
Electron spin relaxation in InSb at high magnetic fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. C: Solid State Phys. 13 3933

(http://iopscience.iop.org/0022-3719/13/20/015)

Download details:
IP Address: 128.210.105.119
The article was downloaded on 21/07/2010 at 14:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3719/13/20
http://iopscience.iop.org/0022-3719
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. C: Solid St. Phys., 13 (1980) 3933-50. Printed in Great Britain 

Electron spin relaxation in InSb at high magnetic fields 

P Boguslawski and W Zawadzki 
Institute of Physics, Polish Academy of Sciences, 02-668, Warsaw, Poland 

Received 15 February 1980 

Abstract. Spin relaxation of conduction electrons in InSb at high magnetic fields is considered 
theoretically and compared with existing experiments. A three-level model of band structure 
is used, which takes into account the main peculiarities of InSb: narrow energy gap and strong 
spin-orbit interaction. Spin mixing in the electron wavefunctions allows for spin-flip transi- 
tions due to electric-type perturbations (Elliott mechanism), Times of spin relaxation between 
the two lowest spin sub-bands are calculated for scattering by ionised impurities, acoustic 
phonons (deformation potential and piezoacoustic interactions). optic phonons (polar and 
deformation potential interactions) as well as for scattering by localised magnetic moments 
(paramagnetic ions, hyperfine interaction with nuclei). It is shown that the spin relaxation in 
existing experimental conditions is mainly due to the scattering by ionised impurities and 
acoustic phonons (deformation potential interaction). The theory well describes some experi- 
ments performed with a spin-flip Raman laser, while in others the observed spin relaxation 
times are shorter than the calculated ones. Possible sources of these discrepancies are 
considered. 

1. Introduction 

Spin properties of conduction electrons in narrow-gap semiconductors have been 
known to be highly anomalous due to the main features of their band structure: narrow 
energy gap and strong spin-orbit interaction. The resulting electron g-factors are very 
large and depend on energy. These peculiarities became of practical importance in 
InSb when the spin-flip Raman laser was constructed and developed into a tunable 
source of infrared radiation. 

It has been realised for some time that the above features of band structure can affect 
not only spin energies but also possible transitions between the spin states. Elliott (1954) 
was the first to realise that the spin-orbit interaction can allow for spin-flip transitions 
due to electric-type perturbations. In InSb-type semiconductors this mechanism can be 
effective in the conduction band only through the strong interband coupling due to the 
small energy gap. This was first demonstrated by Rashba and Sheka (1961) and Sheka 
(1964), who proposed a new type of optical spin-flip excitations which are due to the 
electric component of electromagnetic radiation, and by Yafet (1963) who considered 
spin relaxation due to phonons. 

Spin-lattice relaxation has also been considered by Pavlov and Firsov (1965, 1967). 
Explicit forms of the electron wavefunctions in InSb-type materials (Bowers and Yafet 
1959, Zawadzki 1973) and in HgTe-type materials (Kacman and Zawadzki 1971) have 
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been employed more recently for theoretical investigation of spin-flip transitions in the 
magnetophonon effect (Zawadzki et a1 1975), the Shubnikov-de Haas effect (Zawadzki 
et a1 1977) and the resonant polaron effect (Kacman and Zawadzki 1976, Zawadzki 
1978). Similar treatment was proposed to account for the first experiments with a spin- 
flip Raman laser in which reliable direct measurements of the spin relaxation time at  
high magnetic fields were carried out (Grisar et al 1976). More extensive measurements 
by Brueck and Mooradian (1976) and by Pascher et a1 (1976) have made it desirable to 
carry out calculations of the spin relaxation times in InSb in more detail, to try for a 
quantitative description of existing experiments. This is the purpose of the present work. 

2. Three-level model of band structure. Spin-flip transitions 

We consider a three-level model for the band structure of InSb at k = 0: the r6 s-like 
conduction level separated by the energy gap Eg from the degenerate Ts p-like valence 
level, which is in turn split off by the spin-orbit energy A from the r7 p-like valence 
level. It is assumed that the conduction band is adequately described by this model, 
neglecting all distant bands. The three-level k p  scheme including an external magnetic 
field can then be solved exactly, both for the energies and the wavefunctions (Bowers 
and Yafet 1959, Zawadzki 1973). We are interested in two spin sub-bands of the lowest 
Landau level, n = 0. For the magnetic field oriented in the z direction the energies of 
these two sub-bands are given by 

E&,) = - Eg/2 + [(E,/2)2 + EgD ,(kz)l l 2  

D.(k,) = hoc/2 + EZ i (1/2)g,*@ 

(2.1) 

(2.2) 
where m,* and gg are the effective mass and the effective g-factor at the bottom of the 
conduction band. wc = eH/mgc is the cyclotron frequency, and EZ = h2k,2/2m,* is the 
electron kinetic energy along the magnetic field. In the assymetric (Landau) gauge 
A = [0, H x ,  01. The corresponding electron wavefunctions are 

with 

and 
A + 3 E p  

y 2  = A2 
= (A + EB) (A + 3EJ2)  ' A + E g  ' 



