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A method is presented for accurately calculating the total electron impact detachment cross s
for weakly bound negative ions. The results are compared to recent experiments for electron i
detachment of H2 and B2. Cross sections differential in energy are presented which elucid
some of the dynamics of the detachment process. A scaling law for the cross section is prop
[S0031-9007(98)08313-6]
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There have been several recent experiments measu
the electron impact detachment of atomic and molecu
negative ions [1–8]. These experiments exemplify one
the more important processes in physics: the breaking
a target by a projectile giving at least three distinct bodi
in the final state. This process is especially difficult t
describe theoretically due to the necessity for describi
two continua. In this paper, I describe an accurate meth
for calculating cross sections that takes advantage of
nature of the double continua for electron detachme
of negative ions. The calculated cross sections ha
been dissected in order to gain an understanding of
dynamics governing the detachment process. The insi
thus obtained leads to scaling rules for detachment fro
weakly bound negative ions (ions for which the weak
bound electron is most likely found outside of the regio
that contains the atomic electrons).

There have been four previous methods used to desc
electron impact detachment of negative ions. A brief d
scription of these calculations may give some insight in
the difficulties that must be overcome. The first method [
used what is now called anR-matrix pseudostate method
to calculate the detachment as an excitation to a posit
energy pseudostate. This method did not achieve c
verged cross sections due to the slow decrease of cross
tion with increasing total angular momentum. The seco
method [5] utilized a classical, phenomenological tec
nique. The total detachment cross section is estimated
be the cross section for a classical electron moving in
repulsive Coulomb potential to be absorbed by a partia
absorbing sphere of radiusr0. This radius and the absorb-
ing fraction are fitted to the experimentally measured d
tachment cross section.

The third method [10] used a fully quantum first orde
distorted wave theory. Electron wave functions separa
in $r1 and $r2 (the two outgoing electron’s coordinates) ar
used for both the initial and the final states. The initi
state is nearly separable in$r1 and $r2 since it describes
one electron weakly bound to the atom/molecule and t
projectile electron in a continuum state. However, the fin
state is not expected to be separable in these coordin
since the final state wave function describes two high
correlated electrons that are both in the continuum. T
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method is somewhat sensitive to the potential in whic
the electron waves are calculated, but the theoretical cr
sections are in qualitative agreement with experime
The fourth method [11–13] is a semiquantum techniq
in which the electron that is attached to the atom
treated quantum mechanically while the projectile electr
is treated as a classical particle. The trajectory of t
“classical electron” is a hyperbola that arises when
charged particle of incident energyEi interacts with an
infinitely massive object of the same charge. It is n
possible to include electron exchange in this method n
is it possible to make successive improvements on t
main approximation (a classical electron projectile). Eve
within the classical electron approximation, there is
difficulty in correctly describing the final state dynamic
since the projectile electron does not change its ene
and does not respond to changes in the negative ion ta
state during the collision process. This method giv
surprisingly good agreement with experiment for thee2 1

H2 ! H 1 2e2 total cross section but the uncertaintie
in this method make it difficult to estimate how accura
the method should be in different energy ranges and
different negative ions.

All of the theoretical methods described abov
utilize radically different approximations in the attemp
to account for the dynamics of a double electron co
tinuum. A completely different method for treating th
double electron continuum is presented in this pap
This method should be more accurate than previo
methods and should give quantitatively accurate total a
differential cross sections thus providing some insight in
the details of the dynamics. In principle, the method ca
be improved if needed.

