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Comparisons between perturbative and radiation-dampedR-matrix approaches to dielectronic
recombination: Application to Ar >*
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We apply a recently formulated close-coupling technifrebicheawet al, Phys. Rev. 62, 1319(1995],
which includes radiation damping via an optical potential, to the calculation of dielectronic recombination
cross sections of AP". Specifically, we compare the results from both Wigner-Eisenbud and eigenchannel
R-matrix calculations to perturbative methods. For this system, no evidence for interfering resonance phenom-
ena is found, and excellent agreement is obtained among all methods. This indicates that the present close-
coupling treatment of the dielectronic recombination is highly accurate and can therefore be used to investigate
systems where lower-order perturbative methods are inappropriate, such as where interference effects between
neighboring resonances and between direct and resonant recombination processes are expected.
[S1050-294{@6)02709-9

PACS numbes): 34.80.Kw

I. INTRODUCTION and resonance-background interferences, the background be-
ing RR. Although these effects may be included in principle
Dielectronic recombinatiofDR), the process by which an [14—17, a general scheme for incorporating interference ef-
atomic ion captures a free electron into a doubly excitedects between entire Rydberg series does not exist. Even so,
state, and subsequently decays by spontaneously emittingaarecent third-order perturbative study for low-lying reso-
photon, is an important cooling mechanism in hot plasmasanceq17] showed that resonance-background interference
[1,2]. As such, it has received a considerable amount of ateffects, while not important for total DR cross sections, were
tention, both theoretically and experimentallg]. On the significant forpartial DR cross sections, which is precisely
experimental side, among other methods, crossed-beam meathat is measurable when detecting x rays from the EBIT
surements at the accelerator-cooler ring facility at Aafdjis facility [8]. As for resonance-resonance interference, it has
have determined DR cross sections for many low- to moderbeen demonstrated for electron-ion excitation that when
ately charged ions at fair energy resoluti@j. Due to the members of different Rydberg series coincide closely in en-
recent lowering of the electron-beam transverse temperatugrgy, the resonance profile can be dramatically alt¢t&d
[5], considerably higher-resolution measurements of DR ar&urther, as will be pointed out in Sec. IIA, the energy-
now possibld6]. In addition, with the advent of the electron- averaged DR cross sections at lower charges and low
beam ion trap(EBIT), fully stripped W?" ions have been electron-energy resolution depend only on the radiative
produced 7]. By detecting x rays, rather than just counting widths I';, independent of the autoionization widthy, .
the recombined ions as is done for crossed- and merged-e relative positions of these resonances are likewise
beams methods3], partial DR cross sections to selected en-smeared out when energy averaged with a broad distribution
ergy ranges of final decay states can be observed, as wésgction. Thus, possible inaccuracies in the calculated reso-
done recently for highly charged uranium idras. nance positions and widths will not be seen when comparing
In actual experiments, the measured quantity is the totaheory and experiment. For higher-resolution experiments,
photorecombinatiorfPR) cross section, which is the coher- however, the measured ar{donvoluted theoretical reso-
ent admixture of DR and the nonresonant process radiativeance structure will reveal more detaildd,-dependent fea-
recombinationNRR). Since the dominant observable featurestures.
are usually just the resonant part, however, we shall speak in In view of the existing higher-charged, higher-resolution
terms of DR cross sections alone, assuming that the RR comxperimental capabilities, it is desirable to rely on a theoreti-
tribution is included as well. Theoretical calculations for DR cal method which includes interference effects to all orders
are usually based on one of two methods. The first clasand most accurately computes autoionization widthsand
consists of perturbative method8], that have been quite resonance position&g. The second class of theoretical
successful in reproducing observed DR cross sections. Thmethods for handling DR makes use of the close-coupling
common implementation of this method, the isolated-method[19], which automatically includes all orders of these
resonance, independent-processes approximdtl@s-13, interference processes, and provides a more reliable estimate
neglects higher-order effects such as resonance-resonanziethe autoionization widths as well. Davies and Seaton, us-
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ing anab initio treatment based on a time-dependent expanFe®" and Mo*'" [27]. It was proven that this method is

