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We apply a recently formulated close-coupling technique@Robicheauxet al., Phys. Rev. A52, 1319~1995!#,
which includes radiation damping via an optical potential, to the calculation of dielectronic recombination
cross sections of Ar151. Specifically, we compare the results from both Wigner-Eisenbud and eigenchannel
R-matrix calculations to perturbative methods. For this system, no evidence for interfering resonance phenom-
ena is found, and excellent agreement is obtained among all methods. This indicates that the present close-
coupling treatment of the dielectronic recombination is highly accurate and can therefore be used to investigate
systems where lower-order perturbative methods are inappropriate, such as where interference effects between
neighboring resonances and between direct and resonant recombination processes are expected.
@S1050-2947~96!02709-6#

PACS number~s!: 34.80.Kw

I. INTRODUCTION

Dielectronic recombination~DR!, the process by which an
atomic ion captures a free electron into a doubly excited
state, and subsequently decays by spontaneously emitting a
photon, is an important cooling mechanism in hot plasmas
@1,2#. As such, it has received a considerable amount of at-
tention, both theoretically and experimentally@3#. On the
experimental side, among other methods, crossed-beam mea-
surements at the accelerator-cooler ring facility at Aarhus@4#
have determined DR cross sections for many low- to moder-
ately charged ions at fair energy resolution@3#. Due to the
recent lowering of the electron-beam transverse temperature
@5#, considerably higher-resolution measurements of DR are
now possible@6#. In addition, with the advent of the electron-
beam ion trap~EBIT!, fully stripped U921 ions have been
produced@7#. By detecting x rays, rather than just counting
the recombined ions as is done for crossed- and merged-
beams methods@3#, partial DR cross sections to selected en-
ergy ranges of final decay states can be observed, as was
done recently for highly charged uranium ions@8#.

In actual experiments, the measured quantity is the total
photorecombination~PR! cross section, which is the coher-
ent admixture of DR and the nonresonant process radiative
recombination~RR!. Since the dominant observable features
are usually just the resonant part, however, we shall speak in
terms of DR cross sections alone, assuming that the RR con-
tribution is included as well. Theoretical calculations for DR
are usually based on one of two methods. The first class
consists of perturbative methods@9#, that have been quite
successful in reproducing observed DR cross sections. The
common implementation of this method, the isolated-
resonance, independent-processes approximation@10–13#,
neglects higher-order effects such as resonance-resonance

and resonance-background interferences, the background be-
ing RR. Although these effects may be included in principle
@14–17#, a general scheme for incorporating interference ef-
fects between entire Rydberg series does not exist. Even so,
a recent third-order perturbative study for low-lying reso-
nances@17# showed that resonance-background interference
effects, while not important for total DR cross sections, were
significant forpartial DR cross sections, which is precisely
what is measurable when detecting x rays from the EBIT
facility @8#. As for resonance-resonance interference, it has
been demonstrated for electron-ion excitation that when
members of different Rydberg series coincide closely in en-
ergy, the resonance profile can be dramatically altered@18#.
Further, as will be pointed out in Sec. II A, the energy-
averaged DR cross sections at lower charges and low
electron-energy resolution depend only on the radiative
widths G r , independent of the autoionization widthsGa .
The relative positions of these resonances are likewise
smeared out when energy averaged with a broad distribution
function. Thus, possible inaccuracies in the calculated reso-
nance positions and widths will not be seen when comparing
theory and experiment. For higher-resolution experiments,
however, the measured and~convoluted! theoretical reso-
nance structure will reveal more detailed,Ga-dependent fea-
tures.

