a) Example of a
ess leading to electron and nuclear spin pumping. A singly
pied dot (") captures a dark exciton (X0), followed by recombi-
on leaving a spin down electron; the optically pumped electron
exchange angular momentum with a nuclear spin mediated by
yperfine flip-flop process. (b) Longitudinal applied field geom-
for observing the Overhauser shift in a self-assembled quantum
and (c) schematic ofZeeman-split photoluminescence peaks, as
rved in the experiments of Bracker et al. [76].

09 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
the characteristic local dipolar field. It was left as an
open question why the maximal nuclear polarization
observed in this regime is only �10–15% [78]. Maletinsky
et al. [79] studied the buildup and decay of DNP in this zero-
field and low-field regime, and found that a resident electron
in the dot could relax the nuclear polarization on a
millisecond timescale. This was attributed to two possible
mechanisms: the indirect coupling of nuclear spins via the
electron (combined with the effect of the nonsecular dipolar
terms at very low fields), and depolarization of the electron
due to cotunneling processes which exchange the resident
electron with one in the reservoir. Here, the cotunneling
timescale is estimated to be �20 ns [79] (a later work
confirmed the cotunneling mechanism by investigating
samples with various barriers between the dot and reservoir
[80]). By removing the electron with a gate pulse, or going
to larger magnetic fields, Maletinsky et al. showed much
prolonged nuclear decay times up to seconds or minutes. In
a second paper, Maletinsky et al. [81] study the dependence
of the optically excited DNP on external magnetic field Bext

from �2 to þ2T. They found a magnetic hysteresis in the
Overhauser shift indicative of a bistability, and derived a
semiclassical rate equation model to explain this based on
the dependence of the electron-mediated nuclear relaxation
rate on the total electronic Zeeman splitting (i.e., the sum of
external field and Overhauser field). This dependence of the
nuclear pumping rate on the Overhauser field leads to
nonlinear dynamics of the combined electron–nuclear spin
system. The maximal DNP pumping rate occurs when the
total electronic Zeeman energy is zero, i.e., when
BN¼�Bext; a further increase of Bext leads to a drop in
jBNj. The model of Maletinsky et al. predicts that the
maximal DNP is limited by the ratio of the nuclear
polarization decay rate (e.g., due to spin diffusion out of the
dot) to the timescale for the nuclear and electron spin
systems to reach thermal equilibrium (i.e., the electron-
mediated nuclear relaxation rate). The latter timescale is
proportional to N2/(fA2), where N is the number of nuclear
spins in the dot and f is the fraction of time the dot is
occupied by an electron.

Braun et al. [82] observed a similar magnetic field
dependence, additionally saw bistable behavior as a function
of the electron spin polarization, and explained both with a
semiclassical model similar to that of Maletinsky et al.
Regarding maximal polarization, Braun et al. emphasize the
likely competition between too large an external field
making electron–nuclear spin flips too costly for efficient
pumping, and too low an external field in which nuclear
decay processes such as quadrupolar relaxation are not
efficiently suppressed [83]. In their experiments on InGaAs
dots, optimal pumping of DNP is found to occur at fields
between 1.5 and 2.5 T. Urbaszek et al. [84] performed
similar experiments on InGaAs dots with a single positively
charged exciton (Xþ) as a function of temperature from 2 to
55K, finding a surprising increase in nuclear polarization
as temperature increases. This is attributed to a broadening
of the electronic Zeeman levels increasing the rate of
www.pss-b.com
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Figure 4 (online colour at: www.pss-b.com) From Ref. [90]
showing (a) how the Overhauser field Bn is extracted from the
positions of current steps in the dc magnetotransport data, and
(b) theOverhauser field as a function of externalmagnetic fieldBext.
electron–nuclear spin flip-flops. Recent work by Latta et al.
[80] has demonstrated bi-directional polarization controlled
by setting laser detuning on either side of the dot (X�)
resonance. The nuclear spins polarize so as to maintain the
resonance condition, thereby ‘‘dragging’’ the resonance.
Such a feedback mechanism is expected to narrow the
nuclear spin distribution (suppress fluctuations) as long as
the feedback response is faster than the random nuclear
fluctuations [80].

