Heavy Quarkonia Measurements with STAR

Thomas Ullrich for the STAR Collaboration
January 5, 2011
International Workshop on Heavy Quark Production in Heavy-ion Collisions
Purdue University
STAR Detector & Analysis Techniques
STAR’s Quarkonium Program (for now):

- **Golden channel for Quarkonia is** $\bar{Q}Q \rightarrow e^+e^-$
- **Strength:**
 - Υ measurements over all p_T
 - J/ψ measurements at high-p_T
 - Sampling of full luminosity (trigger)
- **Current weaknesses:**
 - Low S/B ratio for J/ψ at low-p_T
 - Moderate mass resolution for Υ 1,2,3 S states
 - possible but requires large statistics
 - Feed-down from B can be measured only indirectly
- **Future improvements:**
 - Time-of-flight provides improved e ID at low-p_T
 - Vertex detectors (direct measure of B feed-down)
 - $\mu^+\mu^-$ at mid-rapidity (MTD)
STAR detectors for onium physics …
STAR detectors for onium physics ...

TPC: $|\eta| \leq 1$ ($|\eta| \leq 1.3$ possible), $0 < \phi \leq 2\pi$
Tracking $\Rightarrow p_T, \eta, \phi$
dE/dx \Rightarrow PID (incl. electron ID)
STAR detectors for onium physics …

TPC: $|\eta| \leq 1$ ($|\eta| \leq 1.3$ possible), $0 < \phi \leq 2\pi$

Tracking $\Rightarrow \rho_T, \eta, \phi$

dE/dx \Rightarrow PID (incl. electron ID)
STAR detectors for onium physics ...

TPC: $|\eta| \leq 1$ ($|\eta| \leq 1.3$ possible), $0 < \phi \leq 2\pi$

Tracking $\Rightarrow p_T, \eta, \phi$

dE/dx \Rightarrow PID (incl. electron ID)
TPC: $|\eta| \leq 1$ ($|\eta| \leq 1.3$ possible), $0 < \phi \leq 2\pi$

Tracking $\Rightarrow p_T, \eta, \phi$

dE/dx \Rightarrow PID (incl. electron ID)
STAR detectors for onium physics ...

TPC:

- $|\eta| \leq 1$ ($|\eta| \leq 1.3$ possible), $0 < \phi \leq 2\pi$
- Tracking $\Rightarrow p_T, \eta, \phi$
- $dE/dx \Rightarrow$ PID (incl. electron ID)

BEMC:

- $|\eta| \leq 1$, $0 < \phi \leq 2\pi$
- $E/p \Rightarrow$ electron ID
- Tower: $\Delta \phi \times \Delta \eta = 0.05 \times 0.05$
- $E_{\text{tower}} \Rightarrow$ fast trigger
STAR detectors for onium physics ...

TPC: \(|\eta|\leq 1\) (\(|\eta|\leq 1.3\) possible), \(0 < \phi \leq 2\pi\)
Tracking \(\Rightarrow p_T, \eta, \phi\)
dE/dx \(\Rightarrow\) PID (incl. electron ID)

BEMC:
\(|\eta| \leq 1, 0 < \phi \leq 2\pi\)
E/p \(\Rightarrow\) electron ID
Tower: \(\Delta \phi \times \Delta \eta = 0.05 \times 0.05\)
\(E_{\text{tower}} \Rightarrow\) fast trigger

BSMD:
double layer wire PC
\(\Delta \phi \times \Delta \eta = 0.0064 \times 0.1\) rad
(0.1 \times 0.0064) for \(\eta(\phi)\) strips
\(\Rightarrow\) spatial resolution
\(\Rightarrow e/h\) separation
STAR detectors for onium physics ...

TPC: \[|\eta| \leq 1 \ (|\eta| \leq 1.3 \text{ possible}), \ 0 < \phi \leq 2\pi \]
Tracking \[\Rightarrow p_T, \eta, \phi \]
dE/dx \[\Rightarrow \text{PID (incl. electron ID)} \]

BEMC:
\[|\eta| \leq 1, \ 0 < \phi \leq 2\pi \]
E/p \[\Rightarrow \text{electron ID} \]
Tower: \[\Delta \phi \times \Delta \eta = 0.05 \times 0.05 \]
\[E_{\text{tower}} \Rightarrow \text{fast trigger} \]

BSMD:
\[\text{double layer wire PC} \]
\[\Delta \phi \times \Delta \eta = 0.0064 \times 0.1 \text{ rad} \]
\[(0.1 \times 0.0064) \text{ for } \eta(\phi) \text{ strips} \]
\[\Rightarrow \text{spatial resolution} \]
\[\Rightarrow \text{e/h separation} \]