sion of the total wave functiofR0], derived an exact expres- equivalent to the general formulation of Davies and Seaton
sion for the electron-electrofelastic or inelastic scattering [20]. Thus it reduces to the QDT method of Bell and Seaton
and electron-photofradiative or dielectronic recombinatipn [21] in the appropriate limit of intermediate (in the limit
scattering matriceS.. andS;,,, respectively, the evaluation n—c, the Bell and Seaton expression for damping deviates
of which, however, requires knowledge of the dipole matri-from the more rigorous expression of Robicheatial. [25],
ces along all points on a certain contour in the complexalthough then for which this occurs is so large as to be of
plane. For highen resonances, a quantum-defect theorylittle practical interest More importantly, it is valid for low-
(QDT) method, as formulated by Bell and Seaf@i], sim-  lying resonances, for which the decay occurs at small elec-
plified the expression considerably and was first applied taron radii. For this case, the matrix elements of the
the damping of resonances in the electron-impact excitatioR-matrix Hamiltonian acquire an additional, imaginary po-
of O®" by Pradhan and Seat$82]. At lower n, where this  tential. This gives rise to the damping, but also modifies the
approximation is not valid, the original formulation of total width by inclusion of the radiative widths. As previ-
Davies and SeatofR0] has been implemented only once to ously pointed out, for higlz this radiative contribution is
our knowledge. For the case of photoionization of?e  crucial for determining the correct resonance structure.
(analogous to DR of F&"; see below, the dipole matrices The application of the theoretical method of Robicheaux
were parametrized and analytically continued into the comet al.[25] towards the calculation of DR cross sections is the
plex plane, enabling the evaluation of the necessary contowentral theme of this paper, and will be presented as follows.
integrals[23]. In Sec. Il, we describe the various theoretical treatments of
Another method used for treating DR to low-lying statesthe DR process. In particular, the standard equations of per-
[24] calculates photoionization cross sections from each lowturbation theory, which are used in the present calculations
lying state to the pertinent electron continua, and uses th#ér comparison purposes and also to garner insight into the

detailed balance relation present close-coupling results, are outlined in Sec. IlA. In
) Sec. II B, the modifications to two differefR-matrix codes
_, 9 e (1) are summarized as they apply to the present test case DR of
IDRT PG C2K2 Ar %" and the different types of damping are discussed. We

then compardR-matrix and perturbative calculations for this
to obtain the partial DR cross sectiof to each final state, test case in Sec. Il followed by concluding remarks in Sec.
where op, is the partial photoionization cross section, the|v. Atomic units (a.u) are used throughout unless otherwise
gdi(r) are the statistical weights of the initidinal) statesw is  specified.
the photon frequency, andis the electron momentum. The
implementation of this methg®4] is to calculate photoion-
ization cross sections using final-state continua determined in Il. THEORETICAL METHODS
the absence of the radiative field. Thus the widths of the A. Perturbative considerations
resonances include only the autoionization widths and ne-
glect the radiative widths. For lo&- ions, for which the
autoionization widthd", are typically orders of magnitude
larger than the radiative widtHs, , there is no difficulty with
this prescription. However, as is well known, theincrease
much faster than th€&, as the residual chargé on the ion
increaseqd9]. At some point, the neglect of the radiative
width leads to a severe underestimate of the total width, an
therefore a corresponding overestimate of the DR cross se
tion. This follows from considering the perturbative expres-

For the perturbative calculations presented in this paper,
we used the two codesuTOSTRUCTURE[28] and bRFEUD
[29], which apply standard perturbation thedr§] in the
isolated-resonance, independent-processes, distorted-wave
approximation[13]. For simplicity in understanding the be-
havior of the DR cross section, we consider the case of one
sonance embedded in one continuum, with allowed decay
g(?one recombinedbound state. The energy dependence of
e cross section can then be written as

sion(see Sec. Il A the radiation-damped DR cross section is 7 (2J+1) [ r,r,
given by 7or(B)= {2 353 771) 2| ©
o 2+ a r)
I, , {(E =) ( 2
ODR ) Fa+rr 2 ( )
(E-Ep)"+ whereE=Kk?/2 is the electron energyj, andJ, are the total

angular momenta of the electron-plus-target and target, re-
whereas neglect of the radiative width in the continuum-spectively,Er is the resonance position,
plus-resonance wave function is equivalent to replacing the