The basic approximation and insight into the dynami
may be obtained from a two electron Hamiltonian i
which each of the electrons interact with an infinitel
heavy atom through a short-range potentialUsrd. The
Hamiltonian in the$r1, $r2 coordinate system is

H ­ 2
1
2

=2
1 2

1
2

=2
2 1 Usr1d 1 Usr2d

1 1yj$r2 2 $r1j . (1)
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This clearly shows the difficulty in using this coordinat
system to describe the final state since the1yj$r2 2 $r1j
potential causes correlation between the two electro
out to enormous distances. However, this correlati
is an artifact of describing the dynamics in the$r1, $r2
coordinate system. If we use the coordinate system$r6 ­
s$r2 6 $r1dy

p
2, then the Hamiltonian becomes

H ­ 2
1
2

=2
1 2

1
2

=2
2 1 1ys

p
2 r2d

1 Usj$r1 1 $r2jy
p

2d

1 Usj$r1 2 $r2jy
p

2d . (2)

Now the correlation in the dynamics arises from the sho
range potentialsU. In the final state, these potentials ar
effectively zero since bothr1 and r2 are large, but the
initial state is highly correlated in this coordinate system
Fortunately, there is no rule that forces the use of t
same coordinate system for both the initial and final sta
choosing the same coordinate system is simply a ma
of convenience.

The best first order method for calculating theT matrix
involves using an initial state in$r1, $r2 coordinates and the
final state in$r1, $r2 coordinates. The zeroth order initia
state is

c
s0d
i ­

1
p

2
hR,b sr1dF,i sr2d fY,b sr̂1dY,i sr̂2dgL

M

6 R,b sr2dF,i sr1d fY,b sr̂2dY,i sr̂1dgL
Mj , (3)

where R,b srdY,b sr̂d is the wave function for the weakly
bound electron,F,i srdY,i sr̂d is the wave function for the
incident electron, and the two electrons are coupled
total angular momentum,L, with the z component being
M. The incident electron’s wave function is the solutio
of a one particle Hamiltonian with a potentialŨsrd which
has the form1yr as r ! `; the proper choice for̃Usrd
for smallerr is discussed below. The incident continuum
wave is normalized per unit energy. The1 (2) in Eq. (4)
is for the singlet (triplet) wave function.

The wave function for the weakly bound electron i
extremely difficult to obtain. The procedure adopted he
is very similar to that used in Ref. [14]. A short-range
nonlocal potential generates the orbital with the streng
and the range of the potential chosen so that the bind
energy and asymptotic form of the wave function matc
that of more accurate multielectron calculations. For H2

the asymptotic normalization and binding energy wa
chosen to match that of Ref. [15], while the asymptot
normalization and binding energy for B2 was chosen to
match that of Ref. [16].

The final state wave function is

cf ­

s
2k1

p
j,1

sk1r1df,2
sr2d fY,1

sr̂1dY,2
sr̂2dgL

M ,

(4)
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whereE1 ­ k2 1 y2, j, is the spherical Bessel function
andf,srdY,sr̂d is the solution of the Schrödinger equatio
for a repulsive Coulomb potential with charge1y

p
2. The

f,2
and

p
2k1yp j,1

are normalized per unit energy. Th
triplet wave function has,2 equal to an odd integer
while ,2 is an even integer for the singlet wave function
The energies for the initial state are the energy of t
weakly bound electron,Eb , and the energy of the inciden
electron,Ei . The energies for the final state are the ener
in the1 degrees of freedom,E1, and the energy in the2
degrees of freedom,E2. Conservation of energy mean
Etot ­ Eb 1 Ei ­ E1 1 E2, where0 # E1 # Etot.

The most important parameters needed to calculate
cross section are theT -matrix elements. If the exact fina
state wave function is known, theT -matrix elements are
given by

Ti,f ­ p
Z

fsE 2 Hdc s0d
i gpcfdV . (5)

The form used forŨsrd at small r is irrelevant to
the accuracy of theT -matrix elements if the final state
wave function is exact. The final state wave function
Eq. (4) is not exact but is very accurate. Indeed, the to
detachment cross section changed by at most 15% ifŨsrd
was chosen to be1yr for all r or if Ũsrd was chosen to
be a screened potentialŨsrd ­ f1 2 exps22kbrdgyr 1

kb exps22kbrd, with kb ­
p

22Eb .
For a fixedE1, the cross section differential inE1 is

ds

dE1

­
2p

Ei

X
,i,1,2L

s2L 1 1d s2S 1 1d
s2,b 1 1d4

jTLS
,b,i ,,1,2

j2. (6)

The total cross section is obtained by integrating t
differential cross section overE1 from 0 to Etot. The
T -matrix elements are only nonzero when theL, M are
the same for the initial and final states. This can
derived from the fact thatL1x 1 L2x is the same operator
asL2x 1 L1x (and similarly fory andz).