Electron spin relaxation in InSb 3935 

Here A = exp[i(k,y + k,z)]/L, and V = L3 is the crystal volume. S and X ,  Z 2 are 
periodic functions of rl and rl symmetry, respectively, and R = ( X ,  iy)/ J2. 
c$~(x - X )  are harmonic oscillator functions centred at X = - l ; k y ,  lH = (hc/eH)'/2 
being the magnetic length. The '+' and '-' signs in equations (2.3)-(2.4) denote effective 
spin, while ? and 1 denote the true spin-up and spin-down functions. Clearly, in the 
presence of spin-orbit interaction spin is not a good quantum number. In the following 
we call transitions between ' +' and '- ' states the spin-flip transitions. 

Among perturbations causing spin-flip transitions in the above sense we consider 
the potentials of ionised impurities and phonons. These perturbations are spin inde- 
pendent, and the spin-flip transitions are allowed because of the spin mixing of the 
electron wavefunctions. We consider also the interaction with localised magnetic 
moments of nuclei and of paramagnetic ions. There exists also a precessional-type mech- 
anism for spin relaxation due to spin splitting of the conduction band related to inversion 
asymmetry of 111-V compounds (Dyakonov and Perel 1971). However, this mechanism 
is strongly suppressed by an external magnetic field (Ivchenko 1973) and we will neglect 
it in the following considerations. 

When an amount of electrons is excited from the lower to the upper sub-band, 
its time behaviour is characterised by three relaxation times. The first is the time T~~~~ 

of establishing the temperature T,  of excited electrons. The second is the energy relaxa- 
tion time T,", describing the relaxation of T, to the temperature of the crystal lattice T. 
The third is the spin relaxation time T,, defined below. In the following we will assume 
that T ~ ~ ~ ~ ,  z~~ < T,, i.e. that T,  = ?; and the electron distribution is given by the Fermi- 
Dirac distribution functionf,. 

In the quantum limit, thespin relaxation time can be obtained in the form 

1 /TI = 1 dE p - (E)  f- ( E )  W ( E ) / N  - (2.7) 

where p -  and N -  are the density of states and the electron concentration in the upper 
sub-band, respectively. W(E)  is the probability of the spin-flip transition per unit time. 
Notice that TI is also the electron lifetime in the upper sub-band. 

The distribution function f-  depends on N - .  For this reason the relaxation time 
Tl depends also on N - .  Consequently, one obtains non-exponential decay of the ex- 
cited electron population. The exponential decay occurs in two cases. First, when the 
transition probability is energy independent, W(E)  = W = const, and the spin relaxation 
time is = l / W  Second, for the non-degenerate electron statistics, the probability 
of occupation of a given state does not depend on electron concentration, therefore T, 
is independent of N -  for any W(E). Since the magnetic field always tends to make con- 
ditions less degenerate (Blakemore 1962), one deals with the non-degenerate statistics 
even at relatively low temperatures. 

3. Spin relaxation by ionised impurities 

The scattering potential given by ionised impurities in the crystal is 

U(r )  = c(r - RI)  (3.1) 
I 

where the summation runs over impurity atoms situated at RI.  The potential of a single 
impurity is assumed to be the Coulomb potential in the medium with dielectric constant 
eo screened by free carriers: u(r) = - e 2  exp( --qqr)/cOr. The value of the screening radius 
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q, is discussed in Appendix 1. The matrix element of the potential (3.1) for spin-flip 
transitions calculated using electron wavefunctions (2.3-2.4) has the form 

( k ' ,  +IU(u)lk, -) = d3rexp[-i(Ak,y + Ak2z)]  qh0(x - X ) ~ , ( X  - X') U(u) 

(3 4 
with 

It follows from equation (3.3) that spin-flip transitions from the bottom of the upper 
sub-band are forbidden, as the matrix element (3.2) is proportional to k,. After expanding 
U(v)  into the Fourier series, one obtains the square of the modulus of the matrix element 
averaged over random impurity positions in the form 

(IW, + JUlk ,  - > I 2 > ,  = (1/V N,C2 c 141x, Ak,, Ak,)I2 lJ, q,, X')J2 (3.4) 
4r 

where NI is the concentration of impurities, and Ak = k' - k .  We have used the standard 
notation 

J,,(X, q,, X') = dX$& - X) exp(iqxx) 6& - X'). (3.5) .i 
The required properties of Jmn are given in Appendix 2. Using equation (3.4), one obtains 
the following expression for the spin relaxation time 

The summations in equation (3.6) are typical for our problem and will appear in the next 
sections. They can be transformed in the following way. The sum over k: runs over two 
possible values due to the energy conservation 

where k l , 2  = i-(k,2 + k:)' 2 ,  with h2k,2,'2m: = -g:!iBH, and f is a function of k,. 
The sum over Icy and q, can be transformed into the integral 

where [ = liq:/2, with q: = q: + q t .  
Applying equations (3.7) (3.8) and (3.3) to the expression (3.6) we have 

(3.9) 

(3.10) 

where 

I(x) = - 1 - (1 + x) exp(x) Ei( -x). 
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Ei is the exponential integral function. We have also defined 

and 

A A + 2 E  
A + E, A + 3Eg/2‘ 

g =  ___ 

(3.11) 

(3.12) 

In the corresponding expression of Brueck and Mooradian (1976) the functions 
I(Ci) are replaced by 1/(1 + Ci). 

