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We consider a mechanism of spin decay for an electron spin in a quantum dot due to coupling to a nearby
quantum point contact �QPC� with and without an applied bias voltage. The coupling of spin to charge is
induced by the spin-orbit interaction in the presence of a magnetic field. We perform a microscopic calculation
of the effective Hamiltonian coupling constants to obtain the QPC-induced spin relaxation and decoherence
rates in a realistic system. This rate is shown to be proportional to the shot noise of the QPC in the regime of
large bias voltage and scales as a−6 where a is the distance between the quantum dot and the QPC. We find that,
for some specific orientations of the setup with respect to the crystallographic axes, the QPC-induced spin
relaxation and decoherence rates vanish, while the charge sensitivity of the QPC is not changed. This result can
be used in experiments to minimize QPC-induced spin decay in readout schemes.
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I. INTRODUCTION

Recent progress in nanotechnology has enabled access to
the electron spin in semiconductors in unprecedented
ways,1–3 with the electron spin in quantum dots being a
promising candidate for a qubit due to the potentially long
decoherence time of the spin.4,5 Full understanding of the
decoherence processes of the electron spin is thus crucial. On
the other hand, as a part of a quantum computer, readout
systems play an essential role in determining the final result
of a quantum computation. However, readout devices, in
general, affect the spin state of the system in an undesired
way. Quantum point contacts �QPC�, which are used as
charge detectors,6–12 in particular couple to the spin via the
spin-orbit interaction. For small GaAs quantum dots, the
spin-orbit length ��SO�8 �m� is much larger than the dot
size ��d�50 nm� and thus the spin-orbit interaction presents
a small perturbation. Nevertheless, we will see that shot
noise in the QPC can induce an appreciable spin decay via
this weak spin-orbit coupling.

Quite remarkably, the number of electrons in quantum
dots can be tuned starting from zero.13–15 More recently, Zee-
man levels have been resolved16 and the spin relaxation time
�T1� has been measured, yielding times of the order of mil-
liseconds in the presence of an in-plane magnetic field of
8 T.9,10 In these experiments, based on spin-charge
conversion,4 use is made of a QPC located near the quantum
dot as a sensitive charge detector to monitor changes of the
number of electrons in the dot. The shot noise in the QPC
affects the electron charge in the quantum dot via the Cou-
lomb interaction, and therefore, it can couple to the electron
spin as well, via the spin-orbit interaction. While charge de-
coherence in a quantum dot due to a nearby functioning QPC
has been studied both experimentally7,8 and
theoretically,17–19 we show here that the same charge fluctua-
tions in the QPC introduce spin decay via the spin-orbit and
Zeeman interactions. Note that several readout schemes uti-
lizing a QPC have been considered before20 in the context of
the spin qubit. However, in Ref. 20 the QPC was used for
charge readout, while the spin state of the qubit was con-

verted into the charge state of a reference dot.4 Recently, a
different readout scheme has been implemented,9 in which
the reference dot was replaced by a Fermi lead and the QPC
was coupled directly to the spin qubit.

The effect of spin-orbit interaction on spin relaxation and
decoherence was considered in Ref. 21. There, it was shown
that the decoherence time T2 due to spin-orbit interaction
approaches its upper bound21—i.e., T2=2T1—determined by
spin-flip processes.21,22 Measurements of T1 have been per-
formed on spins in electrostatically confined �lateral� quan-
tum dots9 �T1�0.85 ms� and self-assembled quantum dots23

�T1�20 ms�. The measured spin relaxation times T1 in both
cases agree well with the theory in Refs. 21 and 22. In ad-
dition to the spin-orbit interaction, the hyperfine interaction
plays an important role in quantum dots.24–34 Measurements
of the spin decoherence time T2 have recently been per-
formed in a self-assembled quantum dot31 �T2

*�16 ns� as
well as in a double-dot setup for singlet-triplet decoherence
�T2�10 �s�.34 Finally we note that a number of alternative
schemes to measure the decoherence time of the electron
spin in quantum dots have been proposed.35–37

Motivated by these recent experiments, we study here the
effect of the QPC on spin relaxation and decoherence in a
quantum dot. For this, we first derive an effective Hamil-
tonian for the spin dynamics in the quantum dot and find a
transverse �with respect to the external magnetic field� fluc-
tuating magnetic field. We calculate microscopically the cou-
pling constants of the effective Hamiltonian by modeling the
QPC as a one-dimensional channel with a tunnel barrier. We
show that this readout system speeds up the spin decay and
derive an expression for the spin relaxation time T1. How-
ever, there are some regimes in which this effect vanishes, in
the first order of spin-orbit interaction. The relaxation time
will turn out to be strongly dependent on the QPC orientation
on the substrate, the distance between the QPC and the quan-
tum dot, the direction of the applied magnetic field, the
Zeeman splitting EZ, the QPC transmission coefficient T,
and the screening length �sc �see Fig. 1�. Although this effect
is, generally, not larger than other spin decay mechanisms
�e.g., coupling of spin to phonons21 or nuclear spins30�, it is
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still measurable with the current setups under certain condi-
tions. The following results could be of interest to experi-
mentalists to minimize spin decay induced by QPC-based
charge detectors.

The paper is organized as follows. In Sec. II we introduce
our model for a quantum dot coupled to a quantum point
contact and the corresponding Hamiltonian. Section III is
devoted to a derivation of the effective Hamiltonian for the
electron spin in the quantum dot. In Sec. IV we derive mi-
croscopic expressions for the coupling constants of the effec-
tive Hamiltonian and discuss different regimes of interest.
Finally, in Sec. V, we calculate the electron spin relaxation
time T1 due to the QPC and make numerical predictions for
typical lateral quantum dots.