3.2 Electrically controlled DNP in double
quantum dots The seminal observation of the two-
electron Pauli spin blockade in a vertically coupled double
quantum dot by Ono et al. [85, 86] laid the foundation for
much subsequent work using transport measurements to
study electron and nuclear spin dynamics in quantum dots.
Consider two electrons in adjacent dots: if the potential of the
left dot is raised until it is larger than the charging energy
required to add a second electron to the right dot, the left
electron will tunnel onto the right dot to minimize total
energy. However, this process is prohibited due to the Pauli
exclusion principle if the two electrons form a spin triplet
state; the same orbital in the right dot cannot be doubly
occupied unless the electrons form a spin singlet (see
Fig. 3a). Magneto-transport measurements carried out in the
spin blockade regime of an InGaAs vertical double dot
device revealed current features exhibiting magnetic hyste-
resis, instabilities, and low frequency (e.g., 91Hz)
oscillations [86]. This behavior was attributed to DNP, but
the exact mechanism was not well understood, particularly
since electrons in the leads are expected to be completely
unpolarized. Similar hysteresis and bistabilities (though not
coherent oscillations) were later observed independently in
GaAs lateral quantum dots [89]. Subsequent work by Baugh
et al. [90] quantified the degree of polarization in vertical
GaAs double-dot devices as a function of external magnetic
Figure 3 (online colour at: www.pss-b.com) Pauli spin blockade
and nuclear pumping. (a) Band diagram of the double-dot spin
blockade set-up, showing that transport is blocked for triplet states
Tj i, but canproceed for the singlet Sj i. ddenotes the energydetuning
of thedots, and eF theFermienergy in the leads. (b)Schematicenergy
diagram versus detuning, showing an anticrossing between triplet
Tþj i ¼ ""j i and singlet states, with a splitting D arising from the
hyperfineinteraction.SuchasituationwasexploitedinRefs. [87, 88]
to generateDNPone electron–nuclear flip-flopat a timebyadiabatic
passage from initial state ð0; 2ÞSj i to the anticrossing to allow
hyperfine mixing.

www.pss-b.com
field and proposed a mechanism to explain the behavior.
Baugh et al. reported a maximal Overhauser field of �4 T,
corresponding to a polarization �40% (Fig. 4). Here, DNP
occurs when one of the blockaded spin triplets ( T�j i ¼ ##j i)
comes close to degeneracy with the spin singlet branch that
has mostly Sð1; 1Þj i character, where (n, m) represents the
number of electrons in the (left, right) dot. When the energy
difference between T�j i and Sð1; 1Þj i becomes small, the
hyperfine interaction drives the transition T�j i ! Sð1; 1Þj i,
accompanied by a nuclear spin flip to conserve angular
momentum. The state Sð1; 1Þj i rapidly relaxes to the lower
energy state Sð0; 2Þj i, and finally to the charge state (0, 1) as
an electron tunnels out into the right lead. Since the leads are
unpolarized, the probabilities are equal for the system to be
blockaded in any of the triplet states, so that nuclear
polarization can only accumulate if the other triplet states
T0j i and Tþj i have suitably short lifetimes due to processes
unrelated to the hyperfine interaction. In these experiments,
strong cotunneling due to relatively transparent dot-lead
tunnel barriers serves this function [91]. The ms¼�1 triplet
levels are shifted by the average Overhauser field of the two
dots, and in the experiments of Baugh et al. this leads to a
shift in detuning of the position of a current step observed in
dc transport. By plotting the step position as a function of
external field for both polarized and unpolarized states, the
Overhauser field can be extracted as in Fig. 4.

Electrical control of DNP was taken a step further in the
work of Petta et al. [88] and Foletti et al. [87] in GaAs lateral
quantum dots. They utilized the singlet–triplet anticrossing
shown in Fig. 3b to generateDNPby applying a voltage cycle
to load electrons into the ð0; 2ÞSj i state and then bring them
adiabatically to the S/Tþ anticrossing to induce an electron–
nuclear flip-flop. In this way one nuclear spin is flipped
per cycle, and the Overhauser shift monitored by the
position of the S/Tþ anticrossing with respect to detuning.
Petta et al. [88] showed that one version of this cycle allows
the steady-state polarization to be set by choosing the
detuning at which the adiabatic return passage ends; when
the S/Tþ anticrossing coincides with this detuning, buildup
of polarization stops. Foletti et al. [87] studied a similar
sequence wherein the reload step is removed so that the same
pair of electrons is retained throughout. They observed some
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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oscillation of the nuclear polarization as a function of
external field, and attributed this to an interplay between the
cycle time and the Larmor frequencies of the nuclear spins.
In both cases, the maximum polarization reached was of
order �1–2%.