One can see from equation (3.12) that the spin relaxation due to impurity scattering 
vanishes with vanishing spin-orbit interaction, i.e. for A = 0. The essential feature of 
this mechanism is its dependence on k:. This is related to the slow spatial dependence 
of the Coulomb potential, which acts only on the slowly varying envelopes in the electron 
wavefunctions (2.3-2.4). 

4. Spin-lattice relaxation. General 

The electron-phonon interaction will be described within the method of localised poten- 
tials (Ziman 1963, Ginter and Mycielski 1971, Bir and Pikus 1960). In the presence of 
a phonon the jth nucleus in the cell n is displaced from its position RJn by SJn, and the change 
of the crystal potential is 

where WJ(v - Ri)  is a vector field centred at Ri.  One can split Wj into a short-range and 
a long-range part (Ginter and Mycielski 1971). The short-range part describes the change 
of the crystal potential in the vicinity of a displaced nucleus and leads to the deformation 
potential interaction with acoustic or optic phonons. The long-range part describes 
a slowly varying macroscopic electric field induced by a phonon and leads to the piezo- 
electric coupling with acoustic phonons or to the Frohlich polar coupling with longi- 
tudinal optical (LO) phonons. 

The change of the crystal potential 6 V leads to the spin-dependent electron-phonon 
interaction 

It can be shown that for the slowly varying potential of the macroscopic electric field 
the second term is much smaller than the first one. For the quickly varying deformation 
potential the spin-orbit contribution may be not negligible, but is usually omitted. 
In the following we will also omit the spin-orbit term of equation (4.2). 

Free carriers present in a crystal screen the initial phonon potential. Screening of 
the macroscopic slowly varying electric field of a phonon will be treated in the Thomas- 
Fermi approximation (cf. Ziman 1972). Screening of the quickly varying deformation 
potential is more complicated but, as shown by Bogustawski and Mycielski (1977), 
it can also be treated in a similar way. One notices however that the matrix element of the 
deformation potential is proportional to the momentum transfer, so that the main 

120 
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contribution to the momentum relaxation is given by transitions with large momentum 
transfers. Since the screening of these transitions is not effective, we will' neglect the 
screening of the deformation potential. 

In the experimental conditions of spin-flip Raman scattering the energy of an acous- 
tic phonon causing the splin-flip process is smaller from both the spin splitting energy 
Ig;lp,H, and k,?: This is no longer true in the case of optical phonons, which has two 
important consequences. First, as hoop % k,T, even at T = 30K we have Nqv < 1. 
Therefore the only possible process of spin flip is a spontaneous emission, whle the 
phonon absorption can be neglected. Secondly, it follows from the energy conservation 
that the emission process can take place only at sufficiently high magnetic fields, when 
the condition h o o p  < lgz/pBH is fulfilled. The minimum value of the magnetic field 
satisfying this is about 83 kG. 

5. Deformation potential interaction with acoustic phonons 

We will consider first the spin relaxation time due to the deformation potential inter- 
action with acoustic phonons. It was shown by Bir and Pikus (1960) that within the 
effective mass approximation the interaction potential can be transformed into the form 

where m,n are Cartesian coordinates. emn = +[ai',/ax, + d[,/axm] is the deformation 
tensor in the continuum approximation, with 

p is the crystal density, bqv, ov(q) and 2' are annihilationoperator, frequency and polarisa- 
tion versor of a phonon mode, respectively. 4 is the wavevector from the vth phonon 
branch. Dmn is the deformation potential 

where Vm, represents the derivative of the crystal potential with respect to strain c,, 
(Bir and Pikus 1972), and p ,  is the momentum operator. 

