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Abstract
Time-dependent close-coupling, R-matrix double pseudo-states and distorted-wave methods
are used to calculate the electron-impact double ionization cross section for the 1s22s2 ground
state of the Be atom. At 1.5 times the double ionization threshold energy, the first two
non-perturbative methods predict a cross section of approximately 1.0 × 10−18 cm2 for the
direct double ionization of the 2s2 subshell. At 15.0 times the double ionization threshold
energy, the perturbative distorted-wave method predicts a cross section of approximately
2.0 × 10−18 cm2 for the indirect single ionization of the 1s2 subshell followed by
autoionization. Thus for the Be atom, the peak of the double ionization cross section is
approximately two orders of magnitude smaller than the previously well-determined peak of
the single ionization cross section.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The electron-impact double ionization of an atom at low
energies results in three continuum electrons moving in the
field of a charged core, that is the quantal Coulomb four-
body problem. In recent years a non-perturbative method was
developed based on the direct solution of the time-dependent
Schrödinger equation for an incident electron scattering from
an atom with two active target electrons. The time-dependent
close-coupling (TDCC) method has been used to calculate
total cross sections for the electron-impact double ionization
of He [1, 2] and H− [3] that are in good agreement with
experiments [4, 5]. Pentuple energy and angle differential
cross sections have also been calculated for the electron-impact
double ionization of He [6] that are in only moderate agreement
with the scaled shapes found in (e,3e) experiments [7].

Recently non-perturbative TDCC and perturbative
distorted-wave methods were combined to calculate total
cross sections for the electron-impact double ionization of
Mg [8]. At low energies the non-perturbative direct double
ionization cross sections for the 3s2 subshell were found to be
in good agreement with experiment, and at higher energies the
perturbative indirect double ionization cross sections coming
from single ionization of the 2s2 and 2p6 inner subshells
followed by autoionization were also found to be in good
agreement with experiment [9, 10]. For the Mg atom, the

peak of the double ionization cross section is around 2.5 ×
10−17 cm2, while the peak of the single ionization cross section
is around 4.0 × 10−16 cm2 [11].

In a previous study [12], we examined the electron-impact
single ionization of Be using the non-perturbative TDCC and
R-matrix pseudo-states (RMPS) methods. Collision processes
involving Be are important since it has been chosen for first-
wall plasma facing components in ITER [13]. In this paper,
we examine the electron-impact double ionization of Be. At
low energies we calculate the direct double ionization cross
sections for the 2s2 subshell using the non-perturbative TDCC
method and a newly developed R-matrix double pseudo-states
(RMDPS) method. At higher energies we calculate the indirect
double ionization cross sections coming from the single
ionization of the 1s2 inner subshell followed by autoionization
using a perturbative distorted-wave method. We hope our
theoretical predictions will stimulate an experiment to measure
the total cross section for the electron-impact double ionization
of Be.

The remainder of this paper is organized as follows.
In section 2, we review the perturbative distorted-wave and
TDCC methods, and present the new RMDPS method. In
section 3, we apply the various methods to the calculation
of the electron-impact double ionization cross section of Be
over a wide energy range. In section 4, we conclude with a
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summary and an outlook for future work. Unless otherwise
stated, all quantities are given in atomic units.

2. Theory

2.1. Configuration-average distorted-wave method

The configuration-average distorted-wave (CADW) expres-
sion for the electron-impact single ionization cross section of
the (nt lt )

wt subshell of any atom is given by [14]

σsingle = 16wt

k3
i

∫ E

0

dεe

kekf

∑
li ,le,lf

(2li + 1)(2le + 1)

× (2lf + 1)P(nt lt , ki li , kele, kf lf ), (1)

where the linear momenta (ki, ke, kf ) and the angular
momenta (li , le, lf ) quantum numbers correspond to the
incoming, ejected and outgoing electrons, respectively. The
total energy E = εi − I = εe + εf , where I is the subshell
ionization energy and ε = k2

2 . The first-order perturbation
theory expression for the scattering probability P(nt lt , ki li ,

kele, kf lf ) is given in terms of standard 3j and 6j symbols and
radial Slater integrals [14]. The bound radial orbitals, Pnl(r),
needed to evaluate the Slater integrals are calculated using
a Hartree–Fock atomic structure code [15]. The continuum
radial orbitals, Pkl(r), needed to evaluate the Slater integrals
are calculated by solving the radial Schrödinger equation
using a Hartree with local exchange potential. The incident
and scattered electron continuum radial orbitals are evaluated
in a VN

if potential (N = 4 for Be), while the ejected
continuum radial orbital is calculated in a VN−1

e potential [16].
Alternatively, all the continuum radial orbitals are calculated
in a VN−1

ief potential [17]. For an N electron neutral atom, the
continuum solutions in a VN potential see an asymptotic charge
of zero, while the continuum solutions in a VN−1 potential see
an asymptotic charge of one. The continuum normalization
for all the distorted waves is one times a sine function.