Note EEMC is a detector whose potential is not fully exploited so far:
\[1 < \eta \leq 2, \ 0 < \phi \leq 2\pi \]
... and how they are used (trigger)

γ Trigger

- **L0:** high-tower $E_T > 3.5$ GeV (p+p) or 4.0 GeV (d+Au, Au+Au)
 - alternatively: trigger patch 4×4 towers (p+p only)
- **L2:** software algorithm building pairs from EMC towers
 - $E_1, E_2, \cos(\theta) \Rightarrow M_{inv}$
 - Rejection $\sim 10^5$ in p+p
... and how they are used (trigger)

High-\(p_T\) J/\(\psi\) Trigger

- **L0**: *single* high-tower \(E_T > 3-4\) GeV
 - alternatively: topology trigger (2 high towers separated \(\geq 60^\circ\))

Low-\(p_T\) J/\(\psi\) Trigger

- not implemented - L0/L2 provide too little rejection
- use minimum bias data sets instead (\(\Rightarrow\) low \(\int Ldt\))

New: Higher Level Trigger

- Computer farm with fast algorithm using tracking (TPC) & calorimeter data
- Still in R&D phase but used in parallel during energy scan
- Promising results (see later)
Example: Υ reconstruction

- TPC: track reconstruction
 - M_{inv} peaks at $\sim 2 \times$ trigger E_T threshold
 - dominated by h^+h^- pairs
Example: Υ reconstruction

- **TPC: track reconstruction**
 - M_{inv} peaks at $\sim 2 \times$ trigger E_T threshold
 - dominated by h^+h^- pairs

- **TPC tracks extrapolate to EMC**
 - track-cluster match if distance $R < 0.04$ in $\eta-\phi$
... and how they are used (reconstruction)

Example: Υ reconstruction

- **TPC: track reconstruction**
 - M_{inv} peaks at $\sim 2 \times$ trigger E_T threshold
 - dominated by h^+h^- pairs

- **TPC tracks extrapolate to EMC**
 - track-cluster match if distance $R < 0.04$ in $\eta-\phi$

- **Electron ID cuts**
 - E/p - EMC energy vs TPC momentum
 - dE/dx in TPC: $n\sigma_e$ of matched tracks
... and how they are used (reconstruction)

- Signal extraction

\[S = N_{+-} - 2\sqrt{N_{++}N_{--}} \frac{A_{+-}}{\sqrt{A_{++}A_{--}}} \]

- Describing the line shape
 - Crystal ball function accommodates detector resolution and bremsstrahlung: \(f(m; \alpha, n, \langle m \rangle, \sigma) \)

\[\begin{align*}
\text{const} &\quad 8.865 \pm 0.01395 \\
\text{mean} &\quad 3.081 \pm 8.432e-05 \\
\text{sigma} &\quad 0.04122 \pm 0.000108 \\
n &\quad 1.044 \pm 0.01239 \\
a &\quad 1.155 \pm 0.007413 \\
\end{align*} \]

\(J/\psi \)
\(m=3.097 \text{ GeV} \)

\[\begin{align*}
\text{const} &\quad 5.307 \pm 0.007208 \\
\text{mean} &\quad 3.066 \pm 0.0001347 \\
\text{sigma} &\quad 0.04542 \pm 0.0001429 \\
n &\quad 0.8456 \pm 0.00631 \\
a &\quad 0.7551 \pm 0.005171 \\
\end{align*} \]

\(J/\psi \)
(with SVT/SSD)
STAR’s new detector ...

ToF: $|\eta| \leq 0.9$, $0 < \phi \leq 2\pi$, MRPC technology
Timing resolution < 100 ps
Improve electron ID at low-p_T

Run 10 data taken with full ToF
Analysis in progress
... and how they are used (ToF)

- TOF: e PID for $p_T < 3 \text{ GeV/c}$
- High electron purity: 99%
- Efficiency: greater than 60% using standard cuts
... and how they are used (ToF)

Time-of-Flight Detector is an enormous asset for STAR’s dilepton physics program

Expect great things soon!

- TOF: e PID for $p_T < 3$ GeV/c
- High electron purity: 99%
- Efficiency: greater than 60% using standard cuts
STAR detectors in the near future ...

