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Simulations and theory of power spectral density functions for time-dependent
and anharmonic Langevin oscillators
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Simulations and theory are presented for the power spectral density functions (PSDs) of particles in time-
dependent and anharmonic potentials, including the effects of a thermal environment leading to damping and
fluctuating forces. We investigate three one-dimensional perturbations to the harmonic oscillator of which two
are time-dependent changes in the natural frequency of the oscillator, while the other is a time-independent
extension of the quadratic potential to include a quartic term. We investigate the effect of these perturbations on
two PSDs of the motion that are used in experiments on trapped nano-oscillators. We also derive and numerically
test the PSDs for the motion of a spherical nanoparticle in a Paul trap. We found that the simple harmonic
Langevin oscillator’s PSDs are good approximations for the x and y coordinates’ PSDs for small values of the
parameter q of the Mathieu equation, but the difference can be more than a factor of two as “q” increases. We
also numerically showed that the presence of a permanent electric dipole on the nanosphere can significantly
affect the PSDs in the x and y coordinates.
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I. INTRODUCTION

Nanomechanical oscillators have evolved into a wide arena
with various applications in many fields. They are used as
ultrasensitive sensors for charge [1], mass [2], and force [3,4]
and in other fields like testing wave function collapse models
[5,6], physics beyond the standard model [7,8], gravitational
wave detection [9]. The power spectral density (PSD) is a
major tool in extracting information about the system. High
sensitivity has been reached with narrow line-width and high-
quality factors [6].

To function as ultrasensitive detectors, the experimental
PSDs can be compared to accurate analytic expressions. Tra-
ditionally, the experimental PSDs are compared to those of
a simple harmonic Langevin oscillator. However, cases with
time-dependent frequencies or anharmonic potential change
the PSD. We derive analytic expressions for the PSDs and
verify them numerically for several time-dependent and an-
harmonic cases as well as a particle in a Paul trap.

We examine the case of drifting frequency as well as an
oscillating frequency in time. We use numerical simulations to
show that the Quadrature PSD (QPSD) of the motion, which
is the PSD of the motion after removing the fast oscillations
[10,11] and was used in Ref. [6], remains in agreement with
the QPSD for a simple harmonic Langevin oscillator (SHLO)
[12]. In these cases the traditional PSD is sensitive to the
perturbations and deviates significantly from that of the SHLO
PSD. We derive new analytic expressions for the PSD for
these cases and show that they fit the PSDs from the numerical
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simulations. We also simulate the case of nonlinear oscillation
[11,13,14] by introducing a quartic term in the potential. We
show that although the PSD substantially broadens and gets
blue shifted from that of the SHLO PSD, the QPSD retains
a Lorentzian shape, approximating the system parameters to
an accuracy of a few percent. The values of the parameters,
for the simulations presented here, were chosen to roughly
give the displacement frequencies of a nanoparticle in a Paul
trap [6,15]. We also explored other values of the parameters
and the qualitative features for the PSD and the QPSD remain
consistent.

A particle in a radio frequency (RF) Paul trap has the z
direction in a simple harmonic motion while the x, y direc-
tions are described by the Mathieu equations [16]. For certain
parameter regimes, the x, y motion has low frequency secular
motion with an additional high frequency from the RF volt-
ages [6,15]. We derive analytic formulas for the PSDs for a
particle in a Paul trap. The percentage difference between the
Paul trap PSDs and those of the simple harmonic Langevin
oscillator were independent of the friction coefficient �, but
were heavily dependent on some trap parameters. The dis-
agreement between the Paul trap and simple harmonic PSDs
increases as the oscillating voltage of the Paul trap, VRF, in-
creases. We show that there are cases where the Paul trap’s
x, y components’ PSD and QPSD differ by more than a factor
of 10 from those for the SHLO.

We also examine cases when the electric dipole on the
nanoparticle affects the equations of motion. Our simulations
showed that in such cases the power spectral densities of the
z component are less sensitive to the dipole moment than
for the x, y components. For the case we investigated there
was almost no change for the z component’s PSDs from
those of a SHLO for small values of the parameter q of the
Mathieu equation. In contrast, the PSD and QPSD for the x, y
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components were substantially changed when the nanoparti-
cle had realistic electric dipole moments.

This paper proceeds as follows. Section II discusses the
model and the numerical technique as well as presents
the main equations used. Section III A discusses three per-
tubative cases for the one-dimensional SHLO. Section III B
discusses the limitation of using the SHLO PSDs for a particle
in a Paul trap. In Secs. III A and III B the numerical simulation
results are compared with the analytical expressions that are
derived in Appendices B and C while showcasing the insensi-
tivity of the QPSD to small perturbations. Section IV presents
the conclusions and summarizes the results. In Appendix B
the derivations for the analytic expressions of the PSD for the
1D perturbative cases are discussed. The derivation for the
PSD and QPSD of a particle in a Paul trap is presented in
Appendix C.

II. METHODS

The system under consideration is an oscillating classical
particle in contact with a thermal environment which causes
the particle to experience both damping as well as random
thermal kicks. We model this system as a Langevin oscillator.
The object’s motion follows

ẍ = Fx/m − �ẋ + Fth/m, (1)

where Fx is the trapping force of the oscillator, � is the damp-
ing constant, Fth is a random force representing the random
collisions with the surrounding thermal environment, and m
is the mass of the oscillating particle. The random force Fth

is a stochastic white noise with a power spectral density of
2kbT m� [17–19].

A. Paul trap

In this section, the equations of motion of a particle in a
Paul trap are given. The first section assumes no permanent
electric dipole on the sphere, while the second section in-
cludes the effect of a permanent electric dipole on the sphere.

1. Paul trap without dipole

The potential inside the trap V (x, y, z) is given by [16,20]

V (x, y, z) = kVend
z2 − x2+y2

2

z2
0

− VRF
x2 − y2

2r2
0

cos(�RFt ),

(2)

where Vend is the potential on the end caps in the z axis, k is
a dimensionless constant, z0 and r0 are constants of length
dimension, and VRF is the potential on the rods oscillating
with frequency �RF/2π . The effects of higher order nonlinear
instabilities [21] are not included in the following results
because the trap potential Eq. (2) is quadratic. The above
potential produces forces on the three coordinates {x, y, z} of
the trapped particle of the form [16]

Fi/m = − �2
RF

4
[ai − 2qi cos(�RFt )] xi(t ), (3)

where the index i runs over the three components {x, y, z},
with −az/2 = ax = ay = −k 4QVend

m�2
RFz2

0
, qx = −qy = 2QVRF

m�2
RFr2

0
and

qz = 0. The notation for {ax, ay, az} is the standard notation

for the parameters of the Mathieu equation and are not to
be confused with the acceleration. The equation of motion in
the z component is a pure harmonic oscillator equation with

natural frequency wz = √
az�RF/2 =

√
2QkVend

mz2
0

, while that in

x, y components follow a Mathieu equation.
The solutions of the Mathieu equation are well known [16].