To calculate spin-flip transition probabilities we employ a procedure used by 
Szymanska et a1 (1974); a similar approach was used by Grisar et a1 (1976) and Zawadzki 
et a1 (1977). Both longitudinal and transverse phonons interact with electrons and can 
cause the spin-flip processes. We denote the directional cosines of a phonon wavevector 
q as e.  Then the polarisation versor of longitudinal branch is gL = e = (el ,e2,e3),  
and for the transverse branches we take gT1 = (e: + e;)-''' ( - e2 ,  e,, 0) and zT2 = 
(e: + e;)-'" ( -e1e3, - e2e3 ,  e: + e;).  Polarisations T1 and T2 correspond to the slow 
transverse and fast transverse modes, respectively. As follows from equations (5.1) and 
(5.2) the spin-flip matrix elements are 
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I' = ( k ' ,  + Dmncmn elqr lk, - ) 
mn 

1 - m  + A,mJ,, + A , J I G F ]  
= { ' x x [ A I J G l  7 

with 

b -  +J2c- hkk(hw,)'" 
2 (2m,*D+DJ1 

A ,  = -b+ 

b + c hk,(hwc)' 
J 2  (2m,XD+D_)'Z' 

h2k,k: 
2m,*(D+ D -)')'' 

b b -  + J 2 c -  hoc  
J2 2 (D+D-)' '2' 

A ,  = ~ 

A,  = b-c+ 

A =+ 

A,  = a-b+(?)' ', 

hk: 
(m,*D+)"" 

A , = a  b hkz -a -b+ 
+ - (m:D-)' (5 .5 )  

Primes in equation (5.5) refer to the final electron state. We have defined imn = Gmqn, and 
only the phonon absorption term has been worked out. 

The spin-flip transitions can occur because the electron wavefunction is not a pure 
spin function, as it contains the admixture of the valence states. They are a consequence 
of the spin-orbit coupling in the initial Hamiltonian, and not of the spin-dependent 
perturbation. 

The deformation potential constants are defined as 

1 = ( X l D X X / X ) ,  m = (X/D, , /X) ,  = (X(D,,/Y) s = (Sl~,,(Z) (5.6) 

or their cyclic equivalents. ( ) = 1/R dR denotes integration over a unit cell 
of volume R. 

It follows from equations (5.4-5.5) that the probability of the spin-flip process does 
not vanish for k,  = 0. As in general there is k ,  < k,, in the following we will put A,  = 
A ,  = 0, which is a good approximation for low electron concentrations and high ma.g- 
netic fields. 

The transition probability is proportional to (I"('. After averaging /Iv12 over the 
possible q directions it turns out that the final expression is separated into 'intraband' 

1 
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part (related to 1, m, n constants) and ‘interband’ part (related to s interband constant). 
We consider the two parts separately, which makes the final expressions more lucid. 

The intraband part is 

1 ~ ~ 1 ’  = (I - e:) {t(l - e:) C,A;IJ,,~~ + ~ ~ ~ C , A ~ I J , , ~ ~ )  q2 

/JT1I2 = {$(I - e:) C,A21~,,12 + e~C,A21J,112} q2 

(5.7) 

( 5 . 8 )  

The transition probability is given by 

’qZ j h z ’ + , , A k 5  

where v, is the sound velocity of the vth mode. 
We can assume that 

(5.11) 

N q ,  = l/[exp(hwv(q)/kBT) - ‘1 kBT/hoy(q) $’ 

hence NqY + 1 z Nqv.  We also treat the transitions as quasi-elastic, i.e. neglect the phonon 
energies in the delta functions. The spin relaxation time is obtained by summing the 
transition probability over all possible final states, which are assumed to be unoccupied. 
After some algebra one finds 

(5.12) 

where 2 1 . 2  = (Q2) [ k ,  k (k: + kf.)1’2]2, and 

ML(z) = [C, - 8C, - z(2C1 + 16C,) - z2(C, + 4C,)] z 

+ [-4C, - 220C, - z2(20C, + 3C,) - z3 (C ,  + 4C,)] F(z)  (5.13a) 

M y z )  = [C, - c, - Z(C, + C,)] 2 

+ [-c, - 22c, - (C, + C,)z2] F(z)  

Here F(z) = - z exp(z) Ei( - z). 
The interband part is obtained similarly in the form 

(5.13b) 

(5.1 3c) 

(5.14) 
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with 

N L  = i (1  - 22 - 9~ ' )  - iz(11 + 9 ~ )  F(z) ,  (5 .15~)  

NT1 = i(l - Z) - $zF(z), 

NT2 = tz(1 + 32) + ( 5  + ;z)zF(z). 

(5.15 b)  

(5.15~) 

p is defined in equation (2.6). Notice that intraband and interband parts have some- 
what different dependences on magnetic field but, as remarked above, the total relaxa- 
tion is the sum of both. The dependence of l/C;lra on the magnetic field is given mainly 
by the factor co;/li(k: + k:)1/2 x w?/lik,, which is proportional to H5" (Yafet 1963). 
In this way TaC is inversely proportional to the magnetic field strength. 

It should be noticed that, contrary to spin relaxation due to ionised impurities, the 
spin-flip probability due to deformation potential interaction with acoustic phonons does 
not have the k," dependence. This is related to the fact that this interaction has also a 
quickly varying component and the resulting matrix elements have different structure 
than that for slowly varying scattering potentials. 