I',+T', term in the denominator of E¢2) with justT’,. 1
The limitations of these close-coupling methods for treat- I,=2= <‘I’C 2 o \IfR> 2 4
ing DR meant that, at least for highly charged ions, the only R

theoretical methods available were those based on perturba-

tion theory. Recently, however,Rrmatrix method incorpo- is the autoionization width, computed using an energy-
rating radiation damping was formulated by Robicheauxnormalized distorted wave coupled to a target wave function
et al.[25] and has been applied to the electron-impact excito represent the continuum wave functidn , and a bound-
tation resonances in heliumlike #i" [26], and hydrogenic state wave function for the resonarig,, and
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40 - 2 —1s8%2121' +ho inner-region damping, (8¢
=3z <‘I’b > ‘I’R> 5 J ping, (89
' —15%22s,,nl+%w type | damping, (8d)
is the radiative width for spontaneous decay, with photon , . ,
energyw, of the resonance t% a bound state déscribedp by the —>1522pjn (I=1)+ho type |l damping(3<n sg)(_B )
wave function¥,. The above expression, when energy ©
averaged over a bin of width e, becomes The first two processes Eq&a),(8b) give rise to the auto-
ionization widths of the resonance into the initial or excited
27? (2J+1) Tl continua,

(6)

() =Tae 2023+ 1) T 4T, _ ,
=27 3| —+— ()
iz o3

< 1s?2p;nl 15225, kil i>

At lower stages of ionization, whele,>1", , the above ex-
pression depends only di and is independent df . _ ) ) )
The bulk of the work in the recent past relied on these‘{Vhere' now denotes the particular electron cont!nuum with

perturbative methods to compare with experiment. The obvilinéar and angular momentk; and I;, the orbitals 2for
ous next step in obtaining more accurate theoretical results Which —are  energy  normalized: (kil;|k; l;:) = 8(k{/2
to go beyond the isolated-resonance, independent-processeskiz,/Z)5“r5|i|i, . The last three Eq$8c)—(8e) together with
distorted-wave approximation by incorporating channel couthe dielectronic capture Edq7) constitute the DR process.
pling and various interference effects into the calculationsgquation(8c) is termed inner-region damping to differentiate
which are routinely included in close-coupling calculations. jt from the other types because the final decay states are all
(necessarily contained within theR-matrix “box.” These
B. R-matrix methods final states are usually highly correlated, so that a simple
one-electron description for this type of decay is insufficient.
We include this type of decay by adding a radiative optical
o Sr%otential to the Hamiltoniaf25]

The particular type of close-couplifd9] calculations we
use are based on tle-matrix method[30,31]. One of two
sets of codes is used in this paper. The first is the Belf

suite of R-matrix codes which were first written for the ng
Opacity Projec{32], and have more recently been modified Viag=—i12, 353 PIbX(bID, (10)
b

[33] by including relativistic corrections to the Hamiltonian,

[34,35 in order to study ions of interest to the Iron Project

[36]. A Wigner-Eisenbud boundary condition is applied at

the R-matrix surfacg30,31]. The second set is the Colorado A_ _Ts=- , )

suite of codeg37], which use instead an eigenchannel ap—p?\le operator Cp, |sxthe renormalized spherical harmonic

proach. The two program packages have undergone a d&m=V47/(2\+1)Yy, and|b) represents a normalized final

tailed comparison to one another for the case of photoionizastate. This potential contributes an additional term to the

tion of barium [38], where it was found that both codes Hamiltonian matrix

reproduced experimental measurements provided that a suf- W3

ficiently converged basis of configurations, consisting of ap- s b /

propriate orbitals, was used. Haar = Haw I% 3c3(23+1) (alrl[b)blrfla), (1Y
The modification of any close-coupling method, and, in

particular, theR-matrix method, to handle various types of leading to a nonunitarys matrix. The photorecombination

radiation damping has been previously described in detai#ross section within a partial wave is then proportional to

[25]. Additional modifications pertaining only to the Belfast this degree of nonunitarity

suite of codes have also been describ26]. Nonetheless,

wherew,= E—E, is the energy difference between energies
of the scattering and final state® =351 ,r,Cl is the di-

for the purpose of elucidating these processes as they apply _7 (2J+1) § 1- % ‘s (12)
to our present test case, we briefly review the essential IPRT 2 22+ )= = SiSi |
points.