For the cases below, we used a Floquet expansion for the
stable solution with the form

x(t ) = eiω0t
∑
n∈Z

bn ein�RFt . (4)

Since for stable solutions, b|n| � b|n|+1 for all integer n [16],
an approximate solution for w0 can be found to the desired
degree of accuracy by truncating the series at a certain ±nmax

then solving iteratively for w0. This procedure gives the solu-
tion for ω0 in the form of a continued fraction. For the x and y
components,

ω0 = β �RF, (5)

with β given by a continued fraction [22] in Eq. (C6).
This equation was used as an iterative equation to obtain a

numerical approximation for ω0. We started with β = 1
2 (ax +

q2
x/2)1/2 as a first approximation [22] in the right-hand side

then the obtained value for β was reinserted on the right-hand
side again to obtain a better value for β. This process was
repeated until the change in β between each two successive
iterations was less than 10−4%.

2. Paul trap with dipole

In this section, we give the equations of motion with a
nonzero permanent electric dipole �p(t ) = {px(t ), py(t ), pz(t )}
on the nanoparticle that has a constant magnitude but its direc-
tion changes in time. This will introduce an additional force
on the nanoparticle which has the form −�∇(−�p · �E ) with
�E (x, y, z) = −�∇V (x, y, z) the electric field at the nanoparticle.
This changes Eq. (3) by replacing xi(t ) on the right-hand side
with xi(t ) + pi(t )/Q for the three components {x, y, z}.

Since the nanoparticle is spinning, the direction of the
electric dipole moment vector changes over time following
the differential equation [23]

�̇p = �η × �p, (6)

with �η = {ηx, ηy, ηz}, where ηx, ηy, and ηz are the angular
frequencies of the spherical nanoparticle around its center of
mass. The angular frequencies also change in time due to the
torque from the electric field following the equation [24]

�̇η = �p × �E/I, (7)

where I is the moment of inertia of a sphere: 2
5 mR2. The

damping and fluctuating terms are discussed in the next
section.

Last, since the fourth-order method that was implemented
to solve the differential equation is not a symplectic method
[25], the magnitude of the electric dipole moment vector
slightly changes in a time step. While the change in a time step
was small, this was cumulatively the largest source of numeri-
cal error. We numerically found that renormalizing the dipole
moment after each time step gave the fastest convergence to
the orbit as the time step, dt , decreased.
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B. Numerical implementation of the thermal environment

To solve for the motion, we used the fourth-order Runge-
Kutta method [25] with an adaptive time step, RKQS in
Ref. [25]. We tried other numerical solvers like the RK2
method or Euler algorithm but they were slower or were less
accurate for the same step size. All the simulations have the
form of Eq. (1). Both the first and the second term are in
the acceleration calculator of the RKQS integrator, however
the thermalization term Fth is a stochastic term and is not
directly expressible as an acceleration. So, to simulate the
effect of the Fth term, we adjust the velocity v after each time
step dt as follows:

v → v + δv, (8)

where the second term δv is a random number that follows a
Gaussian distribution. This δv represents the effect of the ran-
dom forces from the environment. These thermal kicks should
lead to a Maxwell-Boltzmann distribution in the velocity at
long times when the other forces are time independent.

The thermal kick δv is different each time step. To obtain
the equipartition theorem, this δv needs to follow a Gaussian
distribution of the form

ρ(δv) =
√

α

π
e−α(δv)2

, (9)

with

α = m

2kbT (2�dt )
, (10)

where m is the particle’s mass, kb is the Maxwell Boltzmann
constant, T is the temperature, � is the damping constant, and
dt is the time step. This technique is similar to the ones in
Ref. [26] and gives sufficiently accurate approximation to the
thermalization process of the nanoparticle.

We implemented a similar effect for the angular frequen-
cies. Where the three components of the frequency {ηx, ηy, ηz}
were adjusted after each time step with

ηi → ηi + δηi, (11)

with δηi also picked from a Gaussian distribution

ρ(δηi ) =
√

β

π
e−β(δηi )2

(12)

and

β = I

2kbT (2�ηdt )
, (13)

where �η is the damping constant for the angular rotation.
To decrease the effect from the boundaries in the FFT

by having a finite-time range 0 < t < 100/�, we applied a
wrapping technique as follows. The simulations were run
for 0 < t < 111.6/� starting with zero velocities. Then the
system was thermalized through the above procedure for 0 <

t < 100/�. After which the motion was let to damp out in
the interval 100/� < t < 111.6/� and the data points from
this interval was added to the those in the interval 0 < t <

11.6/�. We found that this wrapping procedure substantially
decreased the error due to the finite-time range and allowed
us to do the calculation with a relatively small range. Also,
the Fourier transformation points for the Paul trap simulations
were taken at intervals dtFFT < (1/4)×2π/(�RF) to avoid
aliasing the RF oscillations.

C. Analytic expressions for the PSDs

1. Simple harmonic Langevin oscillator

For a harmonic Langevin oscillator, Fx/m = −w2
0x with w0

being the natural frequency of the oscillator. The Langevin
oscillators have been studied in the literature [12] and its
power spectral density (PSD) as defined in Appendix A 1 is
known to take the analytic form:

Sx(w) = 2�kbT/πm(
w2 − w2

0

)2 + �2w2
. (14)

This PSD has a maximum value of (2kbT )/(πm�w2
0 ) at

w = ±w0.
In some applications it is convenient to compute the PSD

relative to its average value at w = w0 [6] which we term in
this paper as the Quadrature Power Spectral Density (QPSD).
The steps followed to obtain it are discussed in Appendix A 2.
Near the frequency peak at ω = 0 for ω0 � �, it takes the
form [12]

SR2R2 (ω) = 8 �

π (ω2 + �2)

(
kbT

mw2
0

)2

. (15)

This QPSD has a maximum value of 8
π�

(kbT/mw2
0 )2 at

w = 0.
The QPSD was utilized in Ref. [6] to remove experimental

difficulties in obtaining the ideal PSD due to drift in the
experimental frequency of a particle in a Paul trap. One of
the aims of this paper is to quantify to what extent this QPSD
would remain valid to describe the motion of a particle when
its frequency of oscillation is not constant in time.

2. Oscillator with a linear ω(t )

This is the case for which the force Fx is given by
Fx/m = −ω2(t )x where ω(t ) is given by

ω(t ) = w0

(
1 − δ + 2δ

τ
t

)
. (16)

In this system, the frequency of the oscillator drifts from
ω0(1 − δ) to w0(1 + δ) over the period from t = 0 to t = τ

and δ � 1.
We derived the PSD for this case in Appendix B 1 and it

approximately is given by

Sx(ω) 	 2�kbT

mπ

1

2δ ω0

∫ ω0(1+δ)

w0(1−δ)
dω̄

1

(ω2 − ω̄2)2 + �2ω2
.

(17)

For this case, the QPSD did not change from that of the simple
harmonic oscillator Eq. (15) as will be later discussed in more
detail in Sec. III A 1.