- **Heavy Flavor Tracker (HFT)**
 - $|\eta|\leq1$, $0 < \phi \leq 2\pi$
 - PXL: 2 layers of thinned (50 µm) CMOS pixel detectors (2.5, 8 cm)
 - IST: layer of low mass silicon strip-pad sensors (17 cm)
 - SSD: layer of double-sided silicon strip sensors at a radius of 23 cm
 - Distinguish prompt quarkonia from B feed-down ($B \rightarrow J/\psi + X$)

- **Muon Telescope Detector (MTD)**
 - Acceptance: 45% at $|\eta|<0.5$
 - MRPCs covers magnet iron bars
 - 6 interaction length (yoke)
 - 117 modules, 1404 readout strips, 2808 readout channels
 - Optimal mass resolution for Υ 1,2,3 S despite increased material (HFT)

See X. Dong’s talk tomorrow
Results

\(J/\psi\)
High-p_T J/ψ production

STAR, PRC80, 041902(R), 2009

- **Steady improvements due to higher L & improved trigger**
- **SVT/SSD detectors taken out before run 2008**
 - 7-10 times less X/X_0
- **Spectra for 2009 data soon**

2009 data
here: tight cuts for correlation study

- **(a) 200 GeV $p+p$**
 - $5 < p_T < 14$ GeV/c
 - $J/\psi \rightarrow e^+ e^-$
 - unlike-sign
 - like-sign
 - simulation

- **(b) 200 GeV $Cu+Cu$**
 - $5 < p_T < 8$ GeV/c
 - 2005

Counts / (30 MeV/c^2)

- **p+p 200GeV**
 - $p_T > 4.0$ GeV/c
 - #J/\psi = 376
 - S/B = 22

(counts / (40 MeV/c^2))

(counts / (50 MeV/c^2))

$M_{inv}(ee)$ (GeV/c^2)

2005 & 2006

M_{inv}^{ee} (GeV/c^2)

STAR Preliminary

(c) 200 GeV $p+p$

$J/\psi \rightarrow e^+ e^-$

5 < p_T < 14 GeV/c

5 < p_T < 8 GeV/c

$M_{inv}(ee)$ (GeV/c^2)

Counts / (30 MeV/c^2)

M_{inv}^{ee} (GeV/c^2)

2009 data
here: tight cuts for correlation study

- **Direct J/ψ (p+p):**
 - LO CS+CO
 - NNLO* CS

$$B \cdot \frac{1}{2 \pi p_T} \cdot \frac{d^2 \sigma}{dp_T dy} (\text{GeV/c})$$

$$B \cdot \frac{1}{2 \pi p_T} \cdot \frac{d^2 \sigma}{dp_T dy} (\text{nb/GeV/c})$$

$M_{inv}(ee)$ (GeV/c^2)

M_{inv}^{ee} (GeV/c^2)
High-p_T J/ψ: $p+p$ spectra

CEM:

- MRST
- Curve includes feed-down from $\chi_c + \psi'$
- Leaves no (little) room for B feed-down
- Varying m_R, m_μ, k_T can heal this
High-p_T J/ψ: p+p spectra

NNLO* CS:
P. Artoisenet et al., PRL 101, 152001, J.P. Lansberg private communications.

- Only CS contributions, but go to higher orders, partially with loops, partially with just tree-level higher order diagrams.
- Curve does not include feed-down from $\chi_c + \psi'$ (ψ' available)
- χ_c might be large because of high x_T range of STAR data
- Leaves room for substantial feed-down
- Still too low at $p_T > 10$ GeV/c
 - CO needed?
High-\(p_T \) J/\(\psi \): p+p spectra

CO+CS in NRQCD:
G. Nayak, et al., PRD68, 034003 and private communications

- LO calculations
- direct J/\(\psi \) (singlet and octet)
- CO dominating
- color octet matrix elements from P. Cho, A. Leibovich, PRD 53:6203,1996
- Curve does not include feed-down from \(\chi_c + \psi' \) (\(\chi_c \) available)
- Leaves little to no room for feed-down
J/ψ in p+p: x_T Dependence

\[E \frac{d^3\sigma}{dp^3} = g(x_T)/s^{n/2} \]

In parton model:
n is related to number of point-like constituents taking active role in interaction

n=8: diquark scattering
n=4: QED-like scattering

\[x_q \approx x_g \approx x_T \]

- \(\pi \) and \(p \) at \(p_T > 2 \) GeV/c: \(n=6.6\pm0.1 \) (PLB 637, 161(2006))
- J/ψ at high \(p_T \): \(n=5.6\pm0.2 \) (the power parameter close to CS+CO prediction)
- low & high-\(p_T \) J/ψ production dominated by different processes?