The difficulty in using this method rests in the evalu
ation of the several hundreds ofT -matrix elements for
each value ofE1 for a fixedEi . The six-dimensional inte-
gral may be reduced to a five-dimensional integral for t
T -matrix elements since thez component of the to-
tal angular momentum is the same for initial and fin
states. The five coordinates integrated over arer1, r2,
cosu1, cosu2, and f2 2 f1. The integration was per-
formed with an unweighted Monte Carlo technique u
ing Sobel’s sequence of quasirandom numbers in fi
dimensions [17]. The only possible spikiness in th
integrand is near pointsr2 ­ 0. Since f,2

sr2d ~ r,2
2 ,

the only problem arises when,2 ­ 0. The divergence at
r2 ­ 0 is integrable so the1yr2 term in the potential
was replaced with3ys2Drd wheneverr2 , Dr, where
Dr , 0.1. The range of integration inr1 andr2 was such
thatr1 # 6y

p
22Eb andr2 # 20py

p
2Ei . Convergence

of the integral with the number of points was surprising
rapid. Most of the calculations were performed with215
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and216 points. The total cross section for the two differ
ent numbers of points rarely exceeded 2%. Because e
of the integrals for the different,i, ,1, ,2, andL com-
binations are independent, this problem is ideally suit
for a massively parallel machine. For a fixedEi andE1,
all of the different angular momentum combinations we
partitioned between 16 processors with the results fro
the different processors combined as a last step. Howe
it must be stressed that the surprisingly rapid converge
of the integrals would allow calculation on a workstatio
or personal computer. The details of the integrand eva
ation will be presented elsewhere.

One last point of physics is used in the practic
calculation of the total cross section. To accelerate t
convergence of the cross section with the maximum va
of ,i , a different approximation is utilized to obtain th
contribution to the cross section for,i . ,i,max. In this
procedure, we note that,i,max is so large that the incident
electron is always well outside of the negative ion
charge cloud. Very little energy and angular momentu
is given to the negative ion. For the final state in th
situation, we use a free electron wave for the detach
electron and a repulsive Coulomb wave for the scatte
electron. Exchange is negligibly small for,i . ,i,max.

The results of the calculations are compared to rec
experimental results fore2 1 H2 ! H 1 2e2 [5,6] in
Fig. 1 ande2 1 B2 ! B 1 2e2 [8] in Fig. 2. The re-
sults appear to be converged with respect to the numbe
points used in the five-dimension integration and with r
spect to maximum angular momentum. The experimen
energies have been increased by 0.1 eV to bring them i
agreement with the calculation. The uncertainty in th
overall experimental normalization of the H2 (B2) cross

FIG. 1. Total electron impact detachment cross section of H2

versus the energy of the incident electron. The experimen
points from Ref. [6] are plotted as the dotted line. The vario
calculations are as follows: solid line (216 points,,i,max ­ 10);
short-dashed line (215 points,,i,max ­ 10); dot-dashed line (216

points, ,i,max ­ 15); and dot-dot-dot-dashed line (215 points,
,i,max ­ 15).
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section is 25% (30%). The experimental H2 (B2) cross
section has been multiplied by 1.07 (1.03). Both facto
are well within the experimental uncertainty.

While the good agreement between experiment and c
culation validates the approximations discussed abo
internal evidence also points to the accuracy of the a
proximations. The main evidence is the insensitivity o
the total cross section to the potential used to generate
incident continuum wave. At energies belowEi , 22Eb ,
the difference between the cross section when using a p
1yr and screened1yr potential forŨsrd was completely
negligible. The largest difference was,15% at energies
,s4 10d times the detachment threshold energy. Anoth
check was that the specific form of the short-range pote
tial, Usrd, had no effect as long as the bound state ener
and asymptotic normalization of the negative ion orbit
was correct. The error due to the finite number of poin
in the numerical integration was less than 3%. The err
due to truncation of the ranges of angular momenta is
timated to be less than 10%. The estimated total error
the calculation is less than 20%.