In view of the existing higher-charged, higher-resolution
experimental capabilities, it is desirable to rely on a theoreti-
cal method which includes interference effects to all orders
and most accurately computes autoionization widthsGa , and
resonance positionsER . The second class of theoretical
methods for handling DR makes use of the close-coupling
method@19#, which automatically includes all orders of these
interference processes, and provides a more reliable estimate
of the autoionization widths as well. Davies and Seaton, us-
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ing anab initio treatment based on a time-dependent expan-
sion of the total wave function@20#, derived an exact expres-
sion for the electron-electron~elastic or inelastic scattering!
and electron-photon~radiative or dielectronic recombination!
scattering matricesSee andSep , respectively, the evaluation
of which, however, requires knowledge of the dipole matri-
ces along all points on a certain contour in the complex
plane. For higher-n resonances, a quantum-defect theory
~QDT! method, as formulated by Bell and Seaton@21#, sim-
plified the expression considerably and was first applied to
the damping of resonances in the electron-impact excitation
of O61 by Pradhan and Seaton@22#. At lower n, where this
approximation is not valid, the original formulation of
Davies and Seaton@20# has been implemented only once to
our knowledge. For the case of photoionization of Fe241

~analogous to DR of Fe251; see below!, the dipole matrices
were parametrized and analytically continued into the com-
plex plane, enabling the evaluation of the necessary contour
integrals@23#.

Another method used for treating DR to low-lying states
@24# calculates photoionization cross sections from each low-
lying state to the pertinent electron continua, and uses the
detailed balance relation

sDR5sPI

gi
gf

v2

c2k2
~1!

to obtain the partial DR cross sectionsDR to each final state,
wheresPI is the partial photoionization cross section, the
gi ( f ) are the statistical weights of the initial~final! states,v is
the photon frequency, andk is the electron momentum. The
implementation of this method@24# is to calculate photoion-
ization cross sections using final-state continua determined in
the absence of the radiative field. Thus the widths of the
resonances include only the autoionization widths and ne-
glect the radiative widths. For low-Z ions, for which the
autoionization widthsGa are typically orders of magnitude
larger than the radiative widthsG r , there is no difficulty with
this prescription. However, as is well known, theG r increase
much faster than theGa as the residual chargeZ on the ion
increases@9#. At some point, the neglect of the radiative
width leads to a severe underestimate of the total width, and
therefore a corresponding overestimate of the DR cross sec-
tion. This follows from considering the perturbative expres-
sion~see Sec. II A!: the radiation-damped DR cross section is
given by

sDR;
GaG r

~E2ER!21S Ga1G r

2 D 2 , ~2!

whereas neglect of the radiative width in the continuum-
plus-resonance wave function is equivalent to replacing the
Ga1G r term in the denominator of Eq.~2! with just Ga .

The limitations of these close-coupling methods for treat-
ing DR meant that, at least for highly charged ions, the only
theoretical methods available were those based on perturba-
tion theory. Recently, however, aR-matrix method incorpo-
rating radiation damping was formulated by Robicheaux
et al. @25# and has been applied to the electron-impact exci-
tation resonances in heliumlike Ti201 @26#, and hydrogenic

Fe251 and Mo411 @27#. It was proven that this method is
equivalent to the general formulation of Davies and Seaton
@20#. Thus it reduces to the QDT method of Bell and Seaton
@21# in the appropriate limit of intermediaten ~in the limit
n→`, the Bell and Seaton expression for damping deviates
from the more rigorous expression of Robicheauxet al. @25#,
although then for which this occurs is so large as to be of
little practical interest!. More importantly, it is valid for low-
lying resonances, for which the decay occurs at small elec-
tron radii. For this case, the matrix elements of the
R-matrix Hamiltonian acquire an additional, imaginary po-
tential. This gives rise to the damping, but also modifies the
total width by inclusion of the radiative widths. As previ-
ously pointed out, for highZ this radiative contribution is
crucial for determining the correct resonance structure.

The application of the theoretical method of Robicheaux
et al. @25# towards the calculation of DR cross sections is the
central theme of this paper, and will be presented as follows.
In Sec. II, we describe the various theoretical treatments of
the DR process. In particular, the standard equations of per-
turbation theory, which are used in the present calculations
for comparison purposes and also to garner insight into the
present close-coupling results, are outlined in Sec. II A. In
Sec. II B, the modifications to two differentR-matrix codes
are summarized as they apply to the present test case DR of
Ar 151 and the different types of damping are discussed. We
then compareR-matrix and perturbative calculations for this
test case in Sec. III, followed by concluding remarks in Sec.
IV. Atomic units ~a.u.! are used throughout unless otherwise
specified.

