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Abstract
We present fully differential cross sections for the single ionization of He by C6+ ions. A
time-dependent close-coupling approach is used to describe the two-electron wavefunction in
the field of the projectile for a range of impact parameters, and a Fourier transform approach is
used to extract fully differential cross sections for a specific momentum transfer. Our
calculations are compared to the measurements of Schulz et al (2003 Nature 422 48) and we
find very good agreement in the scattering plane and good qualitative agreement in the
perpendicular plane. In particular, our calculations in the perpendicular plane find a similar
‘double-peak’ structure in the angular distributions to those seen experimentally. We also
discuss the various checks made on our calculations by comparing to a one-electron
time-dependent calculation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The single ionization of few-electron atoms by charged-
ion impact has been a fruitful field of study for many
years [2]. At high impact energies, it had been expected
that all measurable quantities from such reactions could be
well described by perturbation theory, when the perturbation
(∼ |ZP |/vP ) caused by a projectile of charge ZP and velocity
vP is small. However, measurements made of the fully
differential cross sections (FDCS) of single ionization of He by
fully stripped carbon ions with a velocity of 100 MeV amu−1

[1], where |ZP |/vP ∼ 0.1, found unexpected structure in
the perpendicular plane. This plane is perpendicular to the
‘scattering’ plane defined by the incoming projectile direction
(which defines the z-axis) and the direction of the transverse
momentum transfer. The structure found in the measurements
was not found in first-Born-approximation (FBA) calculations
[1, 3], in which the angular distributions were almost flat in this
plane, although such calculations and measurements were in
good agreement for the angular distributions in the scattering
plane. Furthermore, the magnitude of the FBA cross section
in the perpendicular plane was considerably smaller than that
found experimentally.

This unexpected result generated much discussion and
theoretical investigation. Although the structure in the

perpendicular plane was attributed to higher-order effects
[1], a subsequent theoretical investigation [4] which included
the second-Born contribution was not able to reproduce
the earlier measurements. In fact, the inclusion of the
second Born contribution actually worsened the comparison
with experiment, although this may have been influenced
by the choice of a rather approximate helium initial state.
Later studies also found that an improved treatment of the
ejected-electron–ion interactions made little difference to the
calculations, and it was demonstrated that the agreement
between experiment and theory grew steadily worse as
one moved from the scattering to the perpendicular plane
[5]. It was then asserted [6] that the perpendicular plane
structure in the measurements was largely due to experimental
resolution issues caused by the temperature of the target
gas, although this explanation was later refuted [7]. An
alternative explanation for the perpendicular plane structure
was subsequently proposed in terms of elastic scattering of the
projectile by the helium nucleus [8], and a more recent study
indicated that convoluting the experimental resolution within a
calculation may increase the magnitude of the cross section in
the perpendicular plane [9]. A very recent calculation, which
employed coupled pseudostates within an impact parameter
treatment of the projectile interaction [10], again found good
agreement with measurement in the scattering plane, but a
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Figure 1. FDCS for single ionization of helium by 100 MeV amu−1 C6+ ions for various values of the ejected electron azimuthal angle φe,
for a momentum transfer of η = 0.75 au, and an ejected electron energy Ee = 6.5 eV. The measurements of [1] are compared with TDCC
two-electron calculations (labelled as TDCC 6D).

flat angular distribution, in conflict with experiment, in the
perpendicular plane.

In this paper, we also investigate the single ionization of
helium by C6+ ion impact at 100 MeV amu−1. We use the
time-dependent close-coupling approach (TDCC) [11, 12] to
calculate the FDCS for a range of impact parameters, and
then employ a Fourier transform technique [13, 14] to extract
the FDCS for a specific momentum transfer. Our approach
thus builds on our earlier work [12], in which we investigated
the form of the FDCS for this process at specific impact
parameters, which was in good qualitative agreement with an
earlier semi-classical study [15]. Previous TDCC calculations
have found good agreement with experiment for the total single
and double ionization of helium by α-particle [11] and anti-
proton impact [16]. Atomic units are used unless otherwise
stated.