The cross section differential in energy gives valuab
insight into the dynamics that controls the detachme
process. In Fig. 3, the scaled differential cross sectio
S ; sdsydE1dEtotys, is plotted for H2 versus the
scaled energye1 ­ E1yEtot. These scaling factors were
chosen so the range ofe1 is independent ofEi andR

Sse1dde1 ­ 1. The incident energies are 1.5 eV fo
the solid line, 5 eV for the dotted line, and 10 eV fo
the dashed line. At low incident energy, only a sma
fraction of the total energy after the detachment is in th
$r1 degrees of freedom which means most of the availab
energy is in the$r2 degrees of freedom. However, the
concentration of energy in the$r2 degrees of freedom after
the detachment can be obscured when plotting the res
in the $r1,2 coordinates. Fore1 ­ 0.07, the minimum

FIG. 2. Same as Fig. 1 but for B2 with experimental
points from Ref. [8]. The long-dashed line is for215 points,
,i,max ­ 20.
709
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FIG. 3. The scaled differential cross section for H2 where
S ­ sdsydE1dEtotys and e1 ­ E1yEtot. Solid line is for
Ei ­ 1.5 eV; the dotted line is forEi ­ 5 eV; and the dashed
line is for Ei ­ 10 eV.

angle between the two outgoing electrons must be lar
than 150±, and the ratio of the two momenta must b
between 0.57 and 1.76. At the higher incident energ
the E2 and E1 do become more nearly equal becau
the incident electron retains most of the energy, givi
one fast electron and one slow electron in the dou
continuum.

The behavior exemplified in Fig. 3 is a consequen
of the T -matrix element. At low energies, the1yr2

repulsive potential has a larger effect than the repuls
centrifugal potential which means the matrix element
larger when most of the energy isE2. This behavior
suggests that the detachment process mainly occurs w
the incident electron is at its minimum distance fro
the weakly bound electron; this is the point of minimu
kinetic energy. All of the potential energy is in th
1y

p
2 r2 term and this potential energy will mainly b

converted into kinetic energy in the$r2 coordinate.
Another interesting feature that arises is the scal

properties of the cross section. For a given angu
momentum of the weakly bound electron, ifŨsrd ­ 1yr
is chosen to calculateF,i srd, then the total cross sectio
ssEd . N2

bs̄sEyjEbjdyE2
b, wheres̄ depends only on the

angular momentum of the weakly bound electron a
on the scaled energyEyjEbj (the factorNb is from the
asymptotic normalization ofR,b , p

kb Nb exps2kbrdyr
and becomes roughly independent ofkb for very weak
binding energies). Note that, if this scaling rule hold
the e2 1 B2 ! B 1 2e2 cross section may be used t
estimate that thee2 1 Ca2 ! Ca 1 2e2 cross section
will peak at ,1.4 Tb near 0.5 eV, thee2 1 Sr2 !

Sr 1 2e2 cross section will peak at,300 Gb near 1 eV,
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and thee2 1 Ba2 ! Ba 1 2e2 cross section will peak
at ,40 Gb near 2.5 eV.

In conclusion, an accurate method for calculating t
electron impact detachment cross section for weakly bou
negative ions has been implemented. This method
volves expressing the initial state as functions of$r1 and
$r2 while expressing the final state as a separable funct
of $r6 ­ s$r2 6 $r1dy

p
2. The differential cross section ha

given some insight into the interesting dynamics gover
ing the detachment process. This method also sugges
scaling rule for the cross section which gives a peak cro
section fore2 1 Ca2 ! Ca 1 2e2 at ,1 2 Tb. In fu-
ture papers, the details of the calculation will be presen
along with a detailed investigation of the total and diffe
ential cross sections in the threshold region.
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