2.2. Time-dependent close-coupling method on a 2D lattice

For electron-impact single ionization of the ns2 subshell of
an atom with one active electron, the TDCC-2D equations for
each LS symmetry are given by [18]

i
∂P LS

l1l2
(r1, r2, t)

∂t
= Tl1l2(r1, r2)P

LS
l1l2

(r1, r2, t)

+
∑
l′1,l

′
2

V L
l1l2,l

′
1l

′
2
(r1, r2)P

LS
l′1l

′
2
(r1, r2, t), (2)

where P LS
l1l2

(r1, r2, t) is a two-electron radial wavefunction,
Tl1l2(r1, r2) is a two-fold sum over one-electron kinetic, nuclear
and atomic core operators, and V L

l1l2,l
′
1l

′
2
(r1, r2) is a two-electron

repulsion operator.
The initial condition for the solution of the TDCC-2D

equations is given by

P LS
l1l2

(r1, r2, t = 0) = Pns(r1)Gk0l0(r2)δl1,0δl2,l0 , (3)

where Pns(r) is a bound radial orbital for the active electron,

and Gk0l0(r) is a Gaussian radial wavepacket with energy k2
0
2 .

Following the time propagation of the TDCC-2D equations,
the total single ionization cross section is given by

σsingle = π

2k2
0

∫ ∞

0
dk1

∫ ∞

0
dk2

∑
L,S

(2L + 1)(2S + 1)

×
∑
l1,l2

∣∣P LS
l1l2

(k1l1, k2l2)
∣∣2

, (4)

where P LS
l1l2

(k1l1, k2l2) is a two-electron momentum space
wavefunction obtained by projection of the time-evolved
coordinate space wavefunctions onto fully anti-symmetric
products of two box-normalized continuum orbitals.

2.3. Time-dependent close-coupling method on a 3D lattice

For electron-impact single and double ionization of the ns2

subshell of an atom with two active electrons, the TDCC-3D
equations for each LS symmetry are given by [18]

i
∂P LS

l1l2Ll3
(r1, r2, r3, t)

∂t
= Tl1l2l3(r1, r2, r3)P

LS
l1l2Ll3

(r1, r2, r3, t)

+
∑

l′1,l
′
2,L

′,l′3

3∑
i<j

V L
l1l2Ll3,l

′
1l

′
2L

′l′3
(ri, rj )P

LS
l′1l

′
2L

′l′3
(r1, r2, r3, t),

(5)

where P LS
l1l2Ll3

(r1, r2, r3, t) is a three-electron radial wave-
function, Tl1l2l3(r1, r2, r3) is a three-fold sum over one-
electron kinetic, nuclear and atomic core operators, and
V L

l1l2Ll3,l
′
1l

′
2L

′l′3
(ri, rj ) is a two-electron repulsion operator.

The initial condition for the solution of the TDCC-3D
equations is given by

P LS
l1l2Ll3

(r1, r2, r3, t = 0)

=
∑

l

P̄ ll(r1, r2, τ → ∞)Gk0l0(r3)δl1,lδl2,lδL,0δl3,l0 , (6)

where the two-electron radial wavefunctions P̄ ll(r1, r2, τ ) are
obtained by solution of a set of TDCC-2D equations for
the relaxation of a two-electron atom in imaginary time (τ ).
Following the time propagation of the TDCC-3D equations,
the total single ionization cross section is given by

σsingle = π

2k2
0

∫ ∞

0
dk2

∫ ∞

0
dk3

∑
L,S

(2L + 1)(2S + 1)

