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Coherent Scattering with Pulsed Matter Beams
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We present a quantum theory for the interaction of a quantum target with a time dependent matter
beam. When several pulses in the incident beam arrive with a period t, transitions between levels with
an energy difference h�t can be enhanced. Unlike all previous studies, we find that transitions in passive
targets can distinguish between an incoherent beam and a beam with a coherent wave packet structure.
As an example, we calculate the transition probability of Rb Rydberg atoms interacting with a pulsed
electron beam.

PACS numbers: 03.75.Fi, 03.65.Bz, 34.60.+z, 39.10.+ j
Scattering between two material objects has served as
an excellent probe of the processes important for chemi-
cal reactions and atomic, nuclear, and particle physics. In
all of these studies, the incident beam has not contained
any measurable type of longitudinal coherence [1]. An ex-
ample of longitudinal coherence is when the wave function
for an incident particle is a peaked wave packet along the
beam. When longitudinal coherence is not important,
the transition rate between two states in the target equals
the cross section for the transition times the current density
of incident particles. Also, each momentum component of
a projectile can be treated independently; unlike a wave
packet, the different momentum components have an un-
specified phase relationship.

There have been some experimental [1–3] and theoreti-
cal [4–9] investigations into the effect of a coherent wave
packet structure in the incident beam. While there has
not yet been a scattering experiment that utilizes a lon-
gitudinal coherence from off-diagonal density matrix ele-
ments, r�k, k0�, in the incident beam, the development
of “atom lasers” [10–13] and the “pulsed electron gun”
[14,15] seems to promise a source of coherent incident
matter waves that will allow such a measurement. In the
atom lasers, the matter waves have a very long coherence
length compared to the de Broglie wave length of an atom
in the beam. In the pulsed electron gun, electrons are emit-
ted in bunches with a time between bunches measured in
tens of picoseconds.
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In this Letter, we derive the impact that an incident mat-
ter beam composed of several pulses will have on a quan-
tum system. As an example, we calculate the effect that a
series of electron pulses [14,15] with an energy of �1 keV
has on a Rb Rydberg state when the pulses arrive at the
atom with a period of 10–100 ps. In Fig. 1, we present
a schematic drawing of this situation where three sheets
of electrons are moving past a Rydberg atom and cause
a transition in the atom. This interesting system may be
compared to an atom inside a plasma [16] where excitation
by an individual charged particle or by the fluctuating mi-
crofield can both play a role; in a plasma, it is impossible

FIG. 1. A schematic drawing of a Rydberg atom interacting
with an beam bunched in the longitudinal direction.
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to control the fluctuating field, whereas in our system we
can control which Fourier components of the quasiclassi-
cal electric field contribute to the transition. This system
may also be contrasted with attempts to control reaction
products through interaction of molecules or atoms with
specially modulated light beams [17] except there have not
been any proposals to control transitions by modulating a
matter beam.

Intuitively, the incident beam in Fig. 1 causes transi-
tions in the quantum target from two qualitatively different
mechanisms. The first mechanism is the scattering of an
individual electron by the quantum target. This gives a
transition probability equal to the time integrated electron
current density z times the inelastic cross section [18].
The second mechanism is the interaction of the Rydberg
atom with the electric field generated by the charge
density of the electron beam. This qualitative picture
disagrees with previous theoretical investigations [6,7]
which found that scattering from a passive target depends
only on diagonal elements of the density matrix r�k, k�,
and thus coherence properties are irrelevant; off-diagonal
elements are observed only when the beam interacts with
a time dependent system like a vibrating mirror (see the
experiment of Ref. [3]) or a target in a wave packet state.
In Fig. 1, the electric field generated by the charge density
(thus the transition probability) depends on off-diagonal
elements r�k, k0� of the electron beam. We go beyond the
usual treatment of transition probabilities where the effect
of only one projectile is considered. We find that the quali-
tative picture is correct; transitions are driven by (i) the
fluctuations in the incident beam or (ii) the temporal
variation of the smooth classical-type field.