II. THEORETICAL METHODS

A. Perturbative considerations

For the perturbative calculations presented in this paper,
we used the two codesAUTOSTRUCTURE @28# and DRFEUD

@29#, which apply standard perturbation theory@9# in the
isolated-resonance, independent-processes, distorted-wave
approximation@13#. For simplicity in understanding the be-
havior of the DR cross section, we consider the case of one
resonance embedded in one continuum, with allowed decay
to one recombined~bound! state. The energy dependence of
the cross section can then be written as

sDR~E!5
p

k2
~2J11!

2~2Jt11!F GaG r

~E2ER!21S Ga1G r

2 D 2G , ~3!

whereE5k2/2 is the electron energy,J andJt are the total
angular momenta of the electron-plus-target and target, re-
spectively,ER is the resonance position,

Ga52pU K CcU (
i , j. i

1

r i j
UCRL U2 ~4!

is the autoionization width, computed using an energy-
normalized distorted wave coupled to a target wave function
to represent the continuum wave functionCc , and a bound-
state wave function for the resonanceCR , and
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G r5
4v3

3c3U K CbU(
i
r iWUCRL U2 ~5!

is the radiative width for spontaneous decay, with photon
energyv, of the resonance to a bound state described by the
wave functionCb . The above expression, when energy
averaged over a bin of widthDe, becomes

^s&5
2p2

Dek2
~2J11!

2~2Jt11!

GaG r

Ga1G r
. ~6!

At lower stages of ionization, whereGa@G r , the above ex-
pression depends only onG r and is independent ofGa .

The bulk of the work in the recent past relied on these
perturbative methods to compare with experiment. The obvi-
ous next step in obtaining more accurate theoretical results is
to go beyond the isolated-resonance, independent-processes,
distorted-wave approximation by incorporating channel cou-
pling and various interference effects into the calculations,
which are routinely included in close-coupling calculations.

B. R-matrix methods

The particular type of close-coupling@19# calculations we
use are based on theR-matrix method@30,31#. One of two
sets of codes is used in this paper. The first is the Belfast
suite of R-matrix codes which were first written for the
Opacity Project@32#, and have more recently been modified
@33# by including relativistic corrections to the Hamiltonian,
@34,35# in order to study ions of interest to the Iron Project
@36#. A Wigner-Eisenbud boundary condition is applied at
theR-matrix surface@30,31#. The second set is the Colorado
suite of codes@37#, which use instead an eigenchannel ap-
proach. The two program packages have undergone a de-
tailed comparison to one another for the case of photoioniza-
tion of barium @38#, where it was found that both codes
reproduced experimental measurements provided that a suf-
ficiently converged basis of configurations, consisting of ap-
propriate orbitals, was used.

The modification of any close-coupling method, and, in
particular, theR-matrix method, to handle various types of
radiation damping has been previously described in detail
@25#. Additional modifications pertaining only to the Belfast
suite of codes have also been described@26#. Nonetheless,
for the purpose of elucidating these processes as they apply
to our present test case, we briefly review the essential
points.

When an electron incident on the 2s1/2 ground state of
Ar 151 is captured into a resonance state, a process known as
dielectronic capture,

e211s22s1/2→1s22pjnl dielectronic capture~ j51/2,3/2!,

~n>10!, ~7!

there are several decay pathways available to this resonance,
given by

1s22pjnl→1s22s1/21e2 elastic scattering, ~8a!

→1s22p1/21e2 excitation~ j53/2!, ~8b!

→1s22l2l 81\v inner-region damping, ~8c!

→1s22s1/2nl1\v type I damping, ~8d!

→1s22pjn8~ l61!1\v type II damping~3<n8<9!.
~8e!

The first two processes Eqs.~8a!,~8b! give rise to the auto-
ionization widths of the resonance into the initial or excited
continua,

Ga
i 52pU K 1s22pjnlU3S 1

r 13
1

1

r 23
D U1s22s1/2ki l i L U2, ~9!

wherei now denotes the particular electron continuum with
linear and angular momentaki and l i , the orbitals for
which are energy normalized: ^ki l i uki 8l i 8&5d(ki