×
∑
L,S

∑
l2,l3

∣∣P LS
l2LSl3

(ns, k2l2, k3l3)
∣∣2

, (7)

where P LS
l2LSl3

(ns, k2l2, k3l3) is a three-electron momentum
space wavefunction obtained by projection of the time-evolved
coordinate space wavefunctions onto fully anti-symmetric
products of a bound orbital and two box-normalized continuum
orbitals. The total double ionization cross section is given by

σdouble = π

2k2
0

∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk3

∑
L,S

(2L + 1)(2S + 1)

×
∑
L,S

∑
l1,l2,l3

∣∣P LS
l1l2LSl3

(k1l1, k2l2, k3l3)
∣∣2

, (8)

where P LS
l1l2LSl3

(k1l1, k2l2, k3l3) is a three-electron momentum
space wavefunction found by projection of the time-evolved
coordinate space wavefunctions onto fully anti-symmetric
products of three box-normalized continuum orbitals.
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2.4. R-matrix double pseudo-states method

The RMPS method was developed [19, 20] to calculate cross
sections for the electron-impact excitation and ionization
of atoms and their ions. Electron-impact single ionization
cross sections for the 2s2 subshell of Be were previously
calculated using the RMPS method [12]. This required a
single pseudo-state expansion of the form 1s22sn̄l̄ where the
1s and 2s are spectroscopic orbitals and the nl correspond
to associated Laguerre polynomials over a user-defined range
of the principal quantum number n and the orbital angular
momentum l. When considering single ionization from
the metastable configuration 1s22s2p, we added the 1s22pn̄l̄
pseudo-state expansion to allow for the ionization of either
the 2s or 2p orbitals. A natural extension of this method to
model three electrons in the continuum is to attach complete
pseudo-state expansions to configurations that already contain
a single pseudo-orbital of the form 1s2n̄l̄n̄′ l̄′ with the previously
mentioned 1s22ln̄l̄ expansions.

In our implementation of the RMDPS method, the basis
used to represent the (N + 1)-electron continuum was made
orthogonal to the pseudo-orbitals using a method developed
by Gorczyca and Badnell [20]. The scattering calculation
was performed with a set of parallel R-matrix programs
[21, 22], which are extensively modified versions of the serial
RMATRIX I programs [23]. Inside the R-matrix box, the total
wavefunction for a given LS symmetry is expanded in basis
states given by

�N+1
k = A

∑
i,j

aijkψ
N+1
i

uij (rN+1)

rN+1
+

∑
i

bikχ
N+1
i , (9)

where A is an antisymmetrization operator, ψN+1
i are the

channel functions obtained by coupling N-electron target states
with the angular and spin functions of the scattered electron,
uij (r) are the radial continuum basis functions and χN+1

i

are bound functions which ensure completeness of the total
wavefunction. For the ground state of Be, the configurations
corresponding to the N-electron component of the channel
functions ψN+1

i will have the form

ψN
i = 1s2n̄l̄n̄′ l̄′. (10)

The coefficients aijk and bik are determined by diagonalization
of the total (N + 1)-electron Hamiltonian.

Outside the R-matrix box, the total wavefunction for a
given LS symmetry is expanded in basis states given by

�N+1
k =

∑
i

ψN+1
i

vi(rN+1)

rN+1
. (11)

The radial continuum functions, vi(r), are solutions to the
coupled differential equations given by

Ti(r)vi(r) + Vij (r)vj (r) = 0 , (12)

where Ti(r) is a kinetic and nuclear energy operator and
Vij (r) is an asymptotic coupling operator. Above the double
ionization threshold, the coupled differential equations are
solved on a coarse energy mesh. The inner and outer solutions
are matched at the edge of the R-matrix box, and the K-matrix
is extracted. The electron-impact double ionization is simply
the sum of excitation cross sections from the ground state

Table 1. Partial cross sections in Mb for the electron-impact single
ionization of the Be atom at an incident energy of 40 eV (1.0 Mb =
1.0 × 10−18 cm2).

Partial
wave CADW CADW TDCC-2D TDCC-2D TDCC-3D
L VN

if /VN−1
e VN−1

ief Vpp1 Vpp2 Vpp1

0 7.9 5.9 5.2 4.1 2.9
1 26.8 21.4 12.8 13.1 10.4
2 33.8 31.3 23.8 25.3 21.7
3 30.0 28.4 27.3 26.4 22.3
4 30.5 25.6 31.7 27.8 22.1
5 31.2 27.0 35.8 29.5 21.4
6 28.4 27.5 – – –
7 23.4 25.2 – – –
8 18.0 21.1 – – –
9 13.3 16.4 – – –

and those terms associated with the 1s2n̄l̄n̄′ l̄′ configurations
above the double ionization threshold. We note that care must
be taken to omit contributions from the ground state to the
terms associated with the 1s22sn̄l̄ and 1s22pn̄l̄ configurations,
corresponding to single ionization.