The theoretical development in this Letter is restricted
to the situation where the quantum targets do not seriously
attenuate the incident beam [19]. A second restriction is
that only one incident object causes a transition in the
target. Thus, we ignore high current density effects from
one incident particle causing a transition a ! b and then
a second incident particle causing b ! c.

We treat the scattering as if the incident particles are
completely coherent and can be treated as a normalizable
wave packet of finite extent; this allows us to use a wave
function description of the dynamics instead of a density
matrix formalism. Incoherence in the incident particle
beam is included by averaging over parameters in the wave
packet. The incident particle is initially traveling in the z
direction. For one incident particle and one scatterer, the
normalized wave function is

C�t� � Fae2iEatcinc
a �r, t� 1

X
b

Fbe2iEbtcsca
b√a�r, t� ,

(1)

where Ea is the energy and Fa is the wave function for
state a of the target and cinc

a �r, t� is the incident particle’s
wave function and c

sca
b√a�r, t� is the scattered part of the

wave function leaving the target in state b. Atomic units
3736
are used unless explicitly stated otherwise. If the incident
wave is delayed by an amount t, the scattered wave is
also delayed by an amount t and it gets multiplied by
exp�i�Eb 2 Ea�t�; this phase change in the scattered wave
plays a vital role for coherent scattering.

The probability for the incident particle to cause a tran-
sition in the target to state b is Pb√a � �csca

b√ajc
sca
b√a�. The

longitudinal coherence of the incident wave (e.g., bunch-
ing the incident particles as in Fig. 1) has no measurable
effect on the probability for causing a transition from state
a to state b [6]. The probability for causing a transition
is proportional to the inelastic cross section averaged over
the energy distribution of the incident particle. Thus, the
probability for causing a transition does not depend on the
relative phases of the different momentum components,
and thus whether or not the incident particle is in a wave
packet or incoherent superposition of momentum compo-
nents is irrelevant.

The analysis changes if there are N particles in the beam
of transverse area LxLy . The transition probability from
state a to b is usually assumed to be N�sb√a��LxLy 	
z �sb√a�; i.e., the transition probability equals the inelas-
tic cross section averaged over the momentum distribution
in the incident beam times the time integral of the par-
ticle current density. This result arises from the assumption
that each incident particle contributes incoherently to the
transition. In this Letter, we demonstrate that if the pack-
ets for different incident particles arrive at the target in a
correlated manner, then this assumption can be incorrect.
To show this, we write out the N projectile wave func-
tion under the assumption that only one projectile causes a
transition:

C�t� � Fae2iEat
NY

j�1

cinc,j
a �rj , �t 2 tj��

1
X
b

Fbe2iEbt
X
j0

Ω
c

sca,j0

b√a �rj0 , �t 2 tj0��eivbatj0

3
Y
jfij0

cinc,j
a �rj , �t 2 tj��

æ
,

(2)

where vba � Eb 2 Ea and the packet for the jth
particle has been delayed by an amount tj . The j
superscript on the incident and scattered wave function is
meant to indicate that the wave packet for each incident
particle is not necessarily related to any of the other
packets. In Eq. (2), we made the assumption that the
initial state of the incident beam is such that the wave
function for the incident particles is a product of one
particle functions. This situation can occur when the
incident wave is the output from an atom laser since the
atoms are bosons. This situation also holds when all
lengths of a packet are smaller than the average distance
between adjacent objects because the incident particles
are distinguishable.



VOLUME 84, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 24 APRIL 2000
The probability for exciting the target to state b is

P
�N�
b√a �

X
j

�csca,j
b√a jc

sca,j
b√a �

1
X
jfij0

�cinc,j
a jc

sca,j
b√a �eivba�tj2tj0 ��csca,j0

b√a jcinc,j0
a �

(3)

where unit normalization of the incident packets has been
used. The first term of Eq. (3) is the incoherent sum of
probabilities from each individual projectile, and the sec-
ond term arises from the coherent effect of the projectiles
on the target. It is important to remember that the coherent
term is zero unless the incident wave packet has an energy
width that is larger than the energy change in the target;
if the energy width of the packet is too small there is no
overlap between the incident and scattered waves because
they do not contain the same energy components. As dis-
cussed below, the second term of Eq. (3) is proportional to
off-diagonal elements of the two particle density matrix.