It is well known that the perturbation (5.1) describes not only the electron-phonon 
interaction, but also the energy shifts at the centre of the Brillouin zone caused by uni- 
axial or hydrostatic stress of the crystal. In particular, the splitting of the Ts valence 
bands under uniaxial stress is given by two terms: b = (1  - m)/3 and d = 2n/ J 3 ,  where 
1, m, n are defined in equation (5.6) (Bir and Pikus 1972). The values of b and d have been 
measured by several authors (Seiler 1974). The constants C, and C, are combinations 
of b and d, and thus they can be determined from deformation experiments. In numerical 
calculations we take b = - 1.8 eV, d = - 5.4 eV. 

The interband part is described in terms of the one deformation potential constant 
s. In InSb this constant is non-zero due to lack of inversion symmetry. In calculations we 
take s = 1 eV, which is probably an overestimation. 

6. Piezo-acoustic interaction 

The piezo-acoustic (PA) interaction results from the long-range electron-displaced 
nucleus interaction. Within the continuum approximation for CL given by equation (5.2), 
the coupling potential (4.1) can be transformed into the commonly used form (Zawadzki 
and Szymanska 1971) 

for a single phonon mode qv. Here P = e l Z 3  is the piezoelectric constant of the crystal, 
and 

KY = &ye2e3 + &ie,e, + &y3elez 

describes the angular dependence of the interaction. Free carriers screen the macro- 
scopic potential (6.1), which is taken into account by dividing SVpA by the free carrier 



3942 P Boguslawski and W Zawadzki 

dielectric function. The matrix element for the spin-flip transition is 

(6.2) 

where em stands for the emission term ( q  + -4, N N q y  + l), and C is given by 
equation (2.3). 

To simplify the evaluation of the spin relaxation time we again assume that the 
transitions are quasi-elastic and Nqv 8.- 1. We also replace the strongly anisotropic 
quantity K:/c: by its averaged value (K:/ti:)av, and obtain 

4v 

where (K2/vZ),, = Zy(K:/tl:)av, and 

9([) = 1 + s + (i + s + Ts) exp(i) Ei( - i). 
C i  and c( are defined by equations (3.11) and (3.12), and s = liq2,/2. 

(6.4) 

7. Deformation potential interaction with optic phonons 

The non-polar optical (NPO) scattering (Bir and Pikus 1960, 1972) in small-gap semi- 
conductors in the absence of a magnetic field has been investigated by Boguskawski 
(1975). The coupling potential is given by equation (4.1), but we have to consider only the 
short-range part W& of the W'. The polarisation versors can be chosen as in the case of 
acoustic phonons. The coupling potential can be written in the form 

h 1 # 2  

<o((v) = (-1 2VP,O\ i ' [ b q v  exp(iqr) - Hc]. (7 4 
The reduced density is p, = M/R, where M is the reduced mass of the unit cell, and 

1 
WO(v) = [m,W,',(r - q) - m, - RfIl (7.3) 

mt + m2 n 

is a vector field of r15 symmetry. 

proportional to 
The transition probability is described by the matrix element of the potential (7.1), 

I" = (k ' ,  + /d'W'(v)exp(iqv)lk, -) 

= -i[A,J,o': + '/J2 + i'%)l dO'qy,Ak$q,,Ak,> (7.4) 

do = a , ( X I y O / z )  (7.5) 

where A ,  and A, are defined in (5.5). The deformation-potentia1 constant do is 
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where a, is the lattice constant. The value of do in InSb is about 35 eV (Bogusjawski 
1975). In I’ we have omitted the weak interband coupling. One can see that all phonon 
modes can cause the spin-flip process. The transition probability is proportional to 

1 1 ~ 1 ’  = dz[e2A2 3 1/J1,l2 + :U - e:)A:lJll121 (7.6) 

I I  I - d o l  41 111’ 

lIT21’ = #[(I - e:)A:IJlo12 + +e:A~IJ,,12]. 

(7.7) 

(7.8) 
In the evaluation of the relaxation time we neglect the phonon dispersion, and assume 

T1 2 - 2 . 1 ~ 2 ~  

that the final electron states are unoccupied. After some algebra one finds 

(7.9) 

where 

and 
k: = 2mzuv / t i ,  

BL = zE:[l + zF(z)] + ;!?oc[(l + z)’ (1 + zF(z)) - z ]  

= l i [ k z  k (kf + k: - k2)’ / ’ ] ’ /2  

(7 .10~)  

(7.10b) T1 - ‘ t io 6 - 4  c 

OT2 = E:[l - z - z’F(z)] + : ~ C O ~ Z [ - Z  + Z’ - (1 - ~ ’ ) F ( Z ) ] .  (7.10~) 

8. Polar interaction with optic phonons 

We now turn to the long-range part of the WJ fields, describing the macroscopic electric 
field induced by an optical phonon. Only the longitudinal phonons produce a macro- 
scopic field, and its potential (4.1) is given by 