3. Oscillator with an oscillating ω(t )

This is the case for which the force Fx is given by
Fx/m = −ω2(t )x where ω(t ) is given by

ω(t ) = ω0 + �ω cos(�t ). (18)

The parameters �ω and � control the amplitude and the
frequency of the oscillating part in ω(t ), respectively.
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For this case the particle develops side bands and oscillates
at multiple frequencies ωn. These frequencies are at steps of
� from the unperturbed motion frequency ω0, where ωn =
ω0 + n� for all integer n. The PSD for this case is derived in
Appendix B 2 and it takes the form

Sx(ω) 	
∑

n

J2
n

(
�ω

�

)
�kbT

2mπω2
0

1

(ω − ωn)2 + (�/2)2
, (19)

where J2
n is the nth order Bessel function squared. The QPSD

developed minor side bands at frequencies ±� as shown
numerically in Sec. III A 2.

4. Paul trap

This is the case in which the oscillator’s force leads to
the Mathieu equation, Eq. (3), where the constants {a, q} are
functions of the trap parameters and determine the stability of
the solutions. We do not know of a derivation of the PSD and
QPSD for this case; they are derived in Appendix C and the
PSD is

Sx(ω) = 4
(〈c̄2〉(�2 + 4ω2) + 4〈c̄ s̄〉�ω0 + 4〈s̄2〉ω2

0

)
π [�2 + 4(ω − ω0)2][�2 + 4(ω + ω0)2]

, (20)

and the QPSD is

SR2R2 = 2

π�

1

ω2 + �2
(〈s̄2〉 + 〈c̄2〉)2, (21)

where 〈c̄2〉 and 〈s̄2〉 are the averages of the squares of the Flo-
quet expansion coefficients of the Mathieu equation solution,
Eq. (C17).

III. SIMULATION RESULTS

A. Exploring perturbations to the 1D Simple
Harmonic Oscillator

In this section, the numerical and analytical results for
the PSD and QPSD are presented for multiple 1D cases at a
temperature of 300 K. Motivated by possible experimental sit-
uations like in Refs. [6,15], we analyze three cases where the
oscillation is not purely harmonic. The cases we investigate
are of an oscillator with a slowly oscillating frequency and
that with a linearly drifting frequency in time. For this case,
the new analytic expressions for the PSD and QPSD were
obtained using a WKB-like approximation in Appendix B.
We also investigate adding a quartic perturbative term to the
potential.

The frequencies in all simulations are of order 100 Hz
while the friction coefficient � � 1 s−1. Such values for the
parameters were chosen to roughly give the displacement PSD
of a nanoparticle inside a Paul trap, as in Refs. [6,15]. The
numerical results presented here are the average of tens of
thousands of runs, each providing data for the Fourier trans-
formation for a time interval of 100/�. The numerical results
were tested for the SHLO and provided an exact match with
the analytic PSD and QPSD in Eqs. (14) and (15).

1. Oscillator with a linear ω(t )

In this section, we investigate the case when the oscillation
frequency changes linearly in time, Eq. (16). This behavior
was chosen to mimic a frequency drift in experiments which

FIG. 1. PSD (a) and QPSD (b) for an oscillator with a linearly
changing ω(t ) Eq. (16). The numerical simulations’ PSD agrees with
the analytic expression in Eq. (B14) obtained in Appendix B 1 and
spreads over the frequencies from 99 to 101 Hz. However, the nu-
merical simulations’ QPSD remains consistent with that of a SHLO
QPSD for different values of the friction coefficient �.

can limit the PSD linewidth, as in Ref. [6]. For the simula-
tions presented here, Figs. 1(a) and 1(b), ω0 = 100×2π rad/s,
δ = 0.01, and τ = 100/� with � = 1 s−1. This represents
an oscillator’s frequency linearly drifting by 2% over a time
interval of 100/� around an average of 100 Hz.

Instead of having a Lorentzian peak at w = w0, the regular
PSD spreads almost uniformly over the range of frequencies
from 99 to 101 Hz as shown in Fig. 1(a) for � = 1 s−1. Such
behavior is expected because the oscillator spans all frequen-
cies between 99 to 101 Hz equally during the simulation. In
Fig. 1(a), we also plot the expression from Eq. (B14) which
can not be distinguished from the numerical simulation PSD.
This spread in the PSD as well as the agreement with the ex-
pression in Eq. (B14) was observed for values of � we tested
in the range [0.1, 1.0] s−1 and for different small percentage
drifts in ω(t ) up to approximately 8% over a period of 100/�.

The QPSD is advantageous in this case because it does not
exhibit any major variations from the ideal formula as shown
in Fig. 1(b) for � = 0.2, 0.5, and 1.0 s−1. Our simulations
showed that for small linear drifts up to approximately 8%
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in the frequency over a period of 100/�, the QPSD did not
visibly vary from the analytic result of the harmonic case in
Eq. (15). Therefore, the QPSD would give accurate values for
the experimental parameters like the mass m or the coefficient
of friction �.

2. Oscillator with oscillating ω(t )

In this section, we consider the situation where the fre-
quency oscillates in time, Eq. (18). This could be a result of a
slowly oscillating trapping field or general background noise
that is peaking at a specific frequency as in Ref. [27]. For our
simulations ω0 is taken to be 100×2π rad/sec and �ω is taken
to be ξ ω0 where ξ is the fractional change in the frequency
amplitude

ω(t ) = 100 × 2π [1 + ξ cos(�t + φ)], (22)

where φ is a phase factor that is chosen from a flat random
distribution which is different for each run.

As shown in Fig. 2(a), the oscillating ω(t ) greatly deforms
the PSD from that of a simple harmonic oscillator of Eq. (14).
An oscillating ω(t ) with frequency �/(2π ) Hz leads to the
decrease in the amplitude of the regular PSD at the natural
frequency of oscillation f = f0 = 100 Hz and the appearance
of extra peaks in the PSD at frequencies f = f±n at intervals
of δ f = �/(2π ) Hz from the initial peak f = f0 = 100 Hz.
In Appendix B 2, we derived an approximate expression for
the PSD, Eq. (B23). To evaluate the analytic form, the sum-
mation is done for −50 < n < 50. The analytic PSD obtained
from such expression is in good agreement with the numerical
result as shown in Fig. 2(a). However, the approximate expres-
sion increasingly deviates from the numerical results for larger
ξ and � and for peaks further separated from f0.

An interesting feature to note is that some side bands are
highly suppressed in the PSD for some values of the param-
eters ξ and �. For instance, for � = 0.5×2π and ξ = 0.05
at � = 1.0 the frequencies at f±1 = f0 ± �

2π
and f±3 = f0 ±

3 �
2π

do not give a significant peak in the PSD. The cause of
this behavior is the weighting factor by the Bessel function
Jn( ξω0

�
). Specifically, when the fraction ( ξω0

�
) is close to a zero

of the Bessel function Jn(x), then the corresponding peak at fn

becomes highly suppressed.
For the QPSD, the only change from the analytic expres-

sion in Eq. (15) is the appearance of two minor peaks at
frequencies of ± �/(2π ). In Fig. 2(b), we report the results
for the case where � = 2π , ξ = 0.02 and � = 0.2.