II. THE MODEL

We consider an electron in a quantum dot and a nearby
functioning quantum point contact �see Fig. 1� embedded in
a two-dimensional electron gas �2DEG�. We model the QPC
as a one-dimensional wire coupled via the Coulomb interac-
tion to the electron in the quantum dot. We also assume that
there is only one electron inside the dot, which is feasible
experimentally.9,11,13–16 The Hamiltonian describing this
coupled system reads H=Hd+HZ+HSO+HQ+HQd, where

Hd =
p2

2m* + U�r� , �1�

HZ =
1

2
g�BB · � =

1

2
EZn · � , �2�

HSO = ��− px�x + py�y� + ��px�y − py�x� , �3�

HQ = �
lk�

�kC̄lk�
† C̄lk�, �4�

HQd = �
ll�kk��

�ll��r�C̄lk�
† C̄l�k��. �5�

Here, Q refers to the QPC and d to the dot, p=−i��
+ �e /c�A�r� is the electron 2D momentum, U�r� is the lateral
confining potential, with r= �x ,y�, m* is the effective mass of
the electron, and � are the Pauli matrices. The 2DEG is
perpendicular to the z direction. The spin-orbit Hamilton-
ian HSO in Eq. �3� includes both Rashba38 spin-orbit coup-
ling ���, due to asymmetry of the quantum well profile in
the z direction, and Dresselhaus39 spin-orbit couplings ���,
due to the inversion asymmetry of the GaAs lattice. The
Zeeman interaction HZ in Eq. �2� introduces a spin quantiza-
tion axis along n=B /B= �cos 	 sin 
 , sin 	 sin 
 , cos 
�.
The QPC consists of two Fermi liquid leads coupled via a
tunnel barrier and is described by the Hamiltonian HQ, where

C̄lk�
† , with l=L ,R, creates an electron incident from lead l,

with wave vector k and spin �. We use the overbar on, e.g.,

C̄lk� to denote the scattering states in the absence of electron
on the dot. The Hamiltonian HQd in Eq. �5� describes the
coupling between the quantum-dot electron and the QPC
electrons. We assume that the coupling is given by the
screened Coulomb interaction,

�ll��r� = �lk� e2

��r − R�
�̃�R − a��l�k�	 , �6�

where R= �X ,Y� is the coordinate of the electron in the QPC
and � is the dielectric constant. The Coulomb interaction is

modulated by a dimensionless screening factor �̃�R−a�,45

where a= �0,a� gives the QPC position �see Fig. 1�. The
quantum dot electron interacts with the QPC electrons
mostly at the tunnel barrier; away from the tunnel barrier the
interaction is screened due to a large concentration of elec-
trons in the leads. For the screening factor we assume, in
general, a function which is peaked at the QPC and has a
width 2�sc �see Fig. 1�. Note that �sc is generally different
from the screening length in the 2DEG and depends strongly
on the QPC geometry and size. Generally, �ll� are k depen-
dent; however, their k dependence turns out to be weak and
will be discussed later.

III. EFFECTIVE HAMILTONIAN

The quantum-dot electron spin couples to charge fluctua-
tions in the QPC via the spin-orbit Hamiltonian �3�. The
charge fluctuations are caused by electrons passing through
the QPC. To derive an effective Hamiltonian for the coupling
of spin to charge fluctuations, we perform a Schrieffer-Wolff

transformation,40 H̃=exp�S�H exp�−S�, and remove the spin-
orbit Hamiltonian in leading order. We thus require that

Hd+HZ ,S�=HSO, under the condition �d
�SO, where �d is
the quantum dot size and �SO= � /m*��� � + �� � � is the short-
est spin-orbit length. The transformed Hamiltonian is then
given by

H̃ = Hd + HZ + HQ + HQd + 
S,HQd� , �7�

FIG. 1. Schematic of the quantum dot �QD� coupled to a QPC.
The �XY� frame gives the setup orientation, left �L� and right �R�
leads, with respect to the crystallographic directions x��
110� and

y��
1̄10�. The dot has a radius �d and is located at a distance a
from the QPC. The vector R describes the QPC electrons, and r
refers to the coordinate of the electron in the dot. The noise of the
QPC current I perturbs the electron spin on the dot via the spin-
orbit interaction.
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S =
1

Ld + LZ
HSO =

1

Ld
�
m=0

� 
− LZ
1

Ld
�m

HSO, �8�

HSO = iLd�� · �� , �9�

where L is Liouville superoperator for a given Hamiltonian
defined by LA�
H ,A� and � is a vector in the 2DEG
plane and has a simple form in the coordinate frame
x�= �x+y� /�2, y�= �y−x� /�2, z�=z: namely, �
= �y� /�− ,x� /�+ ,0�, where �±= � /m*��±�� are the spin-orbit
lengths. For a harmonic-dot confinement U�r�= 1

2m*�0
2r2, we

have

1

Ld
x =

− i

�m*�0
2
px +

eBz

c
y� , �10�

1

Ld
y =

− i

�m*�0
2
py −

eBz

c
x� , �11�

1

Ld
pj =

im*

�
rj �j = x,y� . �12�

In addition, we have the following relations for the Zeeman
Liouvillian:

LZ
m�� · �� = �iEZ

m
n � �� · � , for odd m � 0,

− EZ
m
n � �n � ��� · � , for even m � 0,

�
�13�

where EZ=g�BB is the Zeeman splitting. The last term in Eq.
�7� gives the coupling of the dot spin to the QPC charge
fluctuations. The transformation matrix S �to first order in
spin-orbit interaction� can be derived by using the above
relations �see Appendix A�. We obtain