The scattered packet does not strongly overlap the inci-
dent packet because the incident packet has a momentum
distribution strongly peaked in the z direction, whereas the
scattered wave has a larger angular distribution of momen-
tum. This means that �csca,j

b√a jc
sca,j
b√a � ¿ j�cinc,j

a jc
sca,j
b√a �j2.

It is illustrative to use this fact to approximate Eq. (3) in
the form

P
�N�
b√a 


NX
j�1

�csca,j
b√a jc

sca,j
b√a �1

Ç NX
j�1

�cinc,j
a jc

sca,j
b√a �eivbatj

Ç2
,

(4)

which can serve as the basis for discussing the physical
processes important for scattering with a pulsed incident
beam. Although an individual contribution to the incoher-
ent term is larger than one for the coherent term, there are
N times more contributions to the coherent term. There-
fore, the coherent contribution to the probability can be
dominant for large numbers of projectiles N . We interpret
the second term in Eq. (4) as arising from the coherent field
from all of the projectiles acting on the target. This inter-
pretation arises from the form of this term in which the
amplitudes from each individual particle are superposed
and the probability is the absolute value squared. Another
reason for this interpretation is that in the first order Born
approximation the second term in Eq. (4) exactly equals
the transition from state a to state b calculated using first
order time dependent perturbation theory and the time de-
pendent coupling potential generated by the incident wave
packets jc

inc,j
a j2.

In general, Eq. (4) can be quite complicated. But
under the situations that hold in most experiments, this
equation can be simplified and given in terms of familiar
scattering parameters. The only extra condition is that the
transverse length of the beam be large compared to the
distance over which the target and the beam interact. We
will also assume that the total cross section and the dif-
ferential cross section in the forward scattering direction
do not vary strongly with energy over the energy width of
the wave packet. Under these circumstances Eq. (4) can
be rewritten as

P
�N�
b√a � zsb√a

1 z 22p

Ç
1
N

NX
j�1

eivbatj

Ç2 µ
dsb√a

qdq

∂ Ç
q�q0

,

(5)

where q0 is the minimum of the absolute value of the
momentum transfer which occurs when the scattered wave
travels in the same direction as the incident wave, i.e.,
u � 0; q0 
 jvbaj�k0 when the incident energy is large
compared to the energy given to the target. The differential
cross section ds�qdq �

R
df�ds�dV��k0kf with the

k0, kf the initial and final wave numbers.
The incoherent contribution to the probability is the

total cross section times the time integrated current den-
sity of incident particles just as expected. The coherent
term in Eq. (5) is proportional to the differential cross
section in the forward direction and, thus, becomes
easier to measure for transitions where the cross sec-
tion is strongly peaked in the forward direction. Note
from Eq. (5) that the differential cross section in the
forward direction can be obtained by measuring the total
transition probability as a function of z . The coherent
contribution to the transition probability can be as large
as 2pz 2ds�qdq. The minimum time integrated current
density necessary to have the coherent term equal the
incoherent term is zmin � �2p�21sb√a��dsb√a�qdq�; at
this value, the incoherent contribution to the probability is
�2p�21s

2
b√a��dsb√a�qdq�. The incoherent probability

sb√azmin must be much less than 1 for the coherence
effects to be measurable.

We want to draw attention to the general features of this
derivation. In all situations, a collimated beam of particles
interacting with a quantum target in an eigenstate a can
cause transitions to state b through two mechanisms. The
first is proportional to

R
r�k, k�sb√ad3k and is the usual

incoherent scattering; this term depends only on diagonal
elements of the density matrix and thus cannot manifest
a difference between an incoherent beam and a beam
with a coherent wave packet structure. The second is a
coherent scattering term which is proportional to

R
r�k 1

q0ẑ, k0; k, k0 1 q0
0ẑ�Tb√a�q0�T�

b√a�q0
0� dkz dk0

z , where T
is the inelastic transition amplitude in the forward direc-
tion and r is the two particle density matrix at t � 0 [for
the case discussed above r�k 1 q0ẑ, k0; k, k0 1 q0