3. Nonlinear oscillator

In this section, the case of having an extra anharmonic term
in the potential is considered. Anharmonicity can limit the
oscillators’ line-width and thus limit the accuracy of utilizing
the oscillator as an accurate sensor [13,14]. We consider an x4

term in the potential which results if the harmonic potential
was only the first-order expansion of an even potential near its
minimum [28]. The potential here is taken to be

V (x) = 1

2
mw2

0x2

(
1 + α

mw2
0

kT
x2

)
, (23)

with α being a dimensionless parameter giving the strength
of the perturbation in units of the natural length scale of the

FIG. 2. PSD (a) and QPSD (b) for an oscillator with a slowly
oscillating ω(t ) Eq. (22) with � = 2π rad/s, ξ = 0.02, and � =
0.2 s−1. The numerical simulations’ PSD agrees with the analytic
expression Appendix B 2, Eq. (B23) and develops side bands at
intervals of 1 Hz from the unperturbed peak at f0 = 100 Hz. The
numerical simulations’ QPSD only deviates from that of a SHLO
QPSD by developing two minor peaks at ±1 Hz, that are 2 orders of
magnitude smaller than the unperturbed peak at the origin.

thermal oscillator. If α = 0, then we get the simple harmonic
case, and as α increases the potential deviates more strongly
from the harmonic case.

As seen in Fig. 3(a), the quartic perturbation to the har-
monic potential broadens the PSD and shifts it to higher
frequencies. However, the QPSD approximately retains the
Lorentzian distribution shape but with lower peak value as
shown in Fig. 3(b). This change to the PSD and QPSD arises
from the effect of the quartic perturbation on the oscillation
frequency. To first order in the perturbation parameter α, the
oscillation frequency blue shifts from ω0 to ω0(1 + α 3

2 ) [29].
This explains the blue shift in the PSD as well as the rough
size of the shift, 1.5 Hz. To explain the behavior in the QPSD,
one should notice that the oscillation frequency ω0 shows up
in the denominator in Eq. (15) for the QPSD. Since the quartic
term blue shifts the frequency, the peak height of the QPSD
will decrease. In Fig. 3(b) the perturbation parameter α is
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FIG. 3. Numerical simulation’s PSD (a) and QPSD (b) for the
anharmonic potential with � = 1 s−1 and the perturbation param-
eter α = 0.01. The numerical simulations’ PSD gets blue-shifted
and widened compared to the SHLO’s PSD. However, the QPSD
preserves the same form of the SHLO QPSD with a 15% decrease
in the peak value for α = 0.01.

equal to 0.01 leading to approximately a 15% decrease in the
peak value of the QPSD from that of the SHO. Our simula-
tions showed that as α increases, the peak value in the QPSD
decreases. However, the percentage decrease in the peak value
was independent of � over the range � ∈ [0.02, 1] s−1.

It is possible to fit the obtained QPSD to an equation of
the same form as Eq. (15) but with different values of the
oscillation frequency w0 and the friction coefficient �. For
the case shown in Fig. 3(b), a fit of the numerically obtained
QPSD gave w0 approximately 1.044 times the actual value of
w0 and a friction coefficient, �, approximately 1.03 instead of
1. For many cases, the QPSD can approximate the physical
parameters to an accuracy of a few percent while the PSD can
no longer be fitted to the SHLO PSD at all.

B. Paul trap

In this section, the three-dimensional case of a spherical
nanoparticle in a Paul trap, both with and without an electric
dipole, is considered. The charge on the nanoparticle was
taken to be 300 times the elementary charge and the mass

FIG. 4. QPSD of the x component of a particle in a Paul trap
for VRF = 200 V and � = 1.0 s−1. The numerical simulation result
(solid orange) is in perfect agreement with the analytic result (dotted
black) Eq. (21) and deviates slightly from that of the SHLO (dashed
green). The PSD results for the same parameters are discussed in
the text.

was taken to be 9.6×10−17 kg. We used z0 = 3.5×10−3 m,
k = 0.086, r0 = 1.1×10−3 m, �RF = 5000×2π rad/s, Vend =
100 V, and VRF = 200 V. These parameters were chosen to be
similar to the ones in experiments on levitated nanoparticles
in a Paul trap like Refs. [6,15].

1. Without an electric dipole

In this section, the motion of a particle in a Paul trap is sim-
ulated using the equation of motion Eq. (3). Since the motion
of the z component follows a SHLO equation of motion, the
numerical results for the PSDs matched perfectly the analytic
expressions in Eqs. (14) and (15). We only show the PSD and
QPSD for the x component, because the x and y components
follow the same equation of motion with a phase difference.

The PSD and the QPSD for the x motion are given in
Eqs. (C16) and (C21). Here we compare those expressions and
the ones for the simple harmonic Langevin oscillator (SHLO)
in Eqs. (14) and (15) to the results we obtained from the nu-
merical simulations. We found that for some trap parameters
the SHLO PSDs are a good approximation for the Paul trap
PSDs, however the differences can be substantial for a wide
range of parameters.

For the trap parameters above, the ax ∼ 0.0014 and qx ∼
0.14. These values lead to an x-component PSD peak value
that is approximately 1.5% higher than that of a SHLO’s PSD
and a QPSD peak value that is 3% higher than that for the
SHLO’s QPSD, as shown for the QPSD for the case of � =
1.0 s−1 in Fig. 4. That percentage difference was independent
of the coefficient of friction �, in the range 0.1 < � < 1 s−1.
The numerical PSD and the QPSD were in agreement with
the analytic expressions derived in Eqs. (C16) and (C21),
respectively, as shown by the dotted black curves in Fig. 4
for the QPSD.

In fact, by examining the expressions for the PSD and the
QPSD for the SHLO Eqs. (14) and (15) and for the Paul trap
Eqs. (C16) and (C21), it is possible to analytically show that
the percentage difference should not depend on the friction
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FIG. 5. Numerical simulation’s PSD (a) and QPSD (b) for the
x component of a particle in a Paul trap for VRF = 870 V, q ∼ 0.6,
and � = 1.0 s−1. Both the PSD and QPSD deviate from those of
the SHLO while remaining in perfect agreement with the analytic
expressions in Eqs. (20) and (21), respectively.

coefficient � nor on the temperature T . We will briefly go
through the analysis in the next two paragraph. However, to
make that deduction it is useful to first point out that all of
〈c̄2〉, 〈c̄s̄〉, and 〈s̄2〉 are linearly proportional to ∼� T as shown
in Eq. (C17). That fact is what we used to get the Paul trap’s
PSD Eq. (C16) and QPSD Eq. (C21) dependence on both the
temperature T and the coefficient of friction �.

For the temperature dependence, both the SHLO and the
Mathieu equation’s PSD depend linearly on the temperature
at their peak values, thus the temperature dependence cancels
out in the relative difference between Eqs. (14) and (20).
Similarly both the SHLO and the Mathieu equation’s QPSD
depend quadratically on the temperature, so the relative dif-
ference will not depend on the temperature.

The only � dependence of the peak value of the SHLO
QPSD Eq. (15) and the Mathieu equation QPSD Eq. (21)
is a prefactor that goes like 1/�. Thus, the � dependence
cancels out in the relative difference. For the PSD however,
only the SHLO Eq. (14) go exactly like 1/�. The Mathieu
equation PSD Eq. (20) only goes approximately like 1/� for
� � ω0 which is the case for 0.1 < � < 1.