2/2
2ki 8

2 /2)d i i 8d l i l i 8 . The last three Eqs.~8c!–~8e! together with
the dielectronic capture Eq.~7! constitute the DR process.
Equation~8c! is termed inner-region damping to differentiate
it from the other types because the final decay states are all
~necessarily! contained within theR-matrix ‘‘box.’’ These
final states are usually highly correlated, so that a simple
one-electron description for this type of decay is insufficient.
We include this type of decay by adding a radiative optical
potential to the Hamiltonian@25#

Vrad52 i(
b

2vb
3

3c3
Dub&^buD, ~10!

wherevb5E2Eb is the energy difference between energies
of the scattering and final states,D5(s521

s51 r sCs
1 is the di-

pole operator,Cm
l is the renormalized spherical harmonic

Cm
l 5A4p/(2l11)Ym

l andub& represents a normalized final
state. This potential contributes an additional term to the
Hamiltonian matrix

Haa8→Haa82 i(
b

2vb
3

3c3~2J11!
^auur uub&^buur uua8&, ~11!

leading to a nonunitaryS matrix. The photorecombination
cross section within a partial wave is then proportional to
this degree of nonunitarity

sPR5
p

k2
~2J11!

2~2Jt11!(i51

n1 S 12(
j51

nt

Si j*Si j D , ~12!

where J is the total partial-wave angular momentum,
Jt51/2 is the angular momentum of the 2s1/2 target state,
nt is the total number of open channels, andn1 is the number
of channels coupled to the 2s1/2 target state. Also, this modi-
fication to theRmatrix yields the portion of radiative recom-
bination

e211s22s1/2→1s22s1/22l j . ~13!

The type I damping shown in Eq.~8d! has neither the
initial resonance nor the final state completely contained in
the R-matrix ‘‘box,’’ and so simply modifying the
R-matrix Hamiltonian will not suffice. As originally sug-
gested by
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Hickman@39#, and derived within the present radiative opti-
cal potential approach by Robicheauxet al. @25#, this type of
damping can be incorporated by modifying the binding en-
ergy of the valence orbital according to

enl→enl2 i
G2pj→2s1/2

2
, ~14!

where nl are the quantum numbers of the valence orbital
with binding energyenl , j51/2 or 3/2 depending on the core
state to which the valence electron is attached, and
G2pj→2s1/2

are the core radiative widths from the appropriate
capture state to the ground state. This modification leads to a
complex effective quantum numbernc5n/A12 iGn2/Z2,
which, when used within a QDT approach to scattering,
gives rise to a nonunitarySmatrix

S5Soo2Soc~Scc2e22p inc!21Sco . ~15!

An alternative method for treating this type of damping
@26#, which is necessary when using the BelfastR-matrix
codes in their usual treatment of asymptotics for closed chan-
nels @32,40,41#, is to modify the asymptotic energy of the
closed-channel, exponentially decaying solutionsu(r ) and
u̇(r ) @41#. Use of these solutions alone automatically gives
rise to the physical scattering matrixS in Eq. ~15! @41#. They
are given by the asymptotic expansion

u~r !5r ne2Zr/n(
n

Bnr
2n, ~16!

and

u̇~r !5
du~r !

dE
5S n3

2Z2Ddu~r !

dn
, ~17!

where the coefficientsBn are computed by standard asymp-
totic recurrence relations @41#. The modification
nc5n/A12 iGn2/Z2 just requires that the evaluation of
u(r ) and u̇(r ) is done instead for complexnc @26#. Two
important differences between this asymptotic modification
and the QDT method are as follows.

Firstly, in the Belfast codes, use of the closed-channel
solutions vs the QDTs(r ) and c(r ) solutions ~see Refs.
@42,41,26#! is found to be one to two orders of magnitude
faster per evaluation. When the QDT solutions need to be
evaluated at every energy, for instance, at low-n resonances
where the various unphysical matrices in Eq.~15! have
strong energy dependence, the QDT method is much slower
for total scattering runs. However, at highern where there is
little energy dependence in these matrices, only a few actual
evaluations are required using the QDT method, and Eq.~15!
alone can be interpolated for intermediate energy points.
When detailed, narrow resonance structure must be mapped
out, perhaps millions of energy points are needed, making
the QDT method, in such cases, orders of magnitude faster
than the asymptotic modification method.