2. Theory

We follow our previous work on single and double ionization
of helium by fast ion impact [11, 12] and solve the
time-dependent Schrödinger equation for one or two active
electrons, where the projectile (with mass mP and velocity
vP ) interaction with the electrons is treated via a multipole
expansion [11], and where terms up to octopole are included in
our expansion. Following the time-dependent propagation to a
final time T, one can obtain single-ionization momentum-space
wavefunctions for various impact parameters by a suitable
projection.

In the one-electron TDCC approach (now referred
to as TDCC 3D), the single-ionization momentum-space
wavefunction is given by

Plm(k, b) =
∫

drPkl(r)P̄lm(r, b, T ), (1)

where Pkl(r) is a box-normalized continuum function. The
wavefunction P̄lm(r, b, T ) is obtained by removing the overlap
with the initial ground state of helium using

P̄lm(r, b, T ) = Plm(r, b, t) − αP1s(r)δl,0δm,0, (2)

with

α =
∫

drP1s(r)P00(r, b, T ). (3)

Here, P1s(r) is a bound radial orbital obtained by
diagonalization of the one-electron Hamiltonian given by

H(r) = −1

2

∂2

∂r2
− Zt

r
+ Vl(r), (4)

where Zt = 2 for helium, and Vl(r) is a Hartree local exchange
potential for the atomic core.

In the two-electron TDCC approach (now referred
to as TDCC 6D), the single-ionization momentum-space
wavefunction is given by

P LM
0L (1s, k, b)

=
∫

dr1

∫
dr2P̄

LM
0L (r1, r2, b, T )P1s(r1)PkL(r2). (5)
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The wavefunction P̄ LM
0L (r1, r2, b, T ) is obtained by removing

the overlap with the initial ground state of helium using

P̄ LM
0L (r1, r2, b, T )

= P LM
0L (r1, r2, b, t) − βP̂ 00

00 (r1, r2)δL,0δM,0, (6)

with

β =
∑

l

∫
dr1

∫
dr2P̂

00
ll (r1, r2)P

00
ll (r1, r2, T ) (7)

and where P̂ 00
ll (r1, r2) is the initial ground state of He, obtained

by relaxation of the time-dependent Schrödinger equation
without electron–projectile coupling terms.

In both the one- and two-electron TDCC formulations,
the single-ionization momentum-space wavefunction can be
used to construct a function which depends on the angles of
the ejected electron, using

P(k̂, b) =
∑
lm

(−i)l ei(σl+δl )Plm(k, b)Ylm(k̂) (8)

for the one-electron case, and

P(k̂, b) =
∑
LM

(−i)L eiσLP LM
0L (1s, k, b)YLM(k̂) (9)

for the two-electron case. In equations (8) and (9), σl is
the Coulomb phase and Ylm(k̂) is a spherical harmonic. In
equation (8), δl is a distorted-wave phase which is due to the
Vl(r) potential.

Our approach up to now is identical to our previous work
[12], in which differential cross sections were presented for
single ionization of helium at specific impact parameters. If we
now wish to obtain cross sections differential with respect to
the momentum transfer (η) of the projectile, we must perform a
Fourier transform of the function in equations (8) and (9) [13].
This is equivalent to cross sections differential with respect
to the projectile scattering angle θP , since η ≈ μvP θP for
small projectile angle scattering, where μ is the reduced mass
μ = mP mt/(mP + mt) with mt the mass of the target helium
atom. Such a transform was recently discussed in detail for
various ion-impact processes [14] and was also recently used
in similar calculations to those presented here [10].