FIG. 6. Fractional difference between the Mathieu QPSD and
the SHLO QPSD {[Eq. (21)–Eq. (15)]/[Eq. (15)]} increases as the
parameter q increases. For the data shown here |ax| was ∼0.0014
and �RF/2π = 5×103 Hz. The range of values of the parameter q
considered here is inside the stable region with 0.06� q� 0.85.

While the previous Paul trap parameters gave small dif-
ference from the results of a simple harmonic Langevin
oscillator, the difference can be much larger for different
trap parameters. For instance, in Figs. 5(a) and 5(b), VRF is
increased from 200 V to approximately 870 V leading to an
increase in value of the parameter q of the Mathieu equa-
tion from q ∼ 0.14 to q ∼ 0.6. This value for q is still within
the stable region of the Mathieu equation solution. In fact, for
our case with |a| ∼ 0.0014, the solution will still be stable
for q as high as ∼ 0.9 [30,31]. For such high q ∼ 0.6, the
Paul trap’s PSD and QPSD can no longer be approximately
equated to those of a SHLO. The simulations PSD in Fig. 5(a)
agrees perfectly with the formula in Eq. (20) while its peak
value is higher than that of a SHLO by approximately 55%.
For the QPSD in Fig. 5(b), the numerical results still match the
analytic formula Eq. (21) while its peak value is higher than
that of the SHLO by even a higher percentage, approximately
140%. The difference in the peak values between the SHLO
and Paul trap PSDs increases as q increases, which can be seen
in Fig. 6 for � = 1.0 s−1.

2. With an electric dipole

In this section, the effect of a permanent electric dipole
on the sphere is included in the equations of motion. If the
Coulomb interaction is neglected, then the N charges are
distributed randomly on the surface of the sphere giving a
dipole roughly

√
N × eR, where R is the radius of the sphere

and e is the charge of a proton. If the distribution is weighted

by the partition function e
−�p. �E
kbT at the temperature T , then the

probability of the configurations with larger dipole moments
is reduced by a factor of ∼2 for the parameters in our simula-
tion. For the parameters in this section, N = 300 leading to a
rough size of 9eR. We considered the effect of electric dipoles
with values ranging from 4eR to 16eR. The values for the
other parameters were taken to be the same as in the previous
section, Fig. 4. The numerical results showed that the x and z
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FIG. 7. PSD for the z component for an electric dipole of
16eR, where e is the elementary charge and R is the radius of the
nanosphere. The numerical PSD shown by the dotted black curves
does not deviate from SHO PSD Eq. (14) for the two value of
� = 0.5 and 1.0 s−1 represented by the pink and the orange solid
curves, respectively.

components exhibit different behaviours after introducing the
effect of the dipole into the equations of motion.

For the z component, the PSD and the QPSD do not de-
viate much from the analytic formula in Eqs. (14) and (15).
Even with the electric dipole increased to 16eR, the numerical
answer for both the QPSD and the PSD still match the analytic
formulas as shown in Fig. 7 for the PSD.

For the x component, the behavior of the QPSD is different
from that of the regular PSD as we increase the electric dipole
on the spherical nanoparticle. The PSD differed from Eq. (14)
by 23% for an electric dipole of 8eR with � = 0.5 s−1. Also,
as the electric dipole increases, the peak value of the numeri-
cal simulation’s PSD decreases and the peak shifts to smaller
frequencies, Fig. 8. We observed that the percentage decrease
in the peak value from the Paul trap’s PSD Eq. (20) is bigger
the smaller the friction coefficient. From our simulations, for
an electric dipole of 16eR, when � = 0.5 s−1 the decrease was
about 60% while for � = 1.0 s−1 the decrease was only about
40% as shown in Fig. 8(b). However, the QPSD only slightly
deviates by ≈ 5% from the exact QPSD Eq. (21) as the electric
dipole is increased to 16eR as shown in Fig. 9.

As the value of the parameter q of the Mathieu equation is
increased, the simulations PSDs deviate from the Paul trap’s
PSDs Eqs. (20) and (21) at smaller dipole moments more than
for small q cases. From our simulations results with the same
parameters as before and for a dipole of 8eR, � = 1.0, and
q ∼ 0.6, the simulation’s QPSD is lower by approximately 8%
from Eq. (21) near the peak. Also, the numerical PSD has a
peak value that is approximately 40% lower than the Paul trap
PSD Eq. (20).

IV. CONCLUSION

The numerical as well as the analytic expression for the
PSD and QPSD of oscillators in several time-dependent or
anharmonic potentials were analyzed including the effects of
a thermal environment leading to damping and fluctuating

FIG. 8. PSD for the x component for the different values of
the electric dipole p =8eR and 16eR in panels (a) and (b), respec-
tively, where e is the elementary charge and R is the radius of the
nanosphere. The numerical PSD represented by the dashed pink and
orange curves, for the two values of � = 0.5 and 1.0 s−1, respec-
tively, deviates greatly as the electric dipole p increases from the
Paul trap’s PSD given by Eq. (20) represented by the the pink and
the orange solid curves.

forces. We show here analytically and numerically that for
some perturbative cases the quadrature power spectral density
(QPSD) varied less than the regular power spectral density
(PSD) and that it often could be approximated by the Langevin
oscillator’s QPSD.

We examined three possible perturbations to the harmonic
oscillator potential and investigated how the PSD and the
QPSD are affected by them. Two of the three cases were
in the form of a slow time dependence in the oscillation
frequency with the third being a time-independent quartic
perturbation to the potential. For a linear drift in the frequency
of few percent over a time interval of 100/�, where � is the
damping coefficient, we found the QPSD to be unaffected
[6], but found a significant change in the PSD from that of a
Langevin harmonic oscillator, even for a drift as small as 2%
in the frequency. We presented an analytic expression for the
PSD Eq. (B14) using the WKB approximation and showed
that it agrees with the PSD from the numerical simulation
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FIG. 9. Same as Fig. 8, but for the QPSD and only for an electric
dipole of 16eR. The numerical QPSD shown by the dotted black
curves only deviates slightly from the Paul trap QPSD given by
Eq. (21) for the two value of � = 0.5 and 1.0 s−1 represented by
the the pink and the orange solid curves, respectively.

in Fig. 1. For a slowly oscillating frequency the PSD was
altered significantly from that of the pure harmonic oscillator,
however the only change in the QPSD was the appearance of
two minor side peaks. We obtained analytic expressions that
matched the numerical results. The time-independent case we
considered was in the form of adding a quartic term to the
potential leading to an anharmonic but even potential. In this
case it was observed that, even for perturbation as small as
1% of the strength of the harmonic term, there could be a
significant change in both the PSD and QPSD functions. This
change stems from the fact that the perturbation blue shifts the
oscillation frequency of the oscillator.