6Vp, = i- - [b,f exp (iqr) + b, exp( - iqr)] (8.1) 

where e* is the Callen effective charge. We take the screening into account by dividing 
6 Vpo by the free carrier dielectric function. The dispersion in the o(q) dependence will 
be neglected. We assume that the potential (8.1) is slowly varying in space (small q values) 
so that it acts only on the slowly varying envelope components of the electron wave- 
functions. The spin-flip matrix element is obtained in the form (cf. Zawadzki et al  1975) 

where 

C is given by equation (3.3), and only the spontaneous emission is taken into account. 
The spin relaxation time is given by 

(8.4) 

The function 9 is defined in equation (6.4), but the reduced momentum transfer is the 
same as in equation (7.9) with k ,  = k,,, which again indicates explictly that the spin 
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relaxation due to optical phonons is possible only for spin splittings larger than the 
phonon energy. The spin relaxation time (8.4) has the characteristic k: dependence due 
to assumed slow spatial variation of the Frohlich Hamiltonian (8.1). 

Pavlov and Firsov (1965, 1967) have also considered spin-flip transitions due to 
deformation potential and polar interactions with optical phonons. Both their procedure 
and final results differ from ours. 

9. Interaction with localised magnetic moments 

One of the possible processes of spin relaxation is due to the presence of localised mag- 
netic moments in the crystal. We will consider two types of magnetic moments: the 
nuclei of the host crystal and the magnetic moments of electronic clouds of the impurity 
atoms. Although the origin of interaction is different in both cases, their formal treatment 
is very similar. 

We assume the contact interaction of the electron spin a/2 with the localised spin S 
situated at r, 

The main contribution to the spin-flip matrix element is given by the s-like component 
of the wavefunctions (2.3)-(2.4). We shall neglect the p-like component which introduces 
the error of the order of one per cent to the final results. The eigenfunctions of S are 
denoted by lj, m),  j being the total momentum and m its z component. Decomposing 

as = a+S- + a-S, + azsz 
one finds the spin-flip matrix element in the form 

0 , m  - l ;k ’ ,  + l P b , m ; k ,  -) = L-’Q,m - l lS- l j ,m)(+la+/-)  

x exp[ib,Ak, + z,Ak,)l JOh,(xs  - X) &(xS - -U. (9.2) 

The electron spin relaxation time is obtained by summing the contribution of all mag- 
netic moments. This gives 

1 2n 
- = -Cc 1 P&, m - 1; k‘, +lPlj, m;  k, ->I ’  6(E-  - E , ) ) , ,  (9.3) 

li s m k ;  

where p ,  is the probability of occupation of the state Ij, m )  and ( ), denotes the average 
over possible rs. We have assumed elastic transitions. Introducing equation (9.2) into 
the expression (9.3) one obtains 

where N ,  is the concentration of the magnetic moments, and the angular bracket implies 
the thermal average?. 

t A similar expression was obtained by Kossut and Walukiewicz (1976). Their formula omits the factor 71/4. 
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9.1. Hyperfine interaction 

The hyperfine interaction with crystal nuclei was first studied by Overhauser (1 953) 
in metals, and recently by Chazalviel (1975) and Fishman and Lampel (1977) in 111-V 
semiconductors in the absence of magnetic field. The interaction is given by equation 
(9.1), where S = I is the nuclear spin, and 

J y  = (8n/3)//LB/hgk' (9.5) 
Here is the nuclear magneton, and g; is the Lande factor of the nucleus of the vth 
kind. In this case, we have to sum the contributions of all nuclei of kind v and concen- 
tration N y .  This leads to 

where S ,  is the value of the r6 s-like function at the nucleus of vth kind. As the nuclear 
magnetic moments are very small, there is gNpNH 4 k,T for the temperatures of experi- 
ment. For this reason the nuclear polarisation vanishes, and the probability that a 
nucleus occupies a state 11, m )  is 1/(21 + 1). In other words, the nuclear spins are un- 
correlated, which was used in the derivation of equation (9.6). 

9.2. Paramagnetic centres 
As mentioned above, one can introduce the localised magnetic moments to the crystal 
by doping. For example, a Mn ion with the d-shell half filled acts as a paramagnetic 
centre. The exchange-coupling potential is of the form (9.1), where J ,  is the exchange 
integral, and the spin relaxation time is given by equation (9.4). At low temperatures 
the magnetic field can partially order the spin of paramagnetic centres, as gppBH - k,T 
where gp is the impurity g-factor. We describe this effect by using the thermal average 
( S + S - ) .  In this way, the dependence of the relaxation time (9.4) on the magnetic field 
is more involved than that due to the hyperfine interaction. First, let us observe that the 
order of S ,  and S- operators in equation (9.4) is important as they do not commute. 
This order is governed by the sign of the conduction electron g-factor: if g: < 0 then 
we are interested in the transitions between '-' and '+' states due to the operator 0,. 
This process is accompanied by a transition from 1 , m )  to b , m  - 1) given by S - ,  
and a quotient S + S -  appears in equation (9.4). If g,* > 0, one would get the inverse order. 