− iS = � · � + 
n � �1� · � − †n � 
n � �2�‡ · � , �14�

�1 = „��1py� + �2x��/�−,��1px� − �2y��/�+,0… , �15�

�2 = „��1px� + �2y��/�−,�− �1py� + �2x��/�+,0… , �16�

�1 =
�

m*

EZ
EZ
2 − ���0�2�

�EZ
2 − E+

2��EZ
2 − E−

2�
, �17�

�2 =
EZ � �c���0�2

�EZ
2 − E+

2��EZ
2 − E−

2�
, �18�

�1 =
�

m*

EZ
2 � �c

�EZ
2 − E+

2��EZ
2 − E−

2�
, �19�

�2 = EZ
2 ���c�2 + ���0�2 − EZ

2

�EZ
2 − E+

2��EZ
2 − E−

2�
, �20�

where E±= ��± ��c /2, with �=��0
2+�c

2 /4 and
�c=eBz /m*c. Here, we assume E±− �EZ � � �EZ�d /�SO�,
which ensures that the lowest two levels in the quantum dot

have spin nature. Below, we consider low temperatures T and
bias ��, such that T ,��
E±− �EZ� �hence only the orbital
ground state is populated so that its Zeeman sublevels con-
stitute a two-level system� and average over the dot ground
state in Eq. �7�. We obtain, using Eqs. �10�–�13�, the follow-
ing effective spin Hamiltonian

Heff =
1

2
g�B
B + �B�t�� · � , �21�

and the effective fluctuating magnetic field �B�t� is then
given by the operator

�B�t� = 2B � 
�1�t� + n � �2�t�� ,

�1 =
e�2�1

m* ��−
−1Ey�,�+

−1Ex�,0� ,

�2 =
e�2�2

m* �− �−
−1Ex�,�+

−1Ey�,0� ,

�1 =
m*

�EZ
�1 =

EZ
2 − ���0�2

�E+
2 − EZ

2��E−
2 − EZ

2�
,

�2 =
m*

�EZ
�1 =

EZ � �c

�E+
2 − EZ

2��E−
2 − EZ

2�
, �22�

where we have gone to the interaction picture with respect to
the lead Hamiltonian HQ� =HQ+ �HQd�d and omitted a spin-
independent part. Note that the coordinate-dependent part of
S drops out and thus �2, �2 do not enter. Here and below, we
use �¯�d to denote averaging over the dot ground state. Note
that HQ� describes the QPC, while it is electrostatically influ-
enced by the quantum dot with one electron in the ground
state. Obviously, HQ� can be rewritten in the same form as HQ
in Eq. �4�, but with a different scattering phase in the scat-
tering states. To denote the new scattering states, we omit the
overbar in our notations. We have introduced an effective
electric field operator E�t� in the interaction picture,40

E�t� =
1

e
��HQd�t��d = �

ll�kk��

�ll�e
i��l−�l��t/�Clk�

† �t�Cl�k���t� ,

�23�

�ll� =
1

e
���ll��r��d, �24�

where the fermionic operators Cl�k�� correspond to scattering
states in the leads with the dot being occupied by one elec-
tron �HQ� is diagonal in Cl�k���. Here, �l, l=L ,R, are the
chemical potentials of the left �L� and right �R� leads, with
��=�L−�R being the voltage bias applied to the QPC driv-
ing a current I. Note that in the absence of screening


�̃�R−a�=1 in Eq. �6��, E coincides with the electric field
that the quantum-dot electron exerts on the QPC electrons.

As a first result, we note that the fluctuating quantum field
�B�t� is transverse with respect to the �classical� applied
magnetic field B �cf. Ref. 21�. The magnetic field fluctua-
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tions originate here from orbital fluctuations that couple to
the electron spin via the spin-orbit interaction. The absence
of time-reversal symmetry, which is removed by the Zeeman
interaction, is crucial for this coupling. We assume no fluc-
tuations in the external magnetic field B. In our model, the
dot electron spin couples to a bath of fermions, in contrast to
Ref. 21 where the bath �given by phonons� was bosonic.

To calculate the coupling constants �ll� in Eq. �23�, it is
convenient to first integrate over the coordinates of the dot

electron. We thus obtain E�R�=E0�R��̃�R−a� 
see Eq. �6��,
where R refers to the location of the electrons in the QPC
and the bare �unscreened� electric field is given by

E0�R� =
e

�
� R − r

�R − r�3	d

=
eR

�R3
1 +
3

4

�d
2

R2 + ¯ � . �25�

Consequently, the coupling constants in Eq. �23� read
�ll�= �lk �E�R� � l�k��, where �lk� denote the scattering states in
the leads. Here, we have assumed a parabolic confinement
for the electron in the dot, set the origin of coordinates in the
dot center ��r�d=0�, and averaged with the dot wave function
�d�r�=exp�−r2 /2�d

2� /�d
��, which is the ground state of the

electron in a symmetric harmonic potential in two dimen-
sions. While we choose a very special form for the ground-
state wave function, this does not affect substantially the
final result—i.e., the relaxation time T1. This is because any
circularly symmetric wave function leads to the same form
for E0�R� except that it just alters the second term in Eq. �25�
which is very small compared to the first term �about 1 /100�
and negligible. An analogous argument applies to asymmet-
ric wave functions.

IV. COUPLING CONSTANTS �ll�

To proceed further, we construct the scattering states out
of the exact wave functions of an electron in the QPC poten-
tial. While this is a generic method, we consider for simplic-
ity a �-potential tunnel barrier for the QPC,

V�X� =
�2b

m* ��X� , �26�

where b gives the strength of the delta potential. Then, the
electron wave functions in the even and odd channels are
given by

�e�X� = �2�cos�kX + �� , X � 0,

cos�kX − �� , X � 0,
� �27�

�o�X� = �2 sin kX , �28�

where �=arctan�b /k�, k=�2m*E /�2, and, for convenience,
the sample length is set to unity. Note that �=� /2−�, where
���e−�o is the relative scattering phase between the even
�e� and odd �o� channels. The transmission coefficient T
through the QPC is related to � by T�k�=cos2 �. We con-
struct the scattering states in the following way:


�sc
L

�sc
R � = U
�e

�o
�, U =

− i
�2


ei� − 1

ei� 1
� . �29�

Up to a global phase, Eq. �29� is valid for any symmetric
tunnel barrier.