We also explored the case of a spherical particle in a Paul
trap. Two situations were considered, the first one is when
the electric dipole moment is neglected and the charges are
assumed to be uniformly distributed on the sphere. In this
case the equations of motions in the three coordinates de-
coupled and that for the z component was a simple harmonic
Langevin oscillator, while those for the x and the y compo-
nents were in the form of a damped Mathieu equation with
an extra Langevin-like thermalization force. For the x and
y components, the agreement with the Langevin oscillator’s
PSD and QPSD changed with the value of the parameter q
of the Mathieu equation. For smaller q of about q ∼ 0.14 the
numerical simulation PSD and QPSD approximately matched
those of a simple harmonic Langevin oscillator with only a
few percent difference. However, the SHLO PSD and QPSD
no longer are good approximations to the Paul trap PSD and
QPSD for larger q values. We derived analytic formulas for
the PSD and QPSD using a Floquet expansion of the Mathieu
equation solution Appendix C.

We also investigated the case when there is a permanent
electric dipole on the trapped nanoparticle. We considered
dipoles up to 2

√
NeR where N is the number of charges on the

nanosphere and R is its radius. We found that the z component
remained in good agreement with the Langevin oscillator’s
PSD Eq. (14) and QPSD Eq. (15) for all the electric dipole

moments we examined. However, for the x component, the
PSD and the QPSD only deviated by a few percent from
the analytic formulas for small dipoles but it deviated quite
significantly as the dipole moment increased to

√
NeR/2. The

x component’s PSD got red shifted and its peak value de-
creased as the electric dipole on the nanosphere increased. The
deviation from the expressions in Eqs. (20) and (21) showed
a few percent increase as the value of the qx parameter of the
Mathieu equation increased.

Data for the figures used in this publication are available
from the Purdue University Research Repository [32].
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APPENDIX A: PSD AND QPSD PROCEDURE

1. PSD

We present here the convention we use for the PSDs of a
position signal x(t ) over a finite-time interval τ . We chose

Sx(ω) = lim
τ→∞

2

τ
|xτ (ω)|2, (A1)

where xτ (ω) is the finite Fourier transform of x(t ) over the
time interval 0 < t < τ and is given by

xτ (ω) = 1√
2π

∫ τ

0
x(t ) eiωt dt . (A2)

2. QPSD

The QPSD is the PSD relative to its average value at w =
w0. This involves doing the calculation in a frame rotating
with the frequency w0 [6,12]. To this end the motion x(t ) is
decomposed into two parts, xc(t ) and xs(t ), with

xc(t ) + ixs(t ) = 2x(t )eiω̄t , (A3)

where ω̄ is the peak oscillation frequency of the oscillator, ω0,
or close to it.

Next, filter out the oscillations at large ω by first taking
the Fourier transform of the two quadratures xc and xs then
multiplying the Fourier transforms by a filter. The filter is
chosen to ensure that the amplitude of the oscillations near
w = 0 is left unaffected while the amplitude of the oscillations
at w ∼ 2w0 goes to zero. Then the filtered quadratures are
recovered by taking the backward Fourier transform obtaining
xc(t ) and xs(t ). Finally, the two quadratures are combined
to get the total filtered motion as R2(t ) = |xc(t )|2 + |xs(t )|2.
The PSD of the quadrature R2(t ) is approximately the auto-
correlation function [12] of the total energy of the Langevin
oscillator relative to its average value of kbT for the cases
when � << ω0.
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APPENDIX B: WKB-LIKE APPROXIMATE
SOLUTION FOR LANGEVIN OSCILLATOR

WITH TIME-DEPENDENT ω(t )

Here a solution to the Langevin equation with a slowly
varying ω(t ) is presented. We first go through the general
procedure then consider the two cases of interest, namely an
oscillating and linearly varying ω(t ). The equation of motion
without the fluctuating force from the environment is

ẍ + �ẋ + w2(t ) x = 0. (B1)

Substituting with an ansatz for x(t ) = A(t ) eiφ(t ) in
Eq. (B1) and setting both the imaginary and the real parts on
the left-hand side of the equation to zero separately yields

2Ȧφ̇ + Aφ̈ + �Aφ̇ = 0, (B2)

Ä/A + �Ȧ/A + ω2(t ) − φ̇2 = 0. (B3)

The first equation gives

A = c√
φ̇

e−�t/2, (B4)

where c is a constant of integration that is to be determined
using the initial conditions. For the second equation, we apply
the approximation that the higher order derivatives of φ are
small compared to its first derivative φ̇. This WKB-type ap-
proximation is valid because we are considering cases where
ω(t ) is slowly varying in time. Thus, terms with φ̈ are dropped
compared to ω2. Then using A from Eq. (B4) one gets

φ̇ 	
√

ω2(t ) − �2

4
. (B5)

Therefore, the solution under the WKB approximation is

xWKB(t ) = c[
ω2(t ) − �2

4

]1/4 e−�t/2ei
∫ t

t0

√
ω2(t ′ )− �2

4 dt ′
. (B6)

For the cases we consider, ω(t ) is approximately a 1000×
larger than �, therefore the �2 term will be dropped in the
denominator and in the phase integral. Incorporating the ve-
locity kick at time tl from the fluctuating force leads to initial
conditions such that the position and the velocity are zero
before t = tl and at t = tl the velocity receives a kick of
δv = δvl . Thus, the solution from the WKB approximation
xWKB(t ) becomes

xWKB(t ) = �(t − tl )
δvl e−�(t−tl )/2

[ω(tl )ω(t )]1/2 sin [φ(t ) − φ(tl )], (B7)

where �(t ) is the Heaviside step function and

φ(t ) − φ(tl ) =
∫ t

tl

ω(t ′) dt ′. (B8)

Since the system receives multiple thermal kicks, each at
different tl , the full time-dependent motion is the sum of so-
lutions each starting at a different time tl . Thus, the trajectory
takes the form

x(t ) =
∑

l

�(t − tl )

[
δvl e−�(t−tl )/2

√
ω(tl )ω(t )

]
sin [φ(t ) − φ(tl )].

(B9)

In the next two subsections we will use this solution to obtain
the approximate PSD for the cases of a slowly oscillating ω(t )
and a linearly varying ω(t ).

1. PSD for a linearly drifting ω(t )

This is the case for which ω(t ) is taken to be

ω(t ) = w0

(
1 − δ + 2δ

τ
t

)
, (B10)

where the frequency drifts from ω0(1 − δ) to w0(1 + δ) over
the period from t = 0 to t = τ and δ << 1.

The exponentially decaying term in Eq. (B9) guaranties
that for each term in the sum, (t − tl ) is of order 1

�
� τ . Thus,

the ω(t ) in the denominator can be approximated to ω(tl ). In
the difference

φ(t ) − φ(tl ) = ω(tl )(t − tl ) + 1
2 ω̇(tl )(t − tl )

2. (B11)

Since we are considering a perturbative case with ω̇(tl ) ×
(t − tl ) � ω(tl ), the first term will be the dominant one in the
expansion. So we can substitute ω(tl )(t − tl ) for φ(t ) − φ(tl )
in Eq. (B9). Thus, x(t ) becomes

x(t ) ∼=
∑

l

�(t − tl )

[
δvl e−�(t−tl )/2

ω(tl )

]
sin [ω(tl )(t − tl )],

(B12)
for which the Fourier transform is

x(ω) ∼=
∑

l

δvl√
2π

eiωtl

[
1

ω(tl )2 − (ω + i�/2)2

]
. (B13)

The statistical average for 〈δvlδvl ′ 〉 = δll ′
2�kBT

m δtl is used to
obtain the PSD

Sx(ω) 	
∑

l

2�kbT

mπτ

δtl

[ω2 − ω(tl )2]2 + �2ω2

	 2�kbT

mπ

1

2δ ω0

∫ ω0(1+δ)

w0(1−δ)
dω̄

1

(ω2 − ω̄2)2 + �2ω2
.