When an electron incident on thesi, ground state of where J is the total partial-wave angular momentum,
Ar 15" is captured into a resonance state, a process known ds=1/2 is the angular momentum of thes;2 target state,

dielectronic capture, n, is the total number of open channels, ands the number
B ) 5 ) ] ] of channels coupled to thesg, target state. Also, this modi-
e +1s°2s,,—1s"2p;nl dielectronic captur¢j =1/2,3/2,  fication to theR matrix yields the portion of radiative recom-
(n=10), @ bination
e + 132251/2—> 152251/22|j . (13)

there are several decay pathways available to this resonance,
given by The type | damping shown in Eq8d) has neither the
initial resonance nor the final state completely contained in
1s°2pjnl—1s”2s;,+e" elastic scattering, (88  the R-matrix “box,” and so simply modifying the
R-matrix Hamiltonian will not suffice. As originally sug-
—1s%2p,+ e excitation(j =3/2), (8b)  gested by
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Hickman[39], and derived within the present radiative opti- s(r) andc(r) solutions is invalid since both these solutions
cal potential approach by Robicheagixal.[25], this type of  diverge asr—«. Furthermore, in the present case, at ener-
damping can be incorporated by modifying the binding engies just above the £, threshold the highelr-continuum

ergy of the valence orbital according to orbitals have their radial point of inflection far outside the
R-matrix “box.” As such, the Belfast treatment of perturba-

) F2pﬁ2$1,2 tion between open and closed channels is inapplicable. In the
€€l TS (14) Appendix, however, we outline a method for incorporating

the long-rangalipole perturbation between open and closed
wherenl are the quantum numbers of the valence orbitals(r) andc(r) solutions, and this method does not have either
with binding energye,,, j=1/2 or 3/2 depending on the core of the above numerical difficulties.
state to which the valence electron is attached, and In the present case, for which it is necessary to resolve a
F2Pj—'251/2 are the core radiative widths from the appropriatelarge number of higm (narrow width resonances, we have

capture state to the ground state. This modification leads to @ected to use the QDT method for treating type | damping in

complex effective quantum number.=v/\1—iT v%z2,  the Belfast codegthis is the normal mode of operation in the
which, when used within a QDT approach to scattering,Colorado codes As a consistency check, the Belfast codes

gives rise to a nonunitar§ matrix with the asymptotic modification method was used in spot
checks to verify that both methods yielded identical results;
S=3S850— Soc( Scc— € 2™7c) 1S, (15  use of the asymptotic method at every energy would have led

to an increase in computational time of a factor0f000 for
An alternative method for treating this type of damping the dense energy mesh used, however.

[26], which is necessary when using the Belfé&smatrix The type Il damping shown in E¢8e) is a valence tran-
codes in their usual treatment of asymptotics for closed charsition (n=10—n’=3-9) for which the outer electron does
nels[32,40,4], is to modify the asymptotic energy of the not overlap appreciably with the target<2) orbitals. Thus
closed-channel, exponentially decaying solutigi{s) and  the damping occurs mainly in the asymptotic region, and is
6(r) [41]. Use of these solutions alone automatically givestreated perturbatively by either modifying thKematrix [25],
rise to the physical scattering mati®in Eq. (15) [41]. They  or the outer-region solutions direct[26] when asymptoti-

are given by the asymptotic expansion cally decaying stategd(r),6(r)] [41] are used instead of
QDT solutions. In the former case, the unphysi€aiatrix,
o(r)=rve"2""> B r" (16) which yields the unphysica¥ matrix in Eq.(15), is modified
o due to the diagonal perturbing potential
and 9
Kee— Keeti Thisni /2, 18
. B dﬂ(r) B 1/3 d@(r) L cc cc In’E:DS I’:El:il nl—n’l ( )
“="ge ~l2z2/ 0 a9

o where Ty o =47w%3c3(23+1)|(nl||r||n'1")|? is the
where the coefficient8,, are computed by standard asymp- ragiative width of the valence electron to each decay state
totic recurrence  relations [41]. The modification /(j7=|+1) calculated using either distorted waves in the
ve=vly1-iI'v/Z% just requires that the evaluation of Colorado codef25], or hydrogenic orbitals in the implemen-
6(r) and 6(r) is done instead for complex, [26]. Two tation in the Belfast codd26]. A similar perturbation to the
important differences between this asymptotic modification,, diagonal elements incorporates the +1s22s),
and the QDT method are as follows. —1s%2s,,n'l" RR contribution.