Secondly, the increase of a magnetic field can additionally increase or decrease the 
spin relaxation time; this influence depends on the relative signs of g-factors of para- 
magnetic centres and that of the conduction electrons. This can be easily understood 
if one considers an example of a Mn ion (gp = $2) in InSb (g: = -50). At T x 0 and 
for very large H the paramagnetic centres are completely polarised antiparallel to the 
field direction. In such a situation the electron spin-flip transitions '-' --+ '+' are for- 
bidden, and the relaxation time (9.4) becomes infinite. In general, the electron spin 
relaxation time additionally increases when gp and g: have inverse signs. A similar 
expression for spin relaxation has been independently obtained by Walukiewicz (1980). 

10. Comparison with experiment 

The first direct determination of Tl in InSb was performed by Grisar et a1 (1976) who 
measured the time-resolved conductivity following a stimulated SFR pulse. Next, TI 
was investigated by Brueck and Mooradian (1976) and by Pascher et a1 (1976). The 
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experimental conditions and the determined values of are presented in table 1, 
together with the theoretical results for the spin relaxation times due to scattering by 
ionised impurities and acoustic phonons (deformation potential interaction). 

Table 1. Experimentally determined qXp and calculated spin relaxation times. (a) Pascher 
et al (1976), (b) Brueck and Mooradian (1976), (c) Grisar et al (1976). 

N ( c ~ - ~ )  H(G) T(K) TeXP(ns) Tins) q:(ns) q?'"(ns) c:'ra(ns) 

1.35 x 10" 1.0 x lo4 1.8 110 i 20'"' 1200 (T, = 5 K) 165 20000 8000 

3.00 x 1015 2.0 x io4 1.8 100 20'4' 24 
3.00 x 10" 1.3 x lo4 1.8 185 i 20'"' 44 
1.20 x loL6 6.0 x lo4 20.0 60 20'"' 120 85 112 
1.60 x 10l6 5.0 x lo4 24.0 250 k 50"' 55 102 100 
1.60 x 10l6 13.5 x lo4 24.0 150"' 220 16.5 17 

6 0 0 ( q  = lOK) 

In the numerical calculations we have used the following values of material parameters 
for InSb: mt = 0.014 m,,g: = -50, EE = 0.23 eV,A = 0.9 eV,c, = 1 7 . 8 . ~  = 5.8 g ~ m - ~ ,  

loL3 s-l ,  a ,  = 6.5 A, e:2, = 5.62 x lo8 dyn cm-2, ea = 0.13 e. 
For the spin relaxation due to acoustic phonons, both interband and intraband spin 

relaxation rates are overestimated because of the assumed elasticity of electronic transi- 
tions. Among various phonon branches the T1 mode is most effective, and the L mode 
is least effective. In the experimental conditions in consideration, the piezo-acoustic 
scattering is weaker than the deformation potential scattering by at least one order of 
magnitude. 

In the ionised impurity scattering the free carrier screening is of essential importance 
(cf. Appendix 1). In the numerical calculations the general formula (A1.2) has been used. 

The hyperfine interaction leads to the relaxation time 2000 ns at lo4 G, and 600 ns 
at lo5 G. The interaction with paramagnetic centres may be important only at very high 
concentrations of these centres. Such a situation occurs for example in mixed semicon- 
ducting compounds of the type of Cd,Mn, -,Te. 

As can be seen, for magnetic fields not high enough to allow for relaxation due to 
optic phonons the most effective spin-flip modes are ionised impurities and acoustic 
phonons. It is then worthwhile to compare these mechanisms. First, as a result of the 
structure of the electron wavefunctions (2.3,2.4) T,,: cc EZ whereas T,:' does not vanish 
at the bottom of the spin sub-band. Second, the matrix element for the ionised impurity 
scattering is inversely proportional to the momentum transfer q = k' - k,  and for acous- 
tic phonon scattering the matrix element is proportional to the momentum transfer. 
The minimal value of the momentum transfer, given by ks = (2m,*g,*pBH)' 2 / F r ,  is 
increasing with magnetic field, therefore the role of the acoustic phonon scattering also 
increases. 

Describing more specifically for different data we notice that in the experiment of 
Pascher et a1 (1976) performed at low temperatures only ionised impurities are of im- 
portance. The calculated relaxation times are longer by one order of magnitude than 

2 ' ,  = 3.8 x 105m s -1, z T 1  = 1.63 x 105cm s -1, LlT2 - - 2 3 x 105cm 7 - 1 .  w ,  = 3.5 x 
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those determined in the experiment. We propose two possible explanations of this 
discrepancy. The first one is the heating of electrons by the laser radiation. One can 
expect that this effect takes place, as the energy relaxation rate is comparable to the spin 
relaxation rate (Brueck and Mooradian 1976). In this case the shortening of Tmp(cx l/Ez) 
is due to the increase of the temperature of electron gas, i.e. to the increase of the mean 
value of EZ ( = k,T/2).  The experimental data cannot be accounted for even if one assumes 

= 10 K (the temperature of the sample is 1.8 K). 
Another possible explanation takes into account the influence of ionised impurities 

on electronic states close to the bottom of the Landau levels. Approximate treatment of 
this problem is presented in Appendix 3. The calculated values of TI are of the order of 
experimental ones; this approach however is very sensitive to the value of the screening 
radius 4,. which is difficult to evaluate correctly. 