A. Three limiting cases

We calculate now the matrix elements of E�R� using the
wave functions �27� and �28�. Three interesting regimes are
studied in the following.

�i� �sc
kF
−1
a, where �sc is the screening length in the

QPC leads and kF is the Fermi wave vector. In this case, we

set �̃�R−a�=2�sc��X�. By calculating the matrix elements of
� with respect to the eigenstates of the potential barrier, Eqs.
�27� and �28�, we obtain

�ee = 4�scTE0�a�, �oo = �eo = 0, �30�

where we used the odd and even eigenstates and
�dY ���Y��2E�X ,Y�=E�X ,a�. Here, ��Y� is the QPC wave
function in the transverse direction with width 
�sc. Going
to the left-right basis, Eq. �29�, which is more suitable for
studying transport phenomena, we obtain


�LL �LR

�RL �RR
� =

1

2
�ee
1 1

1 1
� . �31�

Note that in this case we have �ll��T, where l , l�=L ,R; see
Eqs. �30� and �31�.

�ii� kF
−1
�sc
a. In this case, we set �̃�R−a�=��X

+�sc�−��X−�sc�, where ��X� is the step function, and we
obtain, in leading order in 1/kF�sc,

�ee = �oo =
2e�sc

�a2 
1 +
3�d

2

4a2 −
�sc

2

2a2 + ¯ �eY , �32�

�eo =
e�sc

2 cos �

�a3 
1 +
3�d

2

4a2 −
3�sc

2

4a2 + ¯ �eX. �33�

In the above equations, eY is a unit vector parallel to a and eX
is a unit vector perpendicular to a �see Fig. 1�. Further, we
assumed that �vF�k�EZ
 �vF�sc

−1
EF, where �k=k−k�,
vF is the Fermi velocity, and EF= �vFkF is the Fermi energy.
Going as before to the left-right basis, we obtain


�LL �LR

�RL �RR
� = 
�ee − �eocos � i�eosin �

− i�eosin � �ee + �eocos �
� .

�34�

Note that in this case we have �LR��T�1−T �; see Eqs. �33�
and �34�. Since typically �sc�kF

−1, we expect case �ii� to
describe realistic setups. A more general case kF

−1 ,�sc
a is
studied in Appendix B.

�iii� kF
−1 ,a
�sc. In this regime, we neglect the screening


�̃�R−a�=1 in Eq. �6��. Then, we obtain the following ex-
pressions for the coupling constants:
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�oe = �eo =
4ke

�
�K0�2ka�sin � +

�

2
cos �
I0�2ka�

− L0�2ka���eX, �35�

�ee =
2e

�
�1

a
− 2k cos�2��K1�2ka� +

�

2
k sin�2��� 2

�

− 2I1�2ka� + L1�2ka� + L−1�2ka���eY , �36�

�oo =
2e

�
�1

a
− 2kK1�2ka��eY , �37�

where In and Kn are the modified Bessel functions and
Ln is the modified Struve function. Here, we assumed
�k
a−1
�sc

−1.
Since usually ka�1, the k dependence of the coupling

constants in Eqs. �35�–�37� is suppressed. One can use the
following asymptotic expressions for a�kF

−1:

�oe = �eo �
2e cos �

�a
eX, �38�

�ee � �oo �
2e

�a
eY . �39�

In this case, the transformation to the left-right basis is given
in Eq. �34� and we obtain �LR��T�1−T� as in case �ii�.

B. Consistency check

Next we would like to verify whether our model predicts
a realistic charge sensitivity of the QPC exploited in recent
experiments.7,15,41 For this we estimate the change in trans-
mission �T through the QPC due to adding an electron to the
quantum dot. The coupling in Eq. �5� 
with coupling con-
stants �ll��r� given in Eq. �6�� is responsible for this trans-
mission change �T. It is convenient to view this coupling as
a potential �V�X� induced by the dot electron on the QPC.
From Eq. �6�, we obtain

�V�X� =
e2

��X2 + a2
�̃�X� , �40�

where we have integrated over the dot coordinates r= �x ,y�
and the QPC coordinate Y, neglecting terms O��d

2 /a2�. The

screening factor �̃�X� is peaked around X=0 with a halfwidth
�sc. We consider two regimes.

�i� �V�X� is a smooth potential. In this regime, �2 /m*ā2


�V�0�
EF, with ā=min��sc ,a� being the width of �V�X�.
Therefore, the dot electron provides a constant potential �like
a back gate� to the QPC, implying that �V�X� merely shifts
the origin of energy for the QPC electrons by a constant
amount, �V�0�. From the geometry of the current experimen-
tal setups7,15,41 it appears reasonable to assume that this is the
regime which is experimentally realized. The transmission
change �T can then be estimated as

�T � − �V�0�� �T�E�
�E

�
EF

= −
�V�0�

EF
T�1 − T� , �41�

T�E� = cos2 � =
E

E + �2b2/2m* , �42�

where T=T�E=EF�. By inserting typical numbers in Eq.
�41�—i.e., T=1/2, EF=10 meV, and �V�0�=e2 /�a


�̃�0�=1�, with a=200 nm and �=13—we obtain
�T /T�0.02, which is consistent with the QPC charge sensi-
tivity observed experimentally.15

�ii� �V�X� is a sharp potential. In this regime, adding an
electron onto the quantum dot modifies the shape of the ex-
isting tunnel barrier in the QPC. Assuming sharp potentials,
we obtain

�T � −
2�A

A
T�1 − T� , �43�

where �A=��V�X�dX and A=�V�X�dX=�2b /m*. In deriving
Eq. �43�, we assumed that �A
A. Additionally, we assumed
that both potentials �V�X� and V�X� are sharp enough to
be replaced by � potentials. Redefining ā such that
�A= ā�V�0�, we quantify the latter assumption as ā
1/b,
where b is the strength of V�X� in Eq. �26�. Note that for this
regime the screening is crucial, because �A→� for �sc→�.