Firstly, in the Belfast codes, use of the closed-channel The implementation of either method for calculating DR
solutions vs the QDTs(r) and c(r) solutions (see Refs. cross sections is to perform scattering calculations for a
[42,41,26) is found to be one to two orders of magnitude range of energies, thereby producing nonunitamatrices,
faster per evaluation. When the QDT solutions need to bend to use these in Eq12). A difficulty arises in fully re-
evaluated at every energy, for instance, at lowesonances solving the many narrow resonances of entire Rydberg se-
where the various unphysical matrices in HQ5 have ries, however. In the present case, the maS/forbidden
strong energy dependence, the QDT method is much slowgesonances have autoionization widthgs, and therefore to-
for total scattering runs. However, at highewhere there is  tal widths, that are much narrower than the allowed ones.
little energy dependence in these matrices, only a few actuahspection of Eq(6), however, indicates that these narrow
evaluations are required using the QDT method, andEf).  resonances can contribute just as much to the averaged DR
alone can be interpolated for intermediate energy pointsgross section; see R¢R7]. Thus if a linear mesh is used, the
When detailed, narrow resonance structure must be mappefoss section must be computed at a very large number of
out, perhaps millions of energy points are needed, makingnergies in order to resolve all of the resonances. This differs
the QDT method, in such cases, orders of magnitude fastefonsiderably from the case of resonant electron-impact exci-
than the asymptotic modification method. tation where the narrowest resonances frequently make a

Secondly, using(r) and 8(r) within the Belfast method proportionally small contribution to the cross section com-
leads to a straightforward inclusion of long-range dipole andpared to the broadest resonan¢ese Ref[27]) and/or they
guadrupole potentials via first-order perturbatid@,41], but  are completely dampe@ee, e.g., Ref26]) and thus, either
using these same techniques to perturb negative-energyay, it is unnecessary to resolve them.
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A more sophisticated method for resolving all resonances 35 : . : : : : :
up to some highest principal quantum numlmgf,, is as = 30 i
follows. The Rydberg resonances are characterized by a = @ -
guantum numben and guantum defeqt leading to an en- § o ]
ergy position Eg~E;—Z%/2(n—x)? and a total width g 5
(equal to the autoionization width, assumikigs>T",) which A i
scales likel',~To/(n—w)3. There is, thus, a pole of th® g 1 l
matrix at the complex energg=E;—Z%/2(n— u)%—iT,/2, © 5 s N i
or equivalently, a zero in the determinant of the matrix ° " & 10 5 20 ~2'5 30 Ms's 40
Sec—€ 2™ in Eq. (15). While the exact quantum defects Energy (eV)
and widths deviate from these analytical forms at lower 35 T ' ' T T ' '
due to the interaction between the;2nl and 2o;,n'l’ se- ) 30 7
ries, or equivalently, nondiagonal terms in tBenatrix, one S Br {b) A
can search in the complex plane for the pole of $matrix g 20F .
around the QDT-like values. Given the determined exact po- & 15 -
sition Eg and widthI",, an energy mesh of 55 points is used, 2 10} -
the positions given by S shH 4
0 A Lo o M A A Aln Al
Ej=Egrtsila, (19 0 5 10 15 20 25 30 35 40
Energy (eV)
Wlth 35 T T T T T T T
5 30 E
j/5, j=*0-10 S 25} © -
Sj= . _ (20 8 20 k |
Sj_1(1+Sj_1/20), j=*x11 25 ’g
w 15 F -
S+26= 4825, (21) g 10 g 1
S 5 ]
Si07= 8Si26' (22) 0 A}\_}\ L ah o M A Al Y|
0 5 10 15 20 25 30 35 40
This mesh yields a sufficiently dense representation of the - Energy (eV)
resonance profiléthe latter two points are chosen so as to ' ' ' ' ' ' '
include the long 2 tail of the Lorentzial, so that accurate § sor 1
energy-averaged resonance contributions to the DR cross ¢ ar @
section may be computed. g 20 1
& 15} .
[}
lll. RESULTS § 0 T
Dielectronic recombination of lithiumlike AP* has been 0 ol AR n Alb s
the subject of a recent joint experimental-theoretical study 0 5 10 15 20 25 30 35 40
[43]. It was found that theoretical results fa&en=0 DR Energy (eV)