The two-dimensional Fourier transform for a transition
amplitude A(b) is given by [13] as

R(η) = 1

2π

∫
db eiη·bA(b) , (10)

where the exponent term may be expanded using the Jacobi–
Anger expression [17], so that we may now express our single-
ionization momentum-space wavefunction as

P(k̂, η) = 1

2π

n=+∞∑
n=−∞

in
∫ 2π

0
dφb e−inφb

×
∫

b dbP (k̂, b) eiδ(b)Jn(ηb). (11)

Here, Jn(ηb) is the Bessel function of nth order and φb is the
azimuthal angle of the impact parameter vector b. A detailed
discussion of the properties of similar transition amplitudes
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Figure 2. FDCS in the scattering plane (upper panel) and in the
perpendicular plane (lower panel) calculated using the TDCC
two-electron approach (red solid line, labelled as TDCC 6D) and
using the TDCC one-electron approach (blue dashed line, labelled
as TDCC 3D). Both sets of calculations are again compared to the
measurements of [1].

within a continuum distorted-wave (CDW) model has recently
been given by Gulyás et al [14], where it was noted that
many terms are often required in the expansion over n in
equation (11) to obtain converged results. In the calculations
presented here, we found that inclusion of terms up to |n| � 5
was sufficient to obtain converged FDCS.

In equation (11), we have also included a phase factor
eiδ(b), which represents the internuclear interaction term. In
principle, this term could be included as an extra potential in
the TDCC equations, but since this potential is independent of
the electron coordinates and is only relevant for cross sections
differential in the momentum transfer (or projectile scattering
angle), we choose to include this term as a simple phase factor.
Following Gulyás et al [14], we choose

δ(b) = 2ZP Zeff

vP

ln(vP b), (12)

which corresponds to the internuclear interaction potential
V (R) = ZP Zeff/R with a screened charge Zeff = 1.34.
Further discussion of the influence of this factor is given in
the following section.
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Figure 3. FDCS in the scattering plane (upper panels) and in the perpendicular plane (lower panels). The left panels show two-electron
TDCC 6D calculations and the right panels show one-electron TDCC 3D calculations. The red solid lines represent calculations which
include the internuclear interaction phase factor δ(b) in equation (11), and the green dashed lines represent calculations which omit this
factor. The blue dashed line indicates calculations using a form of the internuclear interaction phase factor defined by equation (25) of [14].

The FDCS for the single ionization of helium is then given
by

d4σ

dθe dφe dk dη
= 2|P(k̂, η)|2. (13)

The pre-factor of 2 is required in the one-electron case as it
represents the occupation number of the 1s subshell, and in
the two-electron case it arises since we project only onto 1skl
product states. We may recover the total single-ionization
cross section by integrating over all variables, namely

σ1s = 2π

∫
dη η

∫
dφe

∫
sin θe dθe

∫
dk

d4σ

dθe dφe dk dη
.

(14)

Finally, we note that all FDCS presented in this paper
are presented in the laboratory frame, where the conversion
from the center-of-mass frame (in which the calculations are
performed) requires multiplication by a factor of m2

P

/
μ2 =16

in this case [3].

3. Results and discussion

TDCC calculations for single ionization of helium by C6+

impact at 100 MeV amu−1 were made using the one- and two-
electron formulations as described in the previous section.
A radial mesh of 0.1 × 768 points was used for all radial
coordinates, and 300 box-normalized continuum functions,
with a spacing of 0.05 au, were used in the projections

of equations (1) and (5). In the TDCC 3D calculations,
16 lm channels were used, while 34 coupled l1l2LM channels
were used in the TDCC 6D calculations. The time-dependent
equations were propagated from an initial starting point of
−50 au (with respect to the target location) to a final distance
of over 300 au. In the TDCC 3D calculations, the P1s(r) bound
orbital obtained from diagonalization of equation (4) was used
as the initial state, and in the TDCC 6D calculations the
initial He state was obtained by relaxing the time-dependent
equations in imaginary time, without the electron–projectile
terms, on the same radial grid, using four ll coupled channels.
Calculations were carried out for a range of impact parameters
up to b = 30 au, with a spacing of �b = 0.2 au. FDCS using
the Fourier transform approach were found to be insensitive to
this spacing being halved. The cross sections presented here
did not change noticeably when the range of impact parameters
was increased, and our calculations were also found to be well
converged with respect to the number of points included in the
integral over φb in equation (11).