V. SPIN RELAXATION TIME

A. k-independent case

Next we use the effective Hamiltonian �21� with Eqs.
�22�, �23�, and �34� to calculate the spin relaxation time T1 of
the electron spin on the dot in lowest order in �B. In the
Born-Markov approximation,42 the spin relaxation rate is
given by21 �1�1/T1=ninj�ij

r , where n=B /B is the unit vec-
tor along the applied magnetic field, �ij

r is the spin relaxation
tensor �see Appendix C�, and we imply summation over re-
peating indices. To evaluate T1, it is convenient to use the
following expression, obtained in Ref. 21:

1

T1
= J ii

+��Z� − ninjJ ij
+��Z� −  kijnkJ ij

−��Z� , �44�

where  ijk is the antisymmetric tensor and �Z= �EZ � /� is the
Zeeman frequency 
for a detailed derivation of Eq. �44� see
Appendix C�. J ij

±��Z� are Fourier transforms of anticommu-
tators of the fluctuating fields 
with ��B�t��=0�,

J ij
+�w� =

g2�B
2

4�2 �
−�

+�

���Bi�0�,�Bj�t���cos�wt�dt ,

J ij
−�w� =

g2�B
2

4�2 �
−�

+�

���Bi�0�,�Bj�t���sin�wt�dt , �45�

which are evaluated in Eq. �44� at the Zeeman frequency �Z.
Here and below, �C��Tr�!L!RC� where !L �!R� refers to the
grand-canonical density matrix of the left �right� lead at the
chemical potential �L ��R� and Tr is the trace over the leads.
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In our particular case, the second and third terms in Eq. �44�
vanish. The reason for vanishing of the second term is the
transverse nature of �B�t� in Eq. �22�—i.e., ni�Bi�t�=0. The
third term vanishes because each of the �ll� in Eq. �34� is
either real or imaginary. The time dependence of the anti-
commutators of fluctuating fields at zero temperature, to-
gether with their Fourier transforms �at finite temperature T�,
is given by the following expressions:

���Bi�0�,�Bj�t��� �
A�t�
t2 , �46�

J ij
+�w� � EZ

2S��w�, �� = 0, �47�

S�x� = x coth�x/2kBT� , �48�

where A�t� is an oscillatory function of t with period �� and
S��w� is the spectral function of the QPC which is linear in
frequency at zero temperature. This time behavior shows that
the QPC leads behave like an Ohmic bath. This Ohmic be-
havior results from bosoniclike particle-hole excitations in
the QPC leads, possessing a density of states that is linear in
frequency close to the Fermi surface. In the spin-boson
model, having an Ohmic bath is sometimes problematic and
needs careful study because of the non-Markovian effects of
the bath.43 However, we find that the Born-Markov approxi-
mation is still applicable since the non-Markovian correc-
tions are not important in our case, due to the smallness of
the spin-orbit interaction.46

For the fluctuating field �B�t�, we use the Born-Markov
approximation42 and obtain from Eqs. �44� and �45� the spin
relaxation rate

1

T1
= 4� �"2�MLL + MRR�S�EZ�

+ 4� �"2MLR
S�EZ + ��� + S�EZ − ���� , �49�

where "=1/2��vF is the density of states per spin and mode
in the leads and the coefficients Mll� read

Mll� = �ll� · �l�l − �n · �ll���n · �l�l� ,

�ll� = �1
ll� + n � �2

ll�,

�1
ll� =

e��1EZ

m* ��−
−1 y�

ll�,�+
−1 x�

ll�,0� ,

�2
ll� =

e��2EZ

m* �− �−
−1 x�

ll�,�+
−1 y�

ll�,0� , �50�

where �i
ll� �i=1,2 and l , l�=L ,R� are matrix elements of the

operators �i with respect to the leads. In addition, in deriv-
ing Eq. �49� we assumed T ,��
EF. Note that, if the trans-
mission coefficient of the QPC is 0 or 1 �T=0,1�, then Eq.
�49� reduces to

1

T1
= 4� �"2�MLL + MRR�EZ, T 
 EZ. �51�

On the other hand, the equilibrium part of the relaxation time
is obtained by assuming ��=0,

1

T1
= 4� �"2�MLL + MRR + 2MLR�EZ, T 
 EZ. �52�

Therefore, even with zero �or one� transmission coefficient
or in the absence of the bias, the spin decay rate is nonzero
due to the equilibrium charge fluctuations in the leads.

Another case of interest is the large bias regime
EZ
��
 ��0, which simply means that only the second
term in Eq. �49� appreciably contributes to the relaxation
rate. Therefore, the nonequilibrium part of Eq. �49� is given
by

1

T1
� 8� �"2MLR��, EZ,T 
 ��� ± EZ� 
 � �0.