using the codeoRFEUD [29] gave excellent agreement with
merged-beams results measured at the UNILAC of GSI at FIG. 1. Photorecombination cross sections fot%t, including
Darmstadt, at least for the lower-lying resonances. Measureontributions up ton=75, and convoluted with a 0.2 eV FWHM
ments for the higher resonances were affected by extern@aussian(a) BelfastR-matrix resultsb) AUTOSTRUCTUREresuUlts;
electric fields. We use these same theoretical results, as wétl) ColoradoR-matrix results;(d) bRFEUD results.
aSAUTOSTRUCTUREresults based on the same working equa-
tions used byprRFEUD and outlined in Sec. Il A, to compare For all calculations, we terminated each Rydberg series at
to our two separatéBelfast and ColoradoR-matrix results. n=75. Due to inevitable external fields present in any ex-
All these results are shown in Fig. 1. Some details of thes@erimental apparatus, there exists a highest principle quan-
calculations are summarized below. tum numbem,,,, above which the Rydberg states are Stark
While the R-matrix method implicitly includes RR, per- shifted into the continuum, so that these higher states do not
turbative methods must add this independent contributiongontribute to DR. In the previous study of ¥ [43], this
which is done incoherently within the independent-processegalue was chosen as,,,= 64, although the cross section
approximation. Although the RR contribution can easily bewas found to be insensitive to this precise value. For the
calculated perturbatively, to simplify our comparisons for thepresent case we have taken this tonhg,= 75 for all calcu-
resonances we determined this nonresonant background Igtions. Finally, all cross sections in Fig. 1 were convoluted
performing BelfastR-matrix calculations including just the with an 0.2 eV full width at half maximuniFWHM) Gauss-
2s,5kl ground-state continuum channel, thereby eliminatingan profile. ASE— 0, however, this width is shrunk to zero
the resonance producingpg, 31l channels. This yielded a in order to match smoothly onto theELRR behavior below
smooth, resonance-free background cross section of the sartiee 2p,,,100 resonances.
magnitude as the fulR-matrix calculation which was then From Fig. 1 it is seen that all four convoluted theoretical
added to the perturbative resonant contributions. results compare favorably. This only indicates that the radia-
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FIG. 2. Unconvoluted photorecombination cross sections in the 3 T T T T T T T
2p4,10 resonance region(a) Belfast R matrix; (b) AuTOSTRUC-
TURE.

tive widths of the resonances are similar, however, since, by
Eqg. (6), the averaged cross section is independent of the 1 -
autoionization width. Thus possible inaccuracies in the auto- J

ionization widths as well as the relative positioning between o A AA A, A

various resonances are not evident at this level of resolution. 0 5 10 15 20 25 30 35 40
Further, the profiles seen in Fig. 1 represent the average ra-
diative contribution from entire groups of resonances
2p;nl. In order to show that the resonance profiles are in fact
the same between perturbative aRematrix methods, we
plot unconvoluted cross sections of thp;210 resonance
region in Fig. 2. Note that there is generally very good agree-
ment at this level of resolution as well, indicating that the
perturbative andR-matrix methods are modeling the DR pro-
cess at the same level of accuracy.