Recent experiments using electron spin resonance in the
spin blockade regime have demonstrated resonance drag-
ging due to DNP [92] similar to the recent observation in
optically pumped dots by Latta et al. Finally, several
important theoretical works have recently been devoted to
the effects of DNP on leakage current [93] and hysteresis
[94] in the spin blockade regime, DNP in the presence of spin
relaxation [95], resonant electric- [96] and magnetic-field
excitation [97], and the creation of dynamical stabilities
under pumping [98].

3.3 Limits to polarization The nuclear polarizations
that can be achieved by these methods are typically limited
either by loss rates (e.g., intrinsic nuclear spin–lattice
relaxation or spin diffusion [99] out of the dot) or by a
suppression of the hyperfine flip-flop process as polarization
is built up. For example, the cyclical adiabatic methods used
in the double dot system [87, 88] could in principle give a
polarization rate independent of the polarization state, so that
maximal polarization is only determined by the loss rate. The
loss rate observed by Petta et al. could be explained by spin
diffusion perpendicular to the 2DEG plane, and was much
faster than the polarization rates of the employed cycles,
limiting polarization to �1%. If spin diffusion were
suppressed or the polarization cycle time greatly reduced,
this method could yield polarizations near unity. In optically
pumped self-assembled dots, spin diffusion can be elimi-
nated for isotopes that occur only in the dot material and not
in the surrounding matrix, from a nonuniform Knight field
due to site-dependent hyperfine coupling constants
Ak / cðrkÞj j, or due to a non-uniform quadrupolar splitting
nkQ, yielding exceedingly long polarization storage times [68,
100]. The challenge there is to optically produce 100%
electronic polarization, and to suppress relaxation due to
nonsecular nuclear terms at high field while keeping the
electron–nuclear flip-flop rates sufficiently large. Another
promising method to extend the lifetime of a polarized
nuclear spin system is to perform a sequence of rapid
measurements on the nuclear Overhauser field (the quantum
Zeno effect) [101]. Experiments have yet to demonstrate a
robust Zeno effect in practise.

4 Electron-spin decoherence Historically, elec-
tron-spin decoherence has typically been evaluated within
Bloch–Redfield theory [102, 103]. Bloch–Redfield theory is
valid in the limit where an electron interacts weakly with an
environment (validating a weak-coupling expansion), which
itself has a short correlation time (allowing a Markov
approximation). The result of Bloch–Redfield theory is
particularly simple; the components of electron spin along
and transverse to an applied magnetic field decay exponen-
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
tially with the time scales T1 and T2, respectively. While the
T1 time for localized spins in a large magnetic field is
typically limited by spin–orbit interaction and phonon
emission (a mechanism for which Bloch–Redfiled theory
applies) [21, 104–107], the transverse-spin decay time is
often limited by electron–nuclear interactions [4–8, 10, 12,
22]. Due to the significant strength of the hyperfine
interaction (see Section 2.1), a weak-coupling expansion is
typically not possible, and because of the relatively long
nuclear correlation time tc, a Markov approximation is also
typically invalid, leading generically to non-exponential
(non-Markovian) decay of spin correlations [4, 7, 108].

Determining the quantum dynamics of a ‘‘central’’
electron spin interacting with an environment of other
‘‘bath’’ nuclear spins is a complicated many-body problem,
which has historically led authors to seek phenomenological
solutions [22, 109]. This previous work gives important
insight into the major mechanisms of the decay processes.
However, phenomenological theories may not be suffi-
ciently accurate to understand decoherence at the level
required for fault-tolerant quantum information processing
[110–112]. Moreover, previous theory has focused on the
experimental system that was relevant at the time; an
ensemble of decohering spins, with associated inhomoge-
neity. New experiments now allow for the controlled
creation and measurement of single-spin coherence [8, 10,
13], opening the door for new methods of coherence
preservation that were not available until very recently.