�53�

To estimate the relaxation time, we use typical experimental
parameters for GaAs quantum dots �see, e.g., Ref. 9�. We
consider an in-plane magnetic field B which leads to �2=0
��2=0� and, for simplicity, assume that B is directed along
one of the spin-orbit axes �say, x�; see Fig. 1�. In this special
case we obtain the following expression for kF

−1
�sc
a
�case �ii� of Sec. IV A�:

MLR �
e4�2

m*2�2

�sc
4

�+
2a6

EZ
2cos2 #

��2�0
2 − EZ

2�2T�1 − T � , �54�

or equivalently, the relaxation rate is given in terms of the
QPC shot noise

1

T1
�

8�2e2�4

m*2�2

"2�sc
4

a6�+
2

EZ
2cos2 #

��2�0
2 − EZ

2�2SLL, �55�

SLL =
e2��

��
T�1 − T � , �56�

where SLL is the current shot noise in the left lead of the
QPC, and due to current conservation, SLL=SRR=−SLR=
−SRL.44 We note that Eq. �55� is the nonequilibrium part of
the relaxation rate. Thus, even if the constant equilibrium
part 
�MLL ,MRR in Eq. �49�� is of comparable magnitude,
the nonequilibrium part can still be separated, owing to its
bias dependence. Moreover, at low temperatures and large
bias voltages, the relaxation rate is linear in the bias �� and
proportional to the current shot noise in the QPC, 1/T1
�T�1−T ���. The latter relation holds in cases �ii� and �iii�,
left and right panels, respectively, see Sec. IV A, whereas in
case �i� we have 1/T1�T 2��.

The lifetime T1 of the quantum dot spin strongly depends
on the distance a to the QPC. For the regime �ii� in Sec.
IV A, the nonequilibrium part of 1 /T1 depends on a as fol-
lows: 1 /T1�a−6. A somewhat weaker dependence on a oc-
curs in the regimes �i�, 1 /T1�a−4, and in the regime �iii�,
1 /T1�a−2. On the other hand, the charge sensitivity of the
QPC scales as a−1, which allows one to tune the QPC into an
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optimal regime with reduced spin decoherence but still suf-
ficient charge sensitivity.

The spin lifetime T1 strongly depends on the QPC orien-
tation on the substrate �the angle # between the axes x� and X
in Fig. 1�. For example, in the regimes �ii� and �iii� �with
ka�1�, the nonequilibrium part of the relaxation rate van-
ishes at #=� /2, for an in-plane magnetic field B along x�.
Analogously, in the regime �i�, both the equilibrium and the
nonequilibrium parts of the relaxation rate vanish at #=0, for
B �x�.

We summarize our results in Tables I and II, where we
have evaluated the relaxation time T1 
Eqs. �52� and �49��
for a QPC located at a=200 nm away from the center of a
GaAs quantum dot with �d�30 nm, assuming �sc=100 nm,
�SO=8 �m, and kF=108 m−1. Here, we use coupling con-
stants derived for the regime �ii� in Sec. IV A.

Finally, we remark that, for a perpendicular magnetic field

B= �0,0 ,B��, we have

Mll� = �ll� · �l�l, n = ez, �57�

and the relaxation rate can be calculated analogously. The
only difference is that �2 is no longer zero and the matrix
elements Mll� are given by more complicated expressions.

B. k-dependent case

In this regime we use the k-dependent coupling constants
which are given in Eqs. �35�–�37� and in Appendix B. Using
Eq. �44�, the relaxation rate is given now by the following
expression:

1

T1
= −  kijnkJ ij

−��Z� + 4� � "2�
ll�
� dE� dE�Mll��E,E��

�f�E�
1 − f�E������E� − E + �l� − �l − ��Z�

+ ��E� − E + �l� − �l + ��Z�� , �58�

where f�E�= 
exp�E /kBT�+1�−1 is the Fermi distribution
function and the energies are measured from the Fermi level
�l in each lead. The matrix elements Mll��E ,E�� are given by
Eq. �50�; however, in this case they are k dependent through
E= �vFk. Figure 2 shows the numerical results for the relax-
ation rate �1=1/T1 as a function of the bias �� for an in-
plane magnetic field B of 10 T in both cases. We note that
the relaxation rate in case �iii� is typically two orders of
magnitude larger than in case �ii�, which underlines the im-
portant role played by the screening length �sc in the QPC-
induced spin relaxation in a quantum dot.

VI. CONCLUDING REMARKS

In conclusion, we have shown that charge readout devices
�e.g., a QPC charge detector� induces spin decay in quantum
dots due to the spin-orbit interaction �both Rashba and
Dresselhaus�. Due to the transverse nature of the fluctuating
quantum field �B�t�, we found that pure dephasing is absent
and the spin decoherence time T2 becomes twice the relax-
ation time T1—i.e., T2=2T1. Finally, we showed that the spin
decay rate is proportional to the shot noise of the QPC in the
regime of large bias ����EZ� and scales as a−6 �see Fig. 1�.
Moreover, we have shown that this rate can be minimized by
tuning certain geometrical parameters of the setup. Our re-
sults should also be useful for designing experimental setups
such that the spin decoherence can be made negligibly small
while charge detection with the QPC is still efficient.

TABLE I. Equilibrium ���=0� relaxation time T1 �ms� with B
along x� �see Fig. 1�.

T1�B=14 T� T1�B=10 T� T1�B=8 T� T1�B=6 T� # T

0.9 2.77 5.64 13.78 0 0

1.85 5.57 11.3 27.57 0 0.5

� � � � 0 1

0.1 0.32 0.66 1.62 � /4 0

0.1 0.33 0.68 1.67 � /4 0.5

0.11 0.34 0.7 1.72 � /4 1

0.06 0.17 0.35 0.86 � /2 0

0.06 0.17 0.35 0.86 � /2 0.5

0.06 0.17 0.35 0.86 � /2 1

TABLE II. Nonequilibrium �EZ
��=1 meV� relaxation time
T1 �ms� with B along x� �see Fig. 1�.