0ẑ� �
r�k 1 q0ẑ, k�r�k0, k0 1 q0

0ẑ�]; this term has been
ignored in previous studies either because most beams
are incoherent or because the scattered wave is not
sufficiently peaked in the forward direction. Because the
second mechanism depends on the off-diagonal density
matrix element, some types of longitudinal coherence will
have an effect on this term.
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As an example, we examined the effect of multiple elec-
tron pulse scattering on the 46s state of Rb. In all calcu-
lations we used a 1 keV incident electron beam to cause
the transition; the first order Born approximation was used
to calculate the scattering parameters. For the results pre-
sented here, we had 9 equally spaced electron pulses inter-
act with the atom and examined the transition probability
versus the time between the pulses. To compare the results
for different values of z we plotted the probability for the
transition divided by z ; this gives a parameter whose con-
stant value equals the total cross section for the transition.
In Fig. 2, we present the results from calculations for the
transition from the 46s to the 45p states. For this transition,
the incoherent scattering [first term Eq. (5)] populates all
m components of the 45p state, whereas the coherent scat-
tering [second term Eq. (5)] does not change Jz because
the electron continues in the z direction after scattering
for this term. The period of the transition is 23 ps, the
cross section is 80 Tb � 8 3 10211 cm2, and the value of
zmin � 2.1 3 104 cm22 which gives an incoherent proba-
bility of 1.7 3 1026. Note that such integrated current
densities are well within experimental reach [20].

There is no effect from the coherent scattering in the
z ! 0 limit; the probability divided by z goes to the usual
definition of the inelastic cross section in this limit. The
coherent scattering is small unless the time between the
electron pulses is a multiple of the transition period; as in
driving a transition with a periodic electric field, the transi-
tion does not occur unless the period of the driving field is
a multiple of the transition period. The relative size of the
coherent scattering compared to the incoherent scattering
increases linearly with the integrated particle current den-
sity of the beam. In this figure, it is easy to see the effect

FIG. 2. Nine equally spaced electron pulses of 1 keV incident
energy cause the transition from the 46s state of Rb. The time
between pulses t is given in units of the transition period. The
transition probability is divided by z to give a cross section.
The dotted line is the low current density, z ! 0, result; i.e.,
the usual definition of cross section. The peaks at integer values
of t arise from the coherent scattering by the equally spaced
electron pulses. The period for the 46s-45p transition is 23 ps.
z � 2.5, 5.0, and 10.0 3 104 cm22 for the dashed, dot-dashed,
and solid lines, respectively.
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from the coherent pulses for the dipole allowed transitions.
However, to observe a similar effect for nondipole transi-
tions in Rydberg atoms will be difficult because the dipole
allowed transitions are strongly peaked in the forward di-
rection, whereas all other multipole transitions have a mini-
mum in the forward scattering direction. A different way
of interpreting the results is that the time varying electric
field from the coherent excitation causes much stronger in-
teractions between dipole allowed transitions than between
nondipole allowed transitions.

There are some special features of the excitation scheme
that have an effect on the excitation probability as a func-
tion of the time between pulses. The width in t of the
peaks depends on the number of pulses in the incident
beam: the greater the number of pulses, the smaller the
width. The height of the coherent peak only depends on z .
Under most circumstances, z increases with the number
of pulses in the beam; therefore, we expect to increase the
effect of the coherent term relative to the incoherent term
by increasing the number of pulses.

In conclusion, we have shown that it is possible to detect
longitudinal aspects of coherence in an incident particle
beam without using a time dependent detector [21]. We
have found that there exists a coherent scattering term that
depends on the time integrated current densities of inci-
dent particles. The parameters that control whether coher-
ent or incoherent scattering dominates have been related to
the total cross section and the differential cross section in
the forward direction. The theory described in this paper
suggests that control over the final state distribution can
be achieved in a scattering experiment when the electron
current is pulsed: transitions matching the pulse repetition
period are strongly favored. Calculations for keV scatter-
ing of electrons on Rydberg states of Rb indicate that the
particle current densities that will be needed to observe
the coherent scattering are within the range of existing
technology.
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