The traditional view of spin decoherence emphasizes
that spin ensembles suffer from inhomogeneous broadening
(due, e.g., to a random local magnetic field), resulting in a
rapid free-induction decay (decay in the absence of spin echo
pulses). Ideally, spin echoes remove the effects of inhomo-
geneities in an ensemble, giving the ‘‘true’’ decay time for a
single spin. Although it is certainly true that inhomogeneities
in spin ensembles can result in rapid decay, it is also possible
for spin echoes to refocus decoherence of a single spin
interacting with a quantum-mechanical environment,
extending the decay time for a single spin. This fact makes
it necessary to consider both problems (free-induction decay
and decay under spin echoes) independently, even in the case
of single-spin decoherence.

In the context of quantum information processing, a
finite spin-rotation (qubit gating) time tg typically results in
an error per gate / tg=tFID (assuming exponential decay),
where tFID is the free-induction decay time, so extending
tFID reduces the gate error rate. Even if perfect spin echo
pulses can be performed (on a time scale tg � tFID), decay in
the spin-echo envelope on a time scale T2,echo will signal
memory errors of typical size/ t=T2;echo, where t is the time
elapsed since the beginning of a computation. Extending
T2,echo therefore reduces the memory error rate. While the
historical approach has been to focus on spin-echo decay, in
the context of quantum information processing it is
necessary to consider both free-induction and spin-echo
decay processes to eliminate both gate and memory errors.
For the reasons given above, these two processes must
www.pss-b.com
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Figure 5 (online colour at: www.pss-b.com) Illustration of the
free-induction decay for the transverse components of a central spin
in the rotating frame. The spin is coupled to a bath of �N nuclear
spins via the contact interaction (Eq. 4), assuming an initial
‘‘narrowed’’ distribution for the nuclear field. The sketch is accurate
when the nuclear dipole–dipole interaction (Eq. (10)) is negligible
and when the electron Zeeman splitting is large compared to the
hyperfine coupling strength (b0A). The power laws shown here at
necessarily be considered independently, although they are
both equally important aspects of the greater problem of
coherent spin control.

4.1 Free-induction decay An electron spin in a mag-
netic field, confined to a semiconductor quantum dot or point
defect in an s-type conduction band is well described by the
Fermi contact Hamiltonian (Eq. 4) with the addition of an
electron Zeeman term, on time scales short compared to the
time at which the dipole–dipole Hamiltonian (Eq. 10)
becomes relevant (as noted in Section 3.3, dynamics under
the dipolar Hamiltonian can be drastically suppressed in a
number of cases due to Knight-field or quadrupolar
inhomogeneity). In an applied magnetic field, the Hamil-
tonian divides naturally into a secular part H0 and a
nonsecular ‘‘flip-flop’’ term Vff:
short and long times apply to an electron in a two-dimensional
quantum dot. See the text for a discussion of the various stages of
decay.

www
H0 ¼ ðbþ hzÞSz; Vff ¼
1

2
ðhþS� þ h�SþÞ: (20)
Here, the electron Zeeman energy is b¼ g�mBB in an
applied magnetic field B, and h ¼

P
k AkIk is the nuclear-

spin field operator. In the limit of very large b, we can
consider evolution under H ’ H0 alone. If the nuclear spin
system is not in a specific eigenstate of the operator hz, i.e., if
the value of the nuclear field is unknown, the transverse spin
will decay on a time scale t0 �

ffiffiffiffi
N

p
=A. For a typical GaAs

quantum dot containing N� 105–106 nuclei, this time scale
is very short: t0 � 1� 10 ns.

To extend the free-induction time, it is necessary to
narrow the distribution of available values of hz. This can be
done through dynamic polarization (see Section 3), passive
measurement [7, 113–116], or by actively driving the
system toward a particular (known) state as in Refs. [9, 92,
100, 117–119].

While polarization is effective in reducing the spin–flip
probability [3], it is relatively ineffective in extending
the coherence time, resulting in a weak increase in the
free-induction decay time for a polarization p [7]:
tFIDðpÞ ¼ tFIDð0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
. In this case, it may be advanta-

geous to reduce thewidth of possible values for hz for jpj< 1,
as described above. If this is done, the state of the nuclear
spin system is said to be ‘‘narrowed’’ [113]. In the extreme
case, where the nuclear spin system has been forced into an
eigenstate of the operator hz, H0 will only induce simple
precession of the electron spin, but decay can still occur due
to Vff or from internal dynamics in the nuclear spin system
due to, e.g., dipolar coupling.