In figure 1, we present results from our TDCC 6D
calculations, including the Fourier transform, for single
ionization of helium by 100 MeV amu−1 C6+ ions.
Calculations made at a momentum transfer of η = 0.75 au
and an ejected electron energy of 6.5 eV are compared to the
measurements of Schulz et al [1] for various ejected electron
azimuthal angles φe. We note that φe = 0◦ corresponds
to the scattering plane and φe = 90◦ corresponds to the
perpendicular plane. Turning first to the scattering plane
calculations (φe = 0◦), we find excellent agreement between

4
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the calculations and the measurement. The binary and recoil
peaks that constitute the cross section are well reproduced
in both shape and magnitude. The good agreement for the
recoil peak is noteworthy as previous calculations [5, 10] have
slightly underestimated this peak.

As the φe angle is increased towards 90◦, we find
that in the calculations, the magnitude of the binary peak
quickly decreases, and the magnitude of the recoil peak
slowly decreases, so that by φe = 90◦, the cross section is
symmetric about θe = 180◦, as required. More importantly,
the perpendicular plane calculations display a double-peak
structure, quite similar to that found in the measurements.
This is particularly noteworthy, since many sets of previous
calculations [4, 5, 10] have found a flat distribution in the
perpendicular plane, similar to that found in FBA calculations.
The structure in the perpendicular plane found experimentally,
and now in our calculations, has long been taken to indicate
the importance of higher-order contributions to the scattering
amplitude, and was also previously found in our earlier
calculations at specific impact parameters [12]. As the φe

angle is increased from 0◦, the magnitude of the measurements
also decreases, although not as quickly as in the calculations,
so that, by φe = 90◦, there is a considerable magnitude
discrepancy between our calculations and the measurements.
However, we again emphasize that the shape of the calculated
cross section in the perpendicular plane is quite similar to that
found experimentally.

In figure 2, we compare our TDCC 3D and TDCC 6D
calculations with each other and with the measurements of
[1], for the scattering and perpendicular plane cases. The
two TDCC approaches are in good agreement with each other
in the scattering plane. In the perpendicular plane, the two
calculations are in reasonable shape agreement, but differ
somewhat in magnitude. The TDCC 6D calculations find a
somewhat stronger double-peak structure than the TDCC 3D
calculations.

It is hard to determine the reason for the difference in
magnitude of the TDCC one-electron and two-electron cross
sections, although we do note that the total single-ionization
cross sections from the one-electron TDCC calculations are
only slightly larger than the total cross section from the
two-electron TDCC calculations. At this point, it is also
worth noting that the two-electron TDCC calculation can also
include the probability for single ionization leaving the He+

ion in an excited state (for example, 2s or 2p), by similar
projection methods to those given by equation (1). However,
the contribution to the FDCS from ionization leaving the ion
in an excited state was found to be negligible. The most
instructive point from figure 2 may be that a TDCC 3D
calculation with only one active electron still finds a weak
double-peak structure in the perpendicular plane cross section.
This effectively rules out any two-electron interaction as the
sole reason for this structure.

We now turn to an examination of the influence of the
internuclear interaction on the FDCS. Figure 3 shows TDCC
calculations again made for the specific case of η = 0.75
au and Ee = 6.5 eV, where the left panels present TDCC
6D calculations and the right panels present TDCC 3D
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Figure 4. TDCC 3D calculations of the FDCS in the scattering
plane (upper panel) and in the perpendicular plane (lower panel).
Calculations are presented in which the range of impact parameters
used was varied, up to 30 au (solid green line), up to 50 au (solid
blue line) and up to 90 au (dashed orange line).

calculations. The green dashed line indicates calculations
where the internuclear interaction phase δ(b) in equation (11)
is set to zero. The cross sections in the scattering plane with
this choice are in worse agreement with experiment for both
sets of TDCC calculations, as the ratio of the binary to recoil
peak height is much larger than in the measurement. In the
perpendicular plane, the double-peak structure is diminished
in the TDCC 6D calculations without the phase factor, and
vanishes in the TDCC 3D calculations, where the distribution
is almost flat. We thus find that inclusion of the internuclear
interaction phase factor is an important component of the
FDCS for these cases. Varying the form of the internuclear
interaction phase factor in equation (11) (for example, the
authors of [14] give an alternative form for the internuclear
interaction phase) can slightly change the magnitude of the
FDCS, but the characteristic shapes in both the scattering
and perpendicular plane, as demonstrated by the solid red
lines in figure 3, remain the same. Also, using the full target
charge (i.e. Zeff = 2.0) in equation (12) gives similar results
to calculations presented in figure 3.