\(\pi \times 10^4 \) (n=6.6)
\(p \) (n=6.6)
\(\Delta \) CDF
\(\blacklozenge \) UA1
\(\bigtriangleup \) FNAL
\(\blacklozenge \) PHENIX
\(\blacklozenge \) STAR
\(\blacklozenge \) ISR

\(x_T = 2p_T/\sqrt{s} \)

\(x_T = 2p_T/\sqrt{s} \) (n=5.6)

\(x_T = 2p_T/\sqrt{s} \) (n=6.6)

\(x_T = 2p_T/\sqrt{s} \) (n=6.6)

\(x_T = 2p_T/\sqrt{s} \) (n=5.6)
Assessing feed-down from B mesons

So far at RHIC no Si-Det. to tag B decays. Need alternative!

Method 1
- Comparing measured J/ψ spectra with NLO b calculations + b FF + B → J/ψ + X decay kinematic
- Considerable uncertainties in absolute normalization from NLO calculations (m_µ, m_R, M_b, PDF) and ψ’,χ_c feeddown

Method 2
- Use J/ψ–h correlations (dφ)
 - Interpretation is model dependent (here PYTHIA)
 - B fragmentation is hard and rather well known
 - Good S/B with STAR at high-p_T makes this possible
High-p_T J/ψ-h Correlations: PYTHIA/LO

- PYTHIA 8 with STAR HF-tune v1.1
- J/ψ tuned to describe measured RHIC spectra with emphasis on low-p_T (PHENIX) where B feed-down is smallest
- B tuned with parameters m_μ, m_R, M_b, ..., from latest calculations (M. Cacciari et al.)

$p_T(J/\psi) > 5$ GeV/c, $p_T(h) > 0.5$ GeV/c
- soft processes added to mock up underlying event (minor effect)
- little difference between CO/S: confirm studies at LHC by Bargiotti & Vagnoni (LHCb-2007-042) and Kraan (arXiv:0807.3123)
- Pronounced near-side for B feed-down (moderate recoil in away-side)
Constraining bottom contribution

Previous result:
- No significant near side \(J/\psi\)-hadron azimuthal angle correlation
- Correlation show low B contribution \((13 \pm 5)\%\)

STAR, PRC80, 041902(R), 2009

Run 9:
- Higher statistics
- Divide into 3 \(p_T\) bins
Latest results on B feed-down

- New results consistent with previous results
- No significant beam energy dependence! Why?
- Away side: Consistent with h-h correlation (gluon/light quark fragmentation?)
Latest results on B feed-down

J/ψ-h correlations are a powerful tool to study B feed-down.

There’s one assumption:
NLO effects are negligible

This has not been demonstrated yet.
- No NLO calculations for J/ψ-h exist
- Neither CDF nor CMS have conducted a study comparing B-tagged J/ψ and J/ψ-h (they could)
- Needs to be done to ultimately establish the validity of this approach
High-\(p_T\) J/\(\psi\): \(R_{AA}\)

STAR Cu+Cu 0-20%: \(R_{AA}(p_T>5) = 1.4\pm0.4\pm0.2\)

- The only hadron measured to be not suppressed?
- Contrast to open charm. CS vs. CO? Formation Time?
- 2-component models describes the overall “trend”
A look into the (near) future

![Graph showing data distribution](image)

- **Beam energy scan: 39 GeV Au+Au**
 - Expect ~1000 (13σ) J/ψ from full MB data
 - Able to cover p_T range 0-5 GeV/c
 - Reference data available from Fermi Lab Experiments and ISR

- **200 GeV p+p**
 - J/ψ polarization study in progress

- **200 GeV Au+Au**
 - J/ψ v_2 in progress
Results
Some thoughts …

Reality check: What have we learnt about medium from J/ψ?

• IMHO: not much when compared to flow, spectra & high-p_T
• Studies need to go on (augmented by LHC results)
• Interpretation difficult
 ‣ production mechanism?
 ‣ feed-down from B and \(\chi_c \) states?
 ‣ recombination?
 ‣ energy loss (see open heavy flavor)?
 ‣ life and formation time effects?
 ‣ co-mover absorption?