Secondly, usingu(r ) and u̇(r ) within the Belfast method
leads to a straightforward inclusion of long-range dipole and
quadrupole potentials via first-order perturbation@32,41#, but
using these same techniques to perturb negative-energy

s(r ) andc(r ) solutions is invalid since both these solutions
diverge asr→`. Furthermore, in the present case, at ener-
gies just above the 2s1/2 threshold the higher-l continuum
orbitals have their radial point of inflection far outside the
R-matrix ‘‘box.’’ As such, the Belfast treatment of perturba-
tion between open and closed channels is inapplicable. In the
Appendix, however, we outline a method for incorporating
the long-rangedipole perturbation between open and closed
s(r ) andc(r ) solutions, and this method does not have either
of the above numerical difficulties.

In the present case, for which it is necessary to resolve a
large number of high-n ~narrow width! resonances, we have
elected to use the QDT method for treating type I damping in
the Belfast codes~this is the normal mode of operation in the
Colorado codes!. As a consistency check, the Belfast codes
with the asymptotic modification method was used in spot
checks to verify that both methods yielded identical results;
use of the asymptotic method at every energy would have led
to an increase in computational time of a factor of;1000 for
the dense energy mesh used, however.

The type II damping shown in Eq.~8e! is a valence tran-
sition (n>10→n85329) for which the outer electron does
not overlap appreciably with the target (n<2) orbitals. Thus
the damping occurs mainly in the asymptotic region, and is
treated perturbatively by either modifying theK matrix @25#,
or the outer-region solutions directly@26# when asymptoti-
cally decaying states@u(r ),u̇(r )# @41# are used instead of
QDT solutions. In the former case, the unphysicalK matrix,
which yields the unphysicalS matrix in Eq.~15!, is modified
due to the diagonal perturbing potential

Kcc→Kcc1 i (
n853

9

(
l 85 l61

Gnl→n8 l 8/2, ~18!

where Gnl→n8 l 854pv3/3c3(2J11)u^nluurWuun8l 8&u2 is the
radiative width of the valence electronnl to each decay state
n8( l 85 l61) calculated using either distorted waves in the
Colorado codes@25#, or hydrogenic orbitals in the implemen-
tation in the Belfast codes@26#. A similar perturbation to the
Koo diagonal elements incorporates thee211s22s1/2
→1s22s1/2n8l 8 RR contribution.

The implementation of either method for calculating DR
cross sections is to perform scattering calculations for a
range of energies, thereby producing nonunitarySmatrices,
and to use these in Eq.~12!. A difficulty arises in fully re-
solving the many narrow resonances of entire Rydberg se-
ries, however. In the present case, the manyLS-forbidden
resonances have autoionization widthsGa , and therefore to-
tal widths, that are much narrower than the allowed ones.
Inspection of Eq.~6!, however, indicates that these narrow
resonances can contribute just as much to the averaged DR
cross section; see Ref.@27#. Thus if a linear mesh is used, the
cross section must be computed at a very large number of
energies in order to resolve all of the resonances. This differs
considerably from the case of resonant electron-impact exci-
tation where the narrowest resonances frequently make a
proportionally small contribution to the cross section com-
pared to the broadest resonances~see Ref.@27#! and/or they
are completely damped~see, e.g., Ref.@26#! and thus, either
way, it is unnecessary to resolve them.
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A more sophisticated method for resolving all resonances
up to some highest principal quantum numbernmax is as
follows. The Rydberg resonances are characterized by a
quantum numbern and quantum defectm leading to an en-
ergy position ER;Ei2Z2/2(n2m)2, and a total width
~equal to the autoionization width, assumingGa@G r) which
scales likeGa;G0 /(n2m)3. There is, thus, a pole of theS
matrix at the complex energyE5Ei2Z2/2(n2m)22 iGa/2,
or equivalently, a zero in the determinant of the matrix
Scc2e22p inc in Eq. ~15!. While the exact quantum defects
and widths deviate from these analytical forms at lowern
due to the interaction between the 2p1/2nl and 2p3/2n8l 8 se-
ries, or equivalently, nondiagonal terms in theS matrix, one
can search in the complex plane for the pole of theSmatrix
around the QDT-like values. Given the determined exact po-
sitionER and widthGa , an energy mesh of 55 points is used,
the positions given by

Ej5ER1sjGa , ~19!

with

sj5H j /5, j560210

sj21~11sj21/20!, j5611225
~20!

s62654s625, ~21!

s62758s626. ~22!