Finally, in figure 4 we present TDCC 3D calculations,
again for the scattering and perpendicular planes, where
we vary the range of impact parameters used in the FDCS
calculations. We find that increasing the impact parameter
range beyond 30 au (which was the maximum impact
parameter used in the calculations presented earlier) makes
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Figure 5. TDCC 3D calculations of the weighted ionization probability for single ionization of helium by 100 MeV amu−1 C6+ ions, as a
function of the impact parameter.

very little difference to the FDCS. This is not surprising,
as by 30 au, the single-ionization probability has dropped
significantly, as shown in figure 5, and is almost two orders
of magnitude lower than at the peak of the probability
distribution, which occurs near b = 1.0 au. Furthermore, very
large impact parameters correspond to very small momentum
transfers [12], so we do not expect large impact parameters
to contribute to the FDCS at the current momentum transfer
value of 0.75 au.

4. Conclusion

We have presented TDCC one-electron and two-electron
calculations for the single ionization of helium by C6+ at
100 MeV amu−1. Our calculations have included a Fourier
transformation from an impact parameter picture (in which the
time-dependent calculations were performed) to a momentum
transfer picture, which has allowed a quantitative comparison
with the measurements of Schulz et al [1]. This current set
of calculations is fully consistent with our earlier calculations
[12], which presented angular distributions at specific impact
parameters. We find that our calculations are generally in good
agreement with measurement, and in particular we observe
the double-peak structure in the perpendicular plane cross
sections, which is also found experimentally. The calculated
cross sections in this plane are smaller in magnitude than the
measurements. However, this result is noteworthy as several
previous sets of calculations have found a flat distribution in
this plane.

It is difficult to pinpoint a single physical mechanism
which is responsible for the double-peak perpendicular plane
structures. However, for this feature to be found in a
calculation, it appears necessary to provide an accurate
treatment of the initial and final states of the system, as well
as treating, in detail, the projectile–target interactions. Our
calculations presented here treat all these aspects accurately.

We note that somewhat similar conclusions may be drawn
from a complementary study of fast electron-impact single
ionization of He at 1 keV incident energy, where the
‘perturbation’ |ZP |/vP is also close to 0.1 [18]. In that
study, similar double-hump structures were found in the
perpendicular plane measurements at similar kinematics
(where in this case, the perpendicular plane was the plane
perpendicular to the momentum transfer direction). A hybrid
calculation, in which the projectile was described by a plane
wave and the electron–target interactions described with an
R-matrix with pseudo-states calculation, which also included
the second-order interactions between the projectile and the
target, was able to find similar double-hump structures in
this plane. When the second-order interactions were omitted
from the calculation, the angular distribution was almost
flat in the perpendicular plane. We regard our findings
described here as complementary to this previous electron-
impact study [18]. Finally, we note that a recent study [19]
suggests that the projectile coherence may have a much more
important effect on the cross sections for ion impact than
previously appreciated. In the study presented here, we treat
the projectile classically, and so incoherently, as compared to
previous plane-wave quantum-mechanical studies [3] which
assumed a fully coherent projectile beam. This may provide
a partial explanation for the previous discrepancies between
theory and experiment for the differential cross sections under
consideration here.

In the future, we plan further calculations in support
of ion-impact single-ionization experiments, particularly for
C6+ 2 MeV amu−1 impact, where the perturbation of the
ion is much stronger. We also plan to extend our Fourier
transform approach to double ionization, so that quantitative
comparison may be made with future ion-impact double-
ionization experiments which can measure fully differential
cross sections.
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