Study of \(\Upsilon \) states avoid many of these difficulties

• Ratios: \(\Upsilon(2S)/\Upsilon(1S) \) and \(\Upsilon(3S)/\Upsilon(1S) \) are powerful tools
• No recombination (dN/dy too small), no co-mover-absorption (\(\sigma \) too small), less E-loss (\(m_b \gg m_c \)), feed-down only from \(\chi_b \) states
• Caveat: Experimentally difficult but possible given enough L
\[\gamma \text{ in } p+p \ 200 \text{ GeV} \]

\[L = 7.9 \pm 0.6 \ \text{pb}^{-1} \]

\[N_{\gamma}(8 < m < 11) = S - \text{DY-bb} = 61 \pm 20 \text{(stat.)} \]

\[N_{\gamma}(\text{total}) = 67 \pm 22 \text{(stat.)} \]

\[\sum_{n=1}^{3} B(nS) \times \sigma(nS) = 114 \pm 38^{+23}_{-24} \ \text{pb} \]

\[\left(\sigma_{\text{DY}} + \sigma_{\text{bb}} \right)_{|y|<0.5, 8<m_{ee}<11 \text{ GeV/c}^2} = 38 \pm 24 \ \text{pb} \]
STAR Y vs. theory and world data

\[\sum_{n=1}^{3} \mathcal{B}(nS) \times \sigma(nS) = 114 \pm 38 \pm 23 \text{ pb} \]

\[\sqrt{s}=200 \text{ GeV} \\ p+p \ \ \gamma + \gamma' + \gamma'' \rightarrow e^+e^- \text{ cross section} \text{ consistent with pQCD and world data trend} \]
Υ in d+Au 200 GeV

$\Upsilon(1S+2S+3S) + DY + \bar{b}b$: raw yield (7<m<11) = 172 ± 2(stat.)

Strong signal (8σ)

$R_{dA} = 0.78 \pm 0.28$ (stat) ± 0.20 (sys)

Consistent with N_{bin} scaling
Year 2007
8<m<11 GeV/c^2
Includes: \(\Upsilon \), Drell-Yan, \(\bar{b}b \)

0-60%
4.6\(\sigma \) significance
95 Signal counts
1.11\(\times 10^9 \) events

0-10%
3.5\(\sigma \) significance
47 Signal counts
1.78\(\times 10^8 \) events
Y Yield Extraction 0-60% Centrality

How solid is the signal in $\gamma(1S+2S+3S)$ in 0-60% centrality?

Force γ yield to zero

Raw yield of 0 is many sigma away from minimum χ^2
Yield Extraction 0-60% Centrality

Scaling p+p results for Υ and $DY + \bar{b}b$ gives us colored rectangles $R_{AA} \Upsilon(1S+2S+3S) + DY + \bar{b}b$ of 1 would be at the center of the intersection between the two rectangles.

Υ yield determined by:

$$\Upsilon(8.5 < m < 11 \text{ GeV}/c^2) = N_{+-} - 2\sqrt{N_{++}N_{--}} - \int\text{DY} + \bar{b}b = 64 \pm 16(\text{stat}) \pm 25(\text{sys})$$
$Y R_{AA}$ and comparison with predictions

- $0-60\% = 0.78 \pm 0.32\,(\text{stat}) \pm 0.22\,(\text{sys, Au+Au}) \pm 0.09\,(\text{sys, p+p})$
- $0-10\% = 0.63 \pm 0.44\,(\text{stat}) \pm 0.29\,(\text{sys, Au+Au}) \pm 0.07\,(\text{sys, p+p})$

<table>
<thead>
<tr>
<th>$q\bar{q}$</th>
<th>T/T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y (1S)$</td>
<td>2.31</td>
</tr>
<tr>
<td>$\chi_b (1P)$</td>
<td>1.13</td>
</tr>
<tr>
<td>$Y (2S)$</td>
<td>1.10</td>
</tr>
<tr>
<td>$\chi_b (2P)$</td>
<td>0.83</td>
</tr>
<tr>
<td>$Y (3S)$</td>
<td>0.75</td>
</tr>
</tbody>
</table>

S. Digal, P. Petreczky, and H. Satz, PRD 64, 094015 (2001)

No constraints from data yet: need considerably more statistics
Summary

STAR’s quarkonium program is in full swing

- **J/ψ**
 - focus on high-p_T
 - spectra in 200 GeV $p+p$ measured
 - R_{AA} (Cu+Cu) at high-p_T consistent with unity
 - B feed-down in $p+p$ through $J/ψ$-h correlations
 - RHIC energy scan: due to good S/B solid signal at 39 GeV

- **ϒ**
 - first cross-section measured in $p+p$
 - consistent with pQCD calculations
 - $d+Au$: $R_{dAu} = 0.78 \pm 28({\text{stat}}) \pm 20({\text{sys}})$
 - $Au+Au$:
 - 0-60%: $0.78\pm0.32({\text{stat}}) \pm 0.22({\text{sys,Au+Au}}) \pm 0.09({\text{sys,p+p}})$
 - 0-10%: $0.63\pm0.44({\text{stat}}) \pm 0.29({\text{sys,Au+Au}}) \pm 0.07({\text{sys,p+p}})$
 - More statistics needed but we are well on our way