On time scales where the dipolar coupling can be
ignored, the problem of free-induction decay for a narrowed
nuclear spin state has been investigated in great detail (see
Fig. 5 for an illustration of the electron-spin decay in a large
magnetic field b0A, wheremost perturbative theories can be
controlled). There is a small partial power-law decay on a
time scale tc�N/A, whereN is the typical number of nuclear
spins with appreciable coupling constants Ak [4, 7, 120]
(green curve in Fig. 5), followed by a quadratic shoulder [50,
121] (blue curve in Fig. 5), which becomes exponential in the
.pss-b.com
Markovian regime, typically for b0A [47] (red curve in
Fig. 5), and decays to zero with a long-time power-law tail
[122, 123] (violet curve in Fig. 5). In the Markovian regime
b0A, the majority of the decay will be close to exponential,
due to the difference in free-induction decay time and bath
correlation time: tc � N=A < T2 � ðb=AÞ2N=A [47].

It is important to note that Fig. 5 focuses on the free-
induction decay for an electron in a two-dimensional
quantum dot. Many features of this sketch are non-universal,
depending on the shape and dimensionality of the electron
wave function. In particular, one-dimensional quantum dots,
such as those realized in carbon nanotubes [124, 125] should
show a comparativelymuch faster decay for similar coupling
strength, and may not admit an exponentially decaying
solution [47].

The low-field regime (b<A) can be explored in a
controlled way where exact solutions are available. Specif-
ically, in the case of a fully polarized nuclear spin system [4,
120], for uniform coupling constants Ak¼A0 [126–128],
with exact numerical diagonalization of small systems [129,
130], or from Bethe Ansatz solutions [131]. Alternatively,
new work suggests that a resummation technique may allow
for a controlled perturbative calculation of electron spin
dynamics even at relatively low magnetic fields [132, 133].

4.2 Spin-echo Spin echoes were first investigated by
Hahn [134], who showed that some of the coherence lost
during free evolution of spins could be recovered with the
application of an appropriate rf pulse. A phenomenological
theory of spin-echo decay for spins interacting with a spin
environment was developed, initially by Herzog and Hahn
[135], based on work by Anderson and Weiss on linewidth
narrowing [109]. This theory, known as ‘‘spectral diffusion’’
assumes that the energy splitting of a central spin results from
its interaction with other environmental spins. These
environmental spins undergo temporal fluctuations dictated
by the dipole–dipole Hamiltonian (Eq. 10), resulting in a
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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randomized precession frequency for the central spin, and
consequent decay. While the earliest theories of spectral
diffusion assumed Gaussian diffusion of the central-spin
precession frequency, resulting in a decay envelope
� exp½�ðt=tÞ3	, subsequent theories emphasized the need
to consider Lorentzian diffusion to recover typical exper-
imentally observed decays closer to� exp½�ðt=tÞ2	 [20, 22].

Interest in the spectral-diffusion problem has been
rekindled in the last few years due to potential quantum-
information-processing applications using spins in quantum
dots [1, 136], phosphorus donors [2], NV centers in diamond
[137], and molecular magnets [16, 138, 139]. De Sousa and
Das Sarma [6, 140] revisited the spectral diffusion problem,
introducing stochastic flip-flops due to dipolar coupling,
giving rise to a decay of the form � exp½�ðt=tÞ3	. Later,
more microscopic descriptions have been given [121, 141–
143], which show decay envelopes closer to gaussian
� exp½�ðt=tÞ2	, in agreement with experiments [12, 22].
However, these theories are valid only at very largemagnetic
fields, where the electron–nuclear flip-flop term (Vff in
Eq. 20) can be neglected or included perturbatively. New
work by Cywinski et al. [132, 133] may solve this problem
with a resummation of the most relevant terms, but is still
limited to short times in the limit of large magnetic field.
Although these authors typically cite applications for single
electron spins in quantum dots or bound to donor impurity
sites, the same general theory has also been applied to decay
of spin coherence in molecular magnets [17] and to NV
center spins in diamond [144].