The experiment of Brueck and Mooradian (1976) is described quite well by our theory. 
The contributions of the ionised impurity mode and of the phonon mode to the spin 
relaxation are comparable. 

The experiment of Grisar et al (1976) was performed at highest magnetic fields and 
temperatures, where the phonon scattering may dominate. The agreement with experi- 
ment is poor. However, the observed decreases with increasing magnetic field, this 
feature being characteristic of acoustic phonon scattering. 

Appendix 1 

Free electron screening in high magnetic fields has been investigated by Wallace (1974) 
within the random phase approximation. Both inter- and intra-Landau level transitions 
have been taken into account. In the experimental conditions of interest the inter-level 
contribution is negligible. The intra-level contribution has a complicated form, which 
can be well approximated by the expression given by Krupski (1975) 

(Al . l )  

Equation (Al.1) holds for T = 0 K and at the ultra-quantum limit. The non-sphericity 
of the screening induced by the magnetic field can be neglected. At finite temperatures 
we have 

(A1.2) 

where F3,2 is the Fermi integral, and p the reduced Fermi level. 
When considering the SFR scattering we have to take into account the electron spin, 

neglected until now. If the electron concentration in the lower (upper) spin sub-band is 
N+(N-), 1/N in equation (Al.1) should be replaced by 

(Al.3) 
It follows from equation (Al.l) and (A1.3) that when the electron population in the upper 
sub-band approaches zero due to spin-flip transitions, the screening becomes infinite. 
This non-physical result comes from the fact that, in the derivation of equation (Al.l), 
the infinite density of states has been assumed at the bottom of the Landau sub-band. 
In the real crystal this divergence is removed by damping due to impurities or other 
scattering processes. 

1/N + 1/N+ + l /N-.  
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Appendix 2 

For n and m of interest, the squares of Jnm functions defined in equation (3.5) are 

JJoo12 = e-(, 

lJlo12 = j ~ , , j ~  = [ e -<  

)J,l/2 = (1 -i)2e-c 

where C = l:(q: + q,2)/2. 

(A2.1) 

(A2.2) 

(A2.3) 

Appendix 3 

As we have pointed out in 4 10, our approach does not describe the data of Pascher et a1 
(1976). It seems however that at very low temperatures and low electron concentrations 
the ionised impurities provide the main channel of spin relaxation. On the other hand, 
it is well known (Kubo et all965) that the presence of ionised impurities strongly affects 
the electronic states close to the bottom of the Landau levels. In particular, the density 
of states becomes broadened and the electron kinetic energy is finite even for the lowest- 
lying states. 

Let LIS try to estimate the modification of the spin-flip scattering caused by the spin- 
conserving transitions. For this purpose we replace the unperturbed density of states 
by the perturbed one. We would like to replace the kinetic energy E, = h2kt/2mg 
appearing in the simple theory presented in 0 3 by the perturbed kinetic energy K along 
the magnetic field. The first assumption seems quite natural, the second is more doubtful. 

Both the kinetic energy K(E) and the density of states D(E) can be obtained by using 
the method of the resolvent operator. The final results obtained by Davies (1973) and 
Yuen et a1 (1974) for the upper sub-band are of the form 

(A3.1) 

(A3.2) 

where E is the energy counted from the bottom of the unperturbed sub-band. The 
functions r and A are the line broadening and the level shift, respectively. They are given 

r(4 = (J3/2) ( Z ,  - Z - ) ,  (A3.3) 

A(€) = - +(Z+ + Z - ) ,  (A3.4) 

bY 

where 
Z ,  = {(E/3)3+ t2/2 + t[(€/313 + t2/411/2)1/3 

Here 5 is the electron impurities effective coupling constant, 

(A3.5) 

(A3.6) 
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Taking into account only the forward scattering, the above authors obtained 

J(Ic) = 1 + IC exp(lc) Ei( - IC), (A3.7) 

with K = liq2/2. For states close to the bottom of the sub-band one has to consider also 
the backward scattering contribution which increases the value of J(K) by a factor of 
two approximately. 

Note that the above approach is self-consistent in the following sense. The density 
of states (A3.1) is determined by the screening radius q,, which in turn is given by the 
density of states. Since the solution is difficult to obtain, one can alternatively treat q ,  
as a free parameter (Heuser and Hajdu 1976). 

The numerical results are obtained by using the screening radius (Al.1). One can see 
from table 1 that the calculated spin relaxation times q! are now shorter than the observed 
ones. The heuristic version, with E, replaced by K ,  leads to the shortening of qt, since 
the spin-flip transitions are now allowed for all electron energies, and K ( E )  > E (  = E J .  
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