(B14)

This expression gives an approximately � independent flat
PSD between ω0(1 − δ) and ω0(1 + δ) shown in Fig. 1.

2. PSD for a slowly oscillating ω(t )

For this case we have

ω(t ) = ω0 + �ω cos[�(t − tl ) + ξl ], (B15)

where ξl = �tl and was introduced to simplify the expression
for φ(t ) − φ(tl ) in Eq. (B9),

φ(t ) − φ(tl ) = ω0(t − tl ) + �ω

�
sin[�(t − tl ) + ξl ]

− �ω

�
sin(ξl ). (B16)

Simplifying sin[φ(t ) − φ(tl )] in Eq. (B9) using sin(a −
b) = sin(a) cos(b) − cos(a) sin(b), the terms that are func-
tions of time can be written as sums of Bessel functions
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Jn( �ω
�

) using the relations

cos [η sin(β )] = J0(η) + 2
∞∑

k=1

J2k (η) cos (2kβ ),

sin [η sin(β )] = 2
∞∑

k=1

J2k−1(η) sin [(2k − 1)β], (B17)

with η = �ω/� and β = �t . This shows that the motion
x(t ) will have several oscillation frequencies at intervals of �

from the initial frequency ω0, in agreement with our numerical
result in Sec.III A 2, such that

x(t ) =
∞∑

n=−∞
x̄n(t ), (B18)

where x̄n(t ) are given by

x̄n(t ) = an J|n|

(
�ω

�

) ∑
l

�(t − tl )

[
δvl e−�(t−tl )/2

√
w(t )w(tl )

]

× sin

[
w̄n(t − tl ) + nξl − �ω

�
sin(ξl ) + n

π

2

]
,

(B19)

with an = (−1)n/2 for even n and an = (−1)(n−1)/2 for odd n.
x̄n(t ) is the part of the motion that is oscillating at frequency
±w̄n. It is also approximately the same as that of a perfect
Langevin oscillator with a constant natural frequency of w̄n

instead of w0 and an extra phase.
An approximate expression for the PSD of x(t ) can be

found by approximating both ω(t ) and w(tl ) in the denomi-
nator in Eq. (B19) to w0. This approximation is valid because
the maximum change in ω(t ) is of order �ω and we consider
perturbative cases where �ω

ω0
� 1.

The Fourier transform of x(t ) can be evaluating by sum-
ming the Fourier transforms of x̄n(t ), which is given by

x̄n(ω) = Jn

(
�ω

�

)∑
l

δvl√
2π

1

w0
eiωtl

∫ τ

tl

e− �
2 (t−tl )eiω(t−tl )

× sin

[
ω̄n(t − tl ) + nξl − �ω

�
sin(ξl ) + n

π

2

]
dt .

(B20)

Assuming that the upper limit is such that �(τ − tl ) � 1, this
integral evaluates to

x̄n(ω) ∼= Jn

(
�ω

�

) ∑
l

δvl√
2π

ei ω
�

ξl

ω0

an

2

×
[

e−i �ω
�

sin ξl ei nπ
2 einξl

ω + ω̄n + i�/2
− ei �ω

�
sin ξl e−i nπ

2 e−inξl

ω − ω̄n + i�/2

]
.

(B21)

The summation over l is evaluated by applying the statistical
averaging of the thermal kicks δvl ,

〈δvlδvl ′ 〉 = δll ′
2�kBT

m
δtl , (B22)

where δtl is the time interval between the thermal kick δvl and
the kick before it and is related to ξl through δξl = �δtl . We
numerically tested that a good approximation for the PSD can
be obtained by ignoring the interference terms between the
oscillations at different ωn. Thus, the PSD becomes a sum of
Lorentzians of the form

Sx(ω) 	
∑

n

J2
n

(
�ω

�

)
�kbT

2mπω2
0

1

(ω − ωn)2 + (�/2)2
. (B23)

This is the analytic form that was compared against the nu-
merical simulations’ results, with the summation in Eq. (B23)
evaluated between n = −50 and n = 50.

APPENDIX C: PSD AND QPSD USING THE
FLOQUET EXPANSION FOR THE MATHIEU

EQUATION’S SOLUTION

The equation of motion for both the x and y coordinates of
a particle in a Paul trap are damped Mathieu equations of the
form

ẍ(t ) = − �2

4
[a′ − 2q′ cos(�t )] x(t ) − �ẋ(t ), (C1)

with � the radio frequency of the trap and the constants
{a′, q′} are parameters of the trap dimensions and strength.
This equation can be converted to an undamped Mathieu equa-
tion by using a change of variables x(t ) = e−�t/2u(t ) [33]:

ü(t ) = − �2

4
[a − 2q cos(�t )] u(t ), (C2)

with the definition

a = a′ − �2

�2
, q = q′. (C3)

The solutions of the Mathieu equations are known [16].
For the analysis here, we did a Floquet [34] expansion for the
stable solution with the form

u(t ) = eiω0t
∑
n∈Z

bn ein�t , (C4)

where an iterative equation for ω0 is obtained by substituting
with the above expansion back in the differential equation
giving

ω0 = β �, (C5)
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with β given by a continued fraction [22],

4β2 − a =
(

q2/4

(1 − β )2 − a/4−
q2/4

(2 − β )2 − a/4−
q2/4

(3 − β )2 − a/4− · · ·
)

+
(

q2/4

(1 + β )2 − a/4−
q2/4

(2 + β )2 − a/4−
q2/4

(3 + β )2 − a/4− · · ·
)

. (C6)

Note that the difference in the form of the continued fraction
here from that in Ref. [22] comes from the different con-
vention for the form of the Mathieu equation. To obtain the
solution coefficients {bn}, we need to use the initial conditions
at the time tl , when the trapped particle receives a thermal kick
in the velocity of value δvl . These initial conditions have the
form

x(tl ) = u(tl ) = 0, (C7)

ẋ(tl ) = u̇(tl ) = δvl . (C8)

To this end, it is convenient to rewrite the Mathieu equa-
tion in the following form:

ü(t ) = − �2

4
{a − 2q cos[�(t − tl ) + φl ] u(t )}, (C9)

where φl = � tl and the general solution becomes

ul (t ) = �(t − tl )

{
sl

∑
n∈Z

αn sin[(ω0 + n�)(t − tl ) + nφl ]

+ cl

∑
n∈Z

αn cos[(ω0 + n�)(t − tl ) + nφl ]

}
, (C10)

where the solution was expanded in terms of sin and cos
instead of exponentials, and �(t − tl ) is the step function that
is zero before t = tl and equal to one for t larger than tl . The
α’s are obtained by substituting the solution Eq. (C10) into the
differential equation Eq. (C9) and equating the coefficients of
each frequency to zero. This gives the recurrence relation [35]

αn = −q(αn+1 + αn−1)

4
(
n + ω0

�

)2 − a
, ∀ n ∈ Z and n �= 0. (C11)

Since the overall coefficients cl and sl were pulled outside the
sum, we can choose α0 = 1 without loss of generality. Also
because the {αn} series is a decreasing series, it is tradition-
ally truncated at some ±nmax. For our numerical calculations
we took nmax = 10. And the α’s are calculated iteratively by
substituting in the recurrence relation Eq. (C11) starting with
α0 = 1 and all other {αn} = 0 for 1 < n < nmax. We made sure
that the change in any {αn} between the last two iterations was
less than 0.1%.