This mesh yields a sufficiently dense representation of the
resonance profile~the latter two points are chosen so as to
include the long 1/E2 tail of the Lorentzian!, so that accurate
energy-averaged resonance contributions to the DR cross
section may be computed.

III. RESULTS

Dielectronic recombination of lithiumlike Ar151 has been
the subject of a recent joint experimental-theoretical study
@43#. It was found that theoretical results forDn50 DR
using the codeDRFEUD @29# gave excellent agreement with
merged-beams results measured at the UNILAC of GSI at
Darmstadt, at least for the lower-lying resonances. Measure-
ments for the higher resonances were affected by external
electric fields. We use these same theoretical results, as well
asAUTOSTRUCTUREresults based on the same working equa-
tions used byDRFEUD and outlined in Sec. II A, to compare
to our two separate~Belfast and Colorado! R-matrix results.
All these results are shown in Fig. 1. Some details of these
calculations are summarized below.

While theR-matrix method implicitly includes RR, per-
turbative methods must add this independent contribution,
which is done incoherently within the independent-processes
approximation. Although the RR contribution can easily be
calculated perturbatively, to simplify our comparisons for the
resonances we determined this nonresonant background by
performing BelfastR-matrix calculations including just the
2s1/2kl ground-state continuum channel, thereby eliminating
the resonance producing 2p1/2,3/2nl channels. This yielded a
smooth, resonance-free background cross section of the same
magnitude as the fullR-matrix calculation which was then
added to the perturbative resonant contributions.

For all calculations, we terminated each Rydberg series at
n575. Due to inevitable external fields present in any ex-
perimental apparatus, there exists a highest principle quan-
tum numbernmax above which the Rydberg states are Stark
shifted into the continuum, so that these higher states do not
contribute to DR. In the previous study of Ar151 @43#, this
value was chosen asnmax564, although the cross section
was found to be insensitive to this precise value. For the
present case we have taken this to benmax575 for all calcu-
lations. Finally, all cross sections in Fig. 1 were convoluted
with an 0.2 eV full width at half maximum~FWHM! Gauss-
ian profile. AsE→0, however, this width is shrunk to zero
in order to match smoothly onto the 1/E RR behavior below
the 2p1/210l resonances.

From Fig. 1 it is seen that all four convoluted theoretical
results compare favorably. This only indicates that the radia-

FIG. 1. Photorecombination cross sections for Ar151, including
contributions up ton575, and convoluted with a 0.2 eV FWHM
Gaussian:~a! BelfastR-matrix results;~b! AUTOSTRUCTUREresults;
~c! ColoradoR-matrix results;~d! DRFEUD results.
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tive widths of the resonances are similar, however, since, by
Eq. ~6!, the averaged cross section is independent of the
autoionization width. Thus possible inaccuracies in the auto-
ionization widths as well as the relative positioning between
various resonances are not evident at this level of resolution.
Further, the profiles seen in Fig. 1 represent the average ra-
diative contribution from entire groups of resonances
2pjnl. In order to show that the resonance profiles are in fact
the same between perturbative andR-matrix methods, we
plot unconvoluted cross sections of the 2p1/210l resonance
region in Fig. 2. Note that there is generally very good agree-
ment at this level of resolution as well, indicating that the
perturbative andR-matrix methods are modeling the DR pro-
cess at the same level of accuracy.