T1�B=14 T� T1�B=10 T� T1�B=8 T� T1�B=6 T� # T

0.9 2.77 5.64 13.78 0 0

0.95 2.25 3.8 7.32 0 0.5

� � � � 0 1

0.1 0.32 0.66 1.62 � /4 0

0.1 0.32 0.64 1.54 � /4 0.5

0.11 0.34 0.7 1.72 � /4 1

0.06 0.17 0.35 0.86 � /2 0

0.06 0.17 0.35 0.86 � /2 0.5

0.06 0.17 0.35 0.86 � /2 1

FIG. 2. �Color online� Relaxation rate �1=1/T1 as a function of
the bias �� applied to the QPC for cases �ii� and �iii�, see Sec. IV
A. The magnetic field B is along x� with magnitude B=10 T.
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APPENDIX A: TRANSFORMATION MATRIX S

To derive the expression for S, we note that applying 1
Ld

n

on � yields linear combinations of momentum and position
operators. Therefore we make an ansatz for S, like we did in
Eq. �14�, with

�1 = „��1py� + �2x��/�−,��1px� + �̃2y��/�+,0… , �A1�

�2 = „��1px� + �2y��/�−,��̃1py� + �̃2x��/�+,0… . �A2�

Then by inserting this ansatz into the relation 
Hd+HZ ,S�
=HSO, we obtain a set of algebraic equations for the coeffi-

cients �i, �i, �̃i, and �̃i �i=1,2�. We find that

�̃1 = �1, �̃2 = − �2, �A3�

�̃1 = − �1, �̃2 = �2, �A4�

with the coefficients �i and �i given in Eqs. �17�–�20�.

APPENDIX B: k-DEPENDENT COUPLING CONSTANTS,
kF

−1 ,�sc™a

The coupling constants �ee, �oo, and �ee are generally k
dependent. In the regime where kF

−1 ,�sc
a we obtain the
following relations:

�ee =
e

4�a4k3 �2k3�sc�4a2 + 3�d
2 − 2�sc

2 � + 6k�sccos 2�k�sc

+ �� − �3 + 4a2k2 + 3k2�d
2 − 6k2�sc

2 �sin 2�k�sc + ��

+ �3 + 4a2k2 + 3k2�d
2�sin�2���eY , �B1�

�oo =
e

4�a4k3 �2k3�sc�4a2 + 3�d
2 − 2�sc

2 � + 6k�sccos�2k�sc�

− �3 + 4a2k2 + 3k2�d
2 − 6k2�sc

2 �sin�2k�sc��eY , �B2�

�oe =
e

8�a5k4 ��9 + 4a2k2 + 3k2�d
2 − 6k4�sc

4 + 6k4�d
2�sc

2

+ 8a2k4�sc
2 �cos � − �9 + 4a2k2 + 3k2�d

2

− 18k2�sc
2 �cos�2k�sc + �� − �9 + 4a2k2 + 3k2�d

2

− 6k2�sc
2 �2k�sc sin�2k�sc + ���eX, �B3�

with � being the relative scattering phase. The transformation
to the left-right basis is given by

�LL =
1

2
��ee + �oo − 2�eocos �� , �B4�

�RR =
1

2
��ee + �oo + 2�eocos �� , �B5�

�LR = �RL
* =

1

2
��ee − �oo + 2i�eosin �� . �B6�

Here, as before, we have assumed that �vF�k�EZ

 �vF�sc

−1
EF. Note that the coupling constants �LR and �RL
in Eq. �B6� have both real and imaginary part. Therefore,
the last term in Eq. �44� does not vanish in general. Never-
theless, we find that for an in-plane magnetic field
B= �Bx ,By ,0� this term vanishes, because only a single com-
ponent of �B�t� 
namely, �Bz�t�; see Eq. �22�� is present for
in-plane fields, which leads to  kijnkJ ij

−��Z�=0 
see also Eqs.
�45� and �58��.

APPENDIX C: SPIN RELAXATION RATE

To calculate the spin decay rate, we will need the master
equation for the dynamics of the system. The time evolution
of the combined system-bath density matrix can be written in
the following form ��=1�

!̇tot = − i
H,!tot� , �C1�

H = HS + HB + HSB, �C2�

where !tot is the total density matrix of the system-bath in the
Schrödinger picture and the overdot stands for the time de-
rivative. In Eq. �C2�, HS, HB, and HBS denote the system,
bath, and interaction Hamiltonians, respectively. Integrating
over the bath degrees of freedom and using the Born-Markov
approximation, one arrives at the Bloch-Redfield equations
for the reduced density matrix of the system:42

!̇nm = − i�nm!nm − �
kl


�nllk
�+� !km + �lkkm

�−� !nl − �kmnl
�−� !lk

− �kmnl
�+� !lk� , �C3�

where �km=�k−�m, with �m being the energy eigenstate of the
system, HS �m�=�m �m�. The coefficients �kmnl

�±� are time inde-
pendent in this approximation and are given by the following
correlators of the system-bath coupling:

�kmnl
�−� = �

0

�

dte−i�kmt�k�HSB�m��n�HSB�t��l� , �C4�

�kmnl
�+� = 
�lnmk

�−� �*, �C5�

where HSB�t�=exp�iHBt�HSBexp�−iHBt� and the overbar de-
notes averaging over the bath.

For our spin-1 /2 system coupled to fluctuating �quantum�
magnetic fields, we have 
see Eqs. �21� and �22��

HS =
1

2
g�BB · � , �C6�

HSB�t� =
1

2
g�B�B�t� · � . �C7�

Substituting these expressions into Eq. �C4�, we obtain
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�kmnl
�−� = �k��i�m��n�� j�l�Jij��km� , �C8�

Jij��� =
g2�B

2

2
�

0

�

e−i�t��Bi�0��Bj�t��dt , �C9�

where in the above and following equations, we imply sum-
mation over repeating indices �like i� but not for spin indices
�like m�. Next we relate the spin-1 /2 density matrix ! in Eq.
�C3� to the average spin �S�, using the following expression:

! =
1

2
+ �S� · � , �C10�

where 1 is the unity matrix in the spin space. Multiplying Eq.
�C3� on both sides by � and tracing over the spin, we arrive
at the Bloch-Redfield equation for the average spin,