The constants {sl , cl} were obtained by substituting in
Eqs. (C7) and (C8) for the initial conditions giving

sl = δvl
σ2

σ1σ4 + σ2σ3
,

cl = −δvl
σ1

σ1σ4 + σ2σ3
, (C12)

where

σ1 =
∑
n∈Z

αn sin(nφl ), σ3 =
∑
n∈Z

αn(ω0 + n�) cos(nφl ),

σ2 =
∑
n∈Z

αn cos(nφl ), σ4 =
∑
n∈Z

αn(ω0 + n�) sin(nφl ).

(C13)

Finally, a particle in a Paul trap receives multiple thermal
kicks over the course of its trajectory. Thus, the full trajectory
will be a sum of multiple solutions of the form Eq. (C10),
each starting at a different initial time tl . Therefore, the full
trajectory x(t ) of a particle in a Paul trap will be

x(t ) =
∑

l

�(t − tl )e
−�(t−tl )/2

×
{

sl

∑
n∈Z

αn sin[(ω0 + n�)(t − tl ) + nφl ]

+ cl

∑
n∈Z

αn cos[(ω0 + n�)(t − tl ) + nφl ]

}
, (C14)

where tl takes all values from zero to the final time of the run
τ in steps of δt . In the next two subsections, we will derive the
PSD and the QPSD for this solution.

1. PSD

It is straightforward to get the PSD for Eq. (C14). We just
substitute with its Fourier transform in Eq. (A1). However,
since the interest is in the peaks near ω0, we only include the
terms oscillating at such frequency when taking the Fourier
transform:

Sx(ω) 	 lim
τ→∞

2

τ

∣∣∣∣∣
∑

l

1√
2π

∫ τ

0
eiωt e− �

2 t [sl sin(ω0t )

+ cl cos(ω0t )] dt

∣∣∣∣∣
2

	 lim
τ→∞

2

τ

∣∣∣∣∣
∑

l

− 1√
2π

[
cl − isl

2

1

i(ω0 + ω) − �
2

+ cl + isl

2

1

i(ω − ω0) − �
2

]∣∣∣∣∣
2

. (C15)

The method used to evaluate this expression is to substitute
by the phase average and statistical average values for cl

and sl inside the sum. The statistical average of cl and sl is
obtained through their linear dependence on δvl , which has
a statistical average given by Eq. (B22). The phase average
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of cl and sl was evaluate by numerically integrating over φl

from 0 to 2π then dividing the result by 2π . After taking the
statistical average and the phase average, the terms inside the
sum become independent of l . Thus, we obtain a sum over δt
which gives τ that cancels the τ in the denominator. We will
use 〈s̄2〉, 〈c̄2〉 and 〈c̄s̄〉 for the average values of sl sl ′ , clcl ′ and
clsl ′ divided by δt , respectively. And thus the PSD is

Sx(ω) = 4
(〈c̄2〉(�2 + 4ω2) + 4〈c̄ s̄〉�ω0 + 4〈s̄2〉ω2

0

)
π [�2 + 4(ω − ω0)2][�2 + 4(ω + ω0)2]

, (C16)

where

〈c̄2〉 = 2�kBT

m

1

2π

∫ 2π

0

(
σ1

σ1σ4 + σ2σ3

)2

dφl ,

〈c̄s̄〉 = −2�kBT

m

1

2π

∫ 2π

0

σ1σ2

(σ1σ4 + σ2σ3)2
dφl ,

〈s̄2〉 = 2�kBT

m

1

2π

∫ 2π

0

(
σ2

σ1σ4 + σ2σ3

)2

dφl , (C17)

with σ1, σ2, σ3, and σ4 given by Eq. (C13).

2. QPSD

For the QPSD we will follow the same steps discussed in
Sec. II C 1. First, xc(t ) and xs(t ) are calculated from the term
in x(t ) that is oscillating at a frequency w0. This gives

xc(t ) =
∑

l

{sl sin[ψl (t )] + cl cos[ψl (t )]}e−�(t−tl )/2�(t − tl ),

xs(t ) =
∑

l

{sl cos[ψl (t )] − cl sin[ψl (t )]}e−�(t−tl )/2�(t − tl ),

(C18)

where ψl (t ) = (ω0 − ω̄)(t − tl ) − ω̄tl . From which one ob-
tains R2(t ) to be:

R2(t ) = e−�t
∑
l,l ′

{(sl sl ′ + clcl ′ ) cos [w0(tl − tl ′ )]

− (slcl ′ − cl sl ′ ) sin [ω0(tl − tl ′ )]}
× e�(tl +tl′ )/2�(t − t〉), (C19)

where t〉 is the larger between {tl , tl ′ }. The power spectral
density of R2(t ) is found by substituting in Eq. (A1)

SR2R2 = 1

πτ

1

ω2 + �2

∑
l,l ′,l ′′,l ′′′

e−�/2(|tl −tl′ |+|tl′′ −tl′′′ |)

× eiω(tl +tl′ −tl′′ −tl′′′ )/2 eiω(|tl −tl′ |−|tl′′ −tl′′′ |)/2

× [(sl sl ′ + clcl ′ ) cosl,l ′ +(slcl ′ − cl sl ′ ) sinl ′,l ]

× [(sl ′′sl ′′′ + cl ′′cl ′′′ ) cosl ′′,l ′′′

+ (sl ′′cl ′′′ − cl ′′sl ′′′ ) sinl ′′′,l ′′ ], (C20)

where cosl,l ′ was used for cos[ω0(tl − tl ′ )] to simplify the
expression. Using the statistical averaging process, this
4-sum would give four possible contraction over the sum-
mation indices. The nonzero ones are when l = l ′′ and
l ′ = l ′′′ or when l = l ′′′ and l ′ = l ′′. After simplification we
obtain

SR2R2 = lim
τ→∞

2

π�

1

ω2 + �2
(〈s̄2〉 + 〈c̄2〉)2

× (1 − 1

τ�
+ 1

τ�
e−�τ )

= 2

π�

1

ω2 + �2
(〈s̄2〉 + 〈c̄2〉)2, (C21)

with 〈s̄2〉 and 〈c̄2〉 the same as defined in the previous section.
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