It is interesting to investigate the dominant damping path-
ways for this DR process. In Fig. 3, we show DR cross
sections including only one of the three contributions, inner-
region damping, type I damping, or type II damping. Inner-
region damping involves the quantitŷnlur u2l 8&, which
tends to zero asn→`. This is because thênlu2l 8& overlap
itself is reduced considerably atn.10 and decreases with
n. It also depends on the configuration interaction~CI! mix-
ing within the 1s22s1/22l and 1s22pj2l decay states. The
type II damping has a similar decrease withn, but unlike
inner-region damping it has many 3<n8<9 final decay
states, and also has a greater overlap^n8( l61)unl& for any
decay states. It thus accounts for a far greater contribution
than the inner-region damping at alln. For type I damping,
we first note that the radiative widthG r is n independent as
n→`, since only the core participates in the transition. Thus,
at low and intermediaten where Ga@G r , the energy-
averaged cross section is constant for each resonance, or the
binned cross section, using a bin width on the order of
1/n3, scales asn3. The energy-averaged cross sections up to
somen5nmax thus behaves like;nmax

3 5Z/(E2pj
2E)3/2 as

E→E2pj
. At very highn, of course, the autoionization width

becomes less than the radiative width due to the 1/n3 scaling,
and the energy-averaged DR cross section instead behaves as
1/n3, or the binned cross section approaches a constant. The
behavior for each of these decays at the Rydberg limit is
clearly seen in Fig. 3.

As mentioned in the previous section, the long-range con-
tribution is expected to dominate at highl or low E. We
show that this is indeed the case for the present system by
focusing on theJ56 odd partial wave, with and without
long-range perturbations. The results of both of these
R-matrix calculations are shown in Fig. 4 in the region of the
four 2p3/210l j5 l61/2 resonances (l54, j59/2, l56, j

FIG. 2. Unconvoluted photorecombination cross sections in the
2p1/210l resonance region:~a! BelfastR matrix; ~b! AUTOSTRUC-

TURE.

FIG. 3. Various contributions to the photorecombination cross
section for Ar151: ~a! inner-region damping;~b! type II damping;
~c! type I damping;~d! total photorecombination cross section. All
results are from BelfastR-matrix calculations, and are convoluted
with a 0.2 eV FWHM Gaussian.
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511/2, l56, j513/2, andl58, j515/2). Since these reso-
nances cannot be isolated further without eliminating chan-
nels, and therefore CI mixing, we are only able to study the
sum of all four resonances, which, nevertheless, shows an
obvious dependence on the long-range dipole potential.
When the long-range dipole perturbation is included, the area
under the DR cross-section curve, and therefore the energy-
averaged DR cross section, increases. Over the entire DR
range 0.4 eV<E<40 eV, shown in Fig. 5, we see that espe-
cially in the 2p3/210l resonance region, where the continuum
energy is the smallest, the omission of long-range perturba-
tions leads to a reduction from about 30 Mb to about 22 Mb

for the peak cross section. This reduction lessens for inter-
mediaten ~higher continuum energies!, but increases again
at the high-n limit, where instead the resonance statesnl
now have little probability of being found in the inner region.

IV. CONCLUSION

We have successfully implemented the close-coupling
treatment of photorecombination for the relatively simple
system of electrons incident on lithiumlike Ar151. Using the
formulation of Robicheauxet al. @25#, we modified two
separateR-matrix codes, the Belfast and Colorado versions,
and found excellent agreement between these two and be-
tween the two perturbative codesAUTOSTRUCTURE and
DRFEUD for theDn50 DR cross sections. It was found that
inclusion of long-range perturbative effects within the
R-matrix method was necessary to compute correct autoion-
ization widths, as was a sophisticated search method for re-
solving all of the many narrow resonances. The present
method was also shown to be superior to methods based on
inverse-photoionization calculations for decay to low-lying
recombined states since the radiative width is incorporated
into the total width via an optical potential.

The validity of the presentR-matrix approach for treating
DR paves the way for new investigations of systems where
standard perturbation codes are expected to break down,
namely, where various higher-order interference effects are
required. These include DR of highly charged ions, espe-
cially to selected final decay states, where resonant and back-
ground contributions sum incoherently, and also for cases of
near degeneracy of Rydberg resonances from different series.
Existing discrepancies between past experimental and pertur-
bative theoretical results may benefit from studies which in-
clude all-order interference effects. For very highly charged
ions, these semirelativistic methods will need to be extended
to include relativistic effects. Using the similarDARC
R-matrix codes that incorporate these relativistic effects,
@44,45# and the modifications detailed here, this should be a
straightforward task. Inclusion of the Breit interaction in
relativistic R-matrix codes remains the final ingredient to-
ward the treatment of DR of the highest-charged ions ca-
pable of being studied experimentally, currently, U911.
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APPENDIX: LONG-RANGE PERTURBATIONS WITH
UNPHYSICAL CLOSED-CHANNEL SOLUTIONS