It is interesting to investigate the dominant damping path-
ways for this DR process. In Fig. 3, we show DR cross
sections including only one of the three contributions, inner- Energy (eV)
region damping, type | damping, or type Il damping. Inner-
region damping involves the quantityni[r|2l’), which FIG. 3. Various contributions to the photorecombination cross
tends to zero as—. This is because th@nl|2l’) overlap  section for A*®": (a) inner-region dampingtb) type Il damping;
itself is reduced considerably at>10 and decreases with (c) type | damping;(d) total photorecombination cross section. All
n. It also depends on the configuration interacti@h) mix- results are from BelfasR-matrix calculations, and are convoluted
ing within the 1s?2s,,,2| and JSZijZI decay states. The with a 0.2 eV FWHM Gaussian.
type Il damping has a similar decrease with but unlike

inner-region damping it has many<\'<9 final decay pecomes less than the radiative width due to tié &¢aling,
states, and also has a greater oveflaf{l = 1)|nl) for any  and the energy-averaged DR cross section instead behaves as
decay states. It thus accounts for a far greater contributiorlm/nS, or the binned cross section approaches a constant. The
than the inner-region damping at all For type | damping, pehavior for each of these decays at the Rydberg limit is
we first note that the radiative widtf, is n independent as clearly seen in Fig. 3.

n—oo, since only the core participates in the transition. Thus, As mentioned in the previous section, the long-range con-
at low and intermediaten where I';3>TI";, the energy- tripution is expected to dominate at highor low E. We
averaged cross section is constant for each resonance, or ty§ow that this is indeed the case for the present system by
binned cross section, using a bin width on the order ofpcusing on theJ=6 odd partial wave, with and without
1/n®, scales a®®. The energy-averaged cross sections up tqong-range perturbations. The results of both of these
somen=np,,, thus behaves like-nj, .= ZI(Ezp, = E)¥?as  R-matrix calculations are shown in Fig. 4 in the region of the
E— Ezpj. At very highn, of course, the autoionization width four 2p3,10/;_;.,, resonances |E4,j=9/2, 1=6,]j

Cross Section (Mb)

Energy (eV)

(@)

Cross Section (Mb)

L ah o AL A aals NN |

0 5 10 15 20 25 30 35 40
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for the peak cross section. This reduction lessens for inter-
mediaten (higher continuum energigsbut increases again
at the highn limit, where instead the resonance statds
now have little probability of being found in the inner region.

1500 7

1000

IV. CONCLUSION

We have successfully implemented the close-coupling
- treatment of photorecombination for the relatively simple
system of electrons incident on lithiumlike & . Using the
formulation of Robicheauxet al. [25], we modified two
separateR-matrix codes, the Belfast and Colorado versions,
0 = and found excellent agreement between these two and be-
1358 1.3585 1.359  1.3595  1.36 tween the two perturbative codesuTOSTRUCTURE and
Energy (eV) DRFEUD for the An=0 DR cross sections. It was found that
inclusion of long-range perturbative effects within the
FIG. 4. The 2,100 J=6 odd partial-wave contribution to the R-matrix method was necessary to compute correct autoion-
photorecombination cross section for Art5Solid line, present ization widths, as was a sophisticated search method for re-
R-matrix results without long-range dipole perturbation; dashedsolving all of the many narrow resonances. The present
line, results including long-range dipole perturbation. Both resultsmethod was also shown to be superior to methods based on
are unconvoluted. inverse-photoionization calculations for decay to low-lying
recombined states since the radiative width is incorporated
=11/2,1=6,j=13/2, and =8, j =15/2). Since these reso- into the total width via an optical potential.
nances cannot be isolated further without eliminating chan- The validity of the preser®R-matrix approach for treating
nels, and therefore CI mixing, we are only able to study theDR paves the way for new investigations of systems where
sum of all four resonances, which, nevertheless, shows astandard perturbation codes are expected to break down,
obvious dependence on the long-range dipole potentiahamely, where various higher-order interference effects are
When the long-range dipole perturbation is included, the areeequired. These include DR of highly charged ions, espe-
under the DR cross-section curve, and therefore the energyially to selected final decay states, where resonant and back-
averaged DR cross section, increases. Over the entire Dgound contributions sum incoherently, and also for cases of
range 0.4 e¥<E=<40 eV, shown in Fig. 5, we see that espe-near degeneracy of Rydberg resonances from different series.
cially in the 2p5,10 resonance region, where the continuumExisting discrepancies between past experimental and pertur-
energy is the smallest, the omission of long-range perturbadative theoretical results may benefit from studies which in-
tions leads to a reduction from about 30 Mb to about 22 Mbclude all-order interference effects. For very highly charged
ions, these semirelativistic methods will need to be extended
to include relativistic effects. Using the similabARC