Experiments on single-spin echoes have been performed
in the singlet–triplet subspace of a two-electron gated double
quantum dot [145] and for single electrons in a double dot
[10]. These studies tend to be limited to relatively low
magnetic fields to limit the electron-spin-resonance (ESR)
excitation frequency and consequently, the effects of
photon-assisted tunneling [146]. New methods for single-
spin rotation may be necessary to allow fast pulses at high
magnetic fields. These methods include those based on the
spin–orbit interaction [147], nuclear Overhauser field
gradient [148, 149], motion of the quantum dots in an
applied magnetic field gradient [150, 151], or the exchange
interaction [29]. In self-assembled quantum dots, a wide
range of exciting new optical techniques for single-spin
control have been developed over the last 2–3 years [152–
156]. Some of these same methods have been demonstrated
for NV centers in diamond [157], showing promise for
extremely fast spin manipulation.

In addition to spin-echo envelope decay, electron spin-
echo envelope modulation (ESEEM) [158, 159] is often
observed. ESEEM signals the presence of the anisotropic
hyperfine interaction (Section 2.2), allowing, in principle, for
universal control of the nuclear spins through control of the
electron transitions [160]. ESEEM introduces an additional
modulation for electrons bound to phosphorus donor
impurities in silicon [161] due to anisotropic hyperfine
interaction from sp-hybridized electron states, and has been
analyzed for NV centers in diamond [15].
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
4.3 Multi-pulse and dynamical decoupling A
more powerful method of coherence preservation than the
conventional (Hahn) spin echo is dynamical decoupling,which
typically consists of a train ofmanypulses designed to suppress
more general forms of decoherence. For a general review of
dynamical decoupling methods, see the book by Haeberlen
[162].Multi-pulse sequences have been investigated in several
papers in connection with nuclear-spin induced decoherence
[163–166].While earlierwork on dynamical decoupling relied
on a time-periodic sequence of pulses to remove evolution
from an unwanted part of the Hamiltonian, more recently
concatenateddecoupling schemes havebeen introduced [167],
which have a recursive structure, and can therefore eliminate a
larger class of errors. Concatenated schemes have been applied
to the problem of nuclear-spin-induced decoherence [163,
168]. Recently, a new optimal set of pulses have been
developed and applied to a related quantum decoherence
model (the spin-bosonmodel) [169], which was later shown to
be universally applicable to an arbitrary dephasing Hamil-
tonian, and applied to the problem of electron-spin decoher-
ence in a nuclear spin bath (Lee et al. [170]).

New techniques, for example, employing an Euler–
Lagrange equation for maximizing fidelity [171] may lead to
further improvements, and recent work [172] suggests that
quantum error correction can be performed ‘‘in line’’ using
dynamical decoupling pulses.

Closely related to dynamical decoupling is the idea that
spin coherence in a nuclear spin bath can be extended with
continuous resonant excitation. Recent experimental and
theoretical work has shown that driven Rabi oscillations
decay slowly (according to a power law) and at a long time
scale under resonant excitation in quantum dots [173] and
NV centers in diamond [174] in a static nuclear field.
Quantum corrections to this problem have been calculated
[149], and decay in the presence of dipolar interactions has
been investigated [175].
5 Conclusions and outlook We have given an
overview of the physics of nuclear spins in nanostructures.
The systems of interest include quantum dots, donor
impurities, nanotubes, NV centers in diamond, and molec-
ular magnets, where interaction with localized electrons
plays a crucial role. Our focus was on two main aspects that
have been at the focus of recent studies: nuclear spin
polarization and electron-spin decoherence in the presence
of a nuclear environment.

There are a number of pressing issues related to the
manipulation of nuclear magnetism in nanostructures, and
the extension of single-spin coherence times in the presence
of a nuclear spin environment. Among the most important
questions are: what will be the role of ‘‘imperfect’’ (finite-
bandwidth) pulses in dynamical decoupling experiments?;
how strong and fast can single-spin rotations be performed
(in particular, which of the methods discussed in Section 4.3
will allow the highest level of control)?; will it be possible to
substantially further narrow the nuclear-field distribution
in single gated quantum dots, approaching the level that
www.pss-b.com



Phys. Status Solidi B 246, No. 10 (2009) 2213

Feature

Article
has been achieved optically in ensembles of self-assembled
dots [176]?; and will it be possible to engineer diffusion
barriers to control spin diffusion and preserve a local nuclear
Overhauser field?

We believe that many of these questions will be
answered in the next 2–3 years, but reaching a complete
theoretical understanding of the underlying phenomena as
well as designing and executing relevant experiments will be
a significant challenge.
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