A necessary ingredient for calculating accurate DR cross
sections within theR-matrix method, as mentioned in Sec.
II B, is the perturbative inclusion of the long-range dipole
potential. This turns out to be important in the present case
because, as can be seen in Eq.~9!, the autoionization widths
Ga depend on a~predominantly! dipole coupling matrix be-
tween the initial continuum state 2s1/2kl8 and the resonant

FIG. 4. The 2p1/210l J56 odd partial-wave contribution to the
photorecombination cross section for Ar151. Solid line, present
R-matrix results without long-range dipole perturbation; dashed
line, results including long-range dipole perturbation. Both results
are unconvoluted.

FIG. 5. Total photorecombination cross sections for Ar151 ~a!
with and ~b! without the long-range dipole perturbation included.
Both results are from the BelfastR-matrix calculations, and are
convoluted with a 0.2 eV FWHM Gaussian.
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state 2pjnl. The portion of this integral inside theR-matrix
box (0<r<r A) is automatically handled to all orders via the
R matrix itself. Outside the box, since we are dealing with a
multiply charged ion, a first order perturbative treatment is
sufficient @32#. This latter contribution becomes especially
important in one of two cases. When either~1! the initial
continuum state resides mostly outside the box, as is the case
for either low energies or high angular momenta, corre-
sponding to a classically allowed region outside the box
only, or ~2! the resonance state resides mostly outside the
box, as is the case for highn, then the inner-region contri-
bution to the autoionization width is negligible. In order to
compute perturbative corrections to theK matrix, or to the
solutions themselves, the following four quantities are
needed:

E
r A

`

drso~r !
a

r 2
sc~r !, ~A1a!

E
r A

`

drso~r !
a

r 2
cc~r !, ~A1b!

E
r A

`

drco~r !
a

r 2
sc~r !, ~A1c!

E
r A

`

drco~r !
a

r 2
cc~r !, ~A1d!

where the subscriptso andc indicate that the Coulomb func-
tions s(r ) and c(r ) refer to open and closed channels, re-
spectively. Each of the closed-channel solutions diverges ex-
ponentially asr→` on the real axis but the final physical
solutions will be a linear combination of these which go to
zero asymptotically~see below!. We can thus compute the
part of each of these four integrals that will remain after this
linear combination is formed as follows. First, we form the
solution

eo
1~r !5co~r !1 iso~r !, ~A2!

which has the asymptotic property

eo
1~r ! →

r→`

e1j~r !, ~A3!

where j(r )5 ikr1z/k ln2kr1ilp/21s l and s l5argG( l
111 iz/k) is the Coulomb phase shift. It therefore decreases
exponentially along the curver5r A→r A1 i`. Both sc(r )
andcc(r ) oscillate along this same line, and so the integrals

E
r A

rA1 i`

dreo
1~r !

a

r 2
sc~r !, ~A4a!

E
r A

rA1 i`

dreo
1~r !

a

r 2
cc~r !, ~A4b!

are well defined. By considering the infinite quarter circle
joining this line with the liner5r A→`, and using the form
of e1(r ) in Eq. ~24!, we can equate the integrals Eqs.~A1a!,
~A1c! with the imaginary and real parts of the integral Eq.
~A4a!, and likewise we can equate the integrals Eqs.~A1b!,
~A1d! with the imaginary and real parts of the integral Eq.
~A4b!. In doing so, we have disregarded the divergent part of
the integrals along the quarter circle

R eo
1~r !

a

r 2
sc~r !, R eo

1~r !
a

r 2
sc~r !, ~A5!

since, when we form the physical closed-channel solution
@42#,

ec
2~r !5sc~r !cospn2cc~r !sinpn, ~A6!

these divergences cancel, i.e., we are then left only with in-
tegrals of the form

R eo
1~r !

a

r 2
ec

2~r !, ~A7!

the integrand of which is zero everywhere on the quarter-
circle contour at infinity. Finally, the integrals in Eqs.~A4!
are evaluated numerically up to the point where the inte-
grands have decayed beyond significance.
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