500

Cross Section (Mb)

= gg L ' ' ' ' ' ' R-matrix codes that incorporate these relativistic effects,
g o5 | ] [44,45 and the modifications detailed here, this should be a
5 ol @ 1 straightforward task. Inclusion of the Breit interaction in
3 7] relativistic R-matrix codes remains the final ingredient to-
o 15 1 ward the treatment of DR of the highest-charged ions ca-
g 10 ;J . pable of being studied experimentally, currently?*t.
o 5 4
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5 1(5) i APPENDIX: LONG-RANGE PERTURBATIONS WITH
0 | T L UNPHYSICAL CLOSED-CHANNEL SOLUTIONS
0 5 10 15 20 25 30 35 40 A necessary ingredient for calculating accurate DR cross
Energy (eV) sections within theR-matrix method, as mentioned in Sec.

IIB, is the perturbative inclusion of the long-range dipole
FIG. 5. Total photorecombination cross sections fof%Ar(a) ~ Potential. This turns out to be important in the present case
with and (b) without the long-range dipole perturbation included. because, as can be seen in B, the autoionization widths

Both results are from the Belfaft-matrix calculations, and are I'y depend on &predominantly dipole coupling matrix be-
convoluted with a 0.2 eV FWHM Gaussian. tween the initial continuum states2.kl’ and the resonant
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state 2jnl. The portion of this integral inside the-matrix eg(r) — gt (A3)

box (0=r=r,) is automatically handled to all orders via the r—o

R matrix itself. Outside the box, since we are dealing with a

multiply charged ion, a first order perturbative treatment iswhere &(r)=ikr+z/kIn2kr+ilm/2+ 0, and o;=argl(l
sufficient [32]. This latter contribution becomes especially +1+iz/k) is the Coulomb phase shift. It therefore decreases
important in one of two cases. When eith@) the initial ~ exponentially along the curve=r,—ra+io. Both s¢(r)
continuum state resides mostly outside the box, as is the cag@dc,(r) oscillate along this same line, and so the integrals
for either low energies or high angular momenta, corre-
sponding to a classically allowed region outside the box
only, or (2) the resonance state resides mostly outside the
box, as is the case for high, then the inner-region contri-
bution to the autoionization width is negligible. In order to ration @
compute perturbative corrections to tkematrix, or to the J dreg(r)r—zcc(r), (Adb)
solutions themselves, the following four quantities are A
needed:

ratio N o
f dreo(r)r—zsc(r), (Ada)
A

are well defined. By considering the infinite quarter circle
o a joining this line with the liner =r ,— o, and using the form
f drsy(r) —se(r), (Ala)  of e™(r) in Eq.(24), we can equate the integrals E¢ala),
A ' (Alc) with the imaginary and real parts of the integral Eq.
. (Ada), and likewise we can equate the integrals Egd.b),
f drso(r)ﬁzcc(r), (A1b) (Ald) with t.he imaginary and_ real parts of th.e integral Eq.
ra r (A4b). In doing so, we have disregarded the divergent part of
the integrals along the quarter circle

% a
dreg(r) —S(r), (Alc)
J e ein s, deinGsm. (4

* o
f dreo(r) 2 Ce(r), (Ald)  since, when we form the physical closed-channel solution
A [42],

where the subscripts andc indicate that the Coulomb func-
tions s(r) andc(r) refer to open and closed channels, re-
spectively. Each of the closed-channel solutions diverges e
ponentially asr—oo on the real axis but the final physical
solutions will be a linear combination of these which go to
zero asymptoticallysee below We can thus compute the

e. (r)=sg(r)cosmv—c¢(r)sinmv, (AB)

these divergences cancel, i.e., we are then left only with in-
tegrals of the form

part of each of these four integrals that will remain after this fﬁ eg(r)%eg(r), (A7)
linear combination is formed as follows. First, we form the r
solution the integrand of which is zero everywhere on the quarter-
el (r)=co(r)+isy(r), (A2)  circle contour at infinity. Finally, the integrals in Eq&\4)
are evaluated numerically up to the point where the inte-
which has the asymptotic property grands have decayed beyond significance.
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