�Ṡ� �
1

2
TrS�!̇�� = � � �S� − �J�S� + � , �C11�

where � stands for the spin precession frequency, defined as

follows �=�n�n�nn, the tensor �J denotes the spin relaxation
tensor, and the vector � is the inhomogeneous part of the
Bloch-Redfield equation. From the Born-Markov approxima-
tion we obtain

�J�S� =
1

2�
nm


��i�mnJij
* ��nm����S� · ��
�,� j��nm

+ ��i�mnJij��mn��
� j,����S� · ���nm� , �C12�

� = −
1

4�
nm


��i�mnJij
* ��nm��
�,� j��nm

+ ��i�mnJij��mn��
� j,���nm� , �C13�

where n ,m=± refer to the spin indices. The relaxation tensor

�J can be generally divided into two parts: �i� a pure relax-

ation part �Jr, which originates from processes of energy ex-

change with the bath ��mn�0�, and �ii� a dephasing part �Jd,
which originates from energy conserving scattering ��mn

=0�. Setting n=m in the sum of Eq. �C12�, we obtain, for the
dephasing part,

�Jd�S� = �
n

��i�nn
Jij
* �0� + Jij�0����S��� j�nn − ���nn�Sj��

= ni
Jij
* �0� + Jij�0����S�nj − n�Sj�� . �C14�

Differentiating the ith component of the latter expression
with respect to �Sj�, we arrive at the tensor21

�ij
d = �ijnpnqJpq

+ �0� − ninpJpj
+ �0� . �C15�

Here and below, we use the following notations:

Jij
±��� = Re
Jij��� ± Jij�− ��� , �C16�

Iij
±��� = Im
Jij��� ± Jij�− ��� . �C17�

Note that both terms in Eq. �C15� can be presented as scalar
products of n with �B, as can be seen by taking n inside the

time integral and averaging sign in Eq. �C9� for any terms of
the type �iniJij. Therefore, for �B�t� in Eq. �22�, the tensor

�Jd is identically zero, due to the transverse nature of the
fluctuating field.

Setting now n=−m in the sum of Eq. �C12�, we obtain,
for the pure relaxation part,

�Jr�S� = �
n

��i�−n,n
Jij
* ��n,−n� + Jij��−n,n��

���S��� j�n,−n − ���n,−n�Sj�� . �C18�

Differentiating with respect to �Sj� as before and introducing
�= ���, we arrive at the following expression21:

�ij
r = �ij��pq − npnq�Jpq

+ ��� − ��ip − ninp�Jpj
+ ���

− �ij kpqnkIpq
− ��� +  ipqnpIqj

− ��� . �C19�

The inhomogeneous part of the Bloch-Redfield equation $i
is calculated in the same way,

2$i = njJij
−��� − niJjj

− ��� +  ipqIpq
+ ���

+  iqknknp
Ipq
+ ��� − Ipq

+ �0�� . �C20�

In the secular approximation �ij 
�, the solution of Eq.
�C11� reads

�SX�t�� = S�
0 e−t/T2sin��t + 	0� ,

�SY�t�� = S�
0 e−t/T2 cos��t + 	0� ,

�SZ�t�� = ST + �SZ
0 − ST�e−t/T1, �C21�

where �SZ�t���n · �S�t�� is the spin projection along the
magnetic field and �SX�t�� and �SY�t�� are complementary
spin projections in the plane perpendicular to n. Note
that, here, the axes X and Y do not refer to the electron
position in the QPC, as used in the bulk of the paper. The
electron spin is initialized repeatedly in one and the same
state, which is characterized by the average spin value
�S�0��= �S�

0 sin 	0 ,S�
0 cos 	0 ,SZ

0�. Each time, the spin is left
to evolve in the presence of the magnetic field and the Mar-
kovian bath, relaxing in the long-time limit to the equilib-
rium value

ST =
n�n · ��

�n · �J · n�
= −

ng

2�g�
tanh
 ��

2kBT
� . �C22�

The relaxation time T1 and the decoherence time T2 in Eq.
�C21� are defined as follows21:

1

T1
= ninj�ij = ninj�ij

r , �C23�

1

T2
=

1

2
��ij − ninj��ij . �C24�

Note that from Eq. �C15� it follows that ninj�ij
d =0, and there-

fore the relaxation time T1 is determined solely by the pure
relaxation part �ij

r . In contrast, the decoherence time T2 is
determined by the total relaxation tensor �ij =�ij

r +�ij
d . Sepa-
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rating the contributions of �ij
r and �ij

d in Eq. �C24�, we arrive
at

1

T2
=

1

2T1
+

1

T	

, �C25�

where 1/T	 is the dephasing contribution to the decoherence
rate,

1

T	

=
1

2
��ij − 2ninj��ij

d = ninjJij
+�0� . �C26�

As mentioned above, for �B�t� in Eq. �22� we have
1/T	=0, which results in T2=2T1, provided no other dephas-
ing mechanism is present.

Finally, substituting Eq. �C19� into Eq. �C23��, we obtain

1

T1
= ��ij − ninj�Jij

+��Z� −  kijnkJij
−��Z� . �C27�

Note that the tensors Jij
±��� present in Eq. �C27� are ex-

pressed in terms of the tensor Jij��� given in Eq. �C9�. Fur-
thermore, the time integration from 0 to +� in Eq. �C9� can
be extended to an integration from −� to +�, provided one
calculates relaxation rates. Indeed, in all sums over repeating
indices in Eq. �C27�, one can rearrange the terms in such a
way that only integrals from −� to +� appear. As a result,
from Eq. �C27�, we arrive at Eq. �44�, in which the quantities
J ij

±�w�, given in Eq. �45�, contain only symmetric time inte-
grals, which is convenient for calculation.
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