3. Results

As a check on the TDCC-3D method, electron-impact single
ionization cross sections for the 1s22s2 ground state of the Be
atom were calculated at an incident energy of 40 eV. Electron-
impact single ionization cross sections for the 2s2 subshell
of Be were calculated using the CADW method described
in section 2.1. The CADW partial cross sections for the
VN

if

/
VN−1

e and VN
ief choices for the scattering potentials are

presented in the second and third columns of table 1. Electron-
impact single ionization cross sections for the 2s2 subshell of
Be were calculated using the TDCC-2D method described in
section 2.1 on a 192 × 192 point mesh with a uniform mesh
spacing of �r = 0.20. The TDCC-2D partial cross sections
for a Vpp1 pseudo-potential used in previous e + Be collision
calculations [12] and for a Vpp2 pseudo-potential generated
for molecular calculations [24] are presented in the fourth and
fifth columns of table 1. Electron-impact single ionization
cross sections for the 2s2 subshell of Be were calculated
using the TDCC-3D method described in section 2.3 on a
192 × 192 × 192 point mesh with a uniform mesh spacing
of �r = 0.20. The TDCC-3D partial cross sections for a
Vpp1 pseudo-potential are presented in the sixth column of
table 1. In general, the trends for the partial cross sections as a
function of partial wave are in reasonable agreement for all five
calculations. The non-perturbative TDCC results are generally
smaller than the perturbative CADW results for the low L
partial cross sections, as has been found in almost all other
electron–atom collision calculations [18]. The TDCC-2D
results are found to be insensitive to the choice of core pseudo-
potential. Finally, the TDCC-2D and TDCC-3D results are
found to be in reasonable agreement, although the TDCC-3D
results are on average about 25% smaller for each partial cross
section.

Non-perturbative RMDPS calculations were then carried
out for electron-impact double ionization of the 2s2 subshell
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Figure 1. Electron-impact double ionization of Be. Solid squares:
TDCC calculations for direct double ionization of the 2s2 subshell;
solid line: RMDPS fitted calculations for direct double ionization of
the 2s2 subshell; dashed line: RMDPS raw calculations for direct
double ionization of the 2s2 subshell (1.0 Mb = 1.0 × 10−18 cm2).

of ground state Be. For the RMDPS calculations, the R-
matrix box has a radius of 83.0 Bohr radii and we employ
58 basis orbitals to represent the (N + 1)-electron continuum
per angular momentum. This should be sufficient to span
the incident electron energy range from the double ionization
threshold to 45.0 eV. We included all 683 LS terms arising
from 1s22sn̄l̄, 1s22pn̄l̄, 1s23̄s̄n̄l̄, 1s23̄p̄n̄l̄, and 1s23̄d̄n̄l̄ in both
the configuration interaction description of the target and the
close-coupling expansion of the scattering calculation. The
pseudo-orbitals range from n = 3 to 14 in principal quantum
number and l = 0 to 4 in orbital angular momentum for each of
the above expansions. In total, our scattering model included
48 scattering partial waves from L = 0 to 11 and resulted
in Hamiltonian matrices as large as 92 000 × 92 000. For
this particular model the double ionization cross section is
simply the summation of cross sections from the ground state
to those terms arising from only the 1s23l̄n̄′ l̄′ configurations.
Total cross sections for electron-impact double ionization are
shown in figure 1. A simple analytic formula was used to
fit the RMDPS results and thus smooth out the unphysical
oscillations due to the presence of continuum pseudo-state
resonances.

Non-perturbative TDCC-3D calculations were then
carried out for electron-impact double ionization of the
2s2 subshell of ground state Be. Using a 192 × 192
point mesh with a uniform mesh spacing of �r = 0.20
and the core pseudo-potential Vpp1 used in previous single
ionization calculations [12], relaxation of the TDCC-2D
equations in imaginary time yielded the P̄ ll(r1, r2, τ → ∞)

radial wavefunctions of equation (6) with a double ionization
potential of 27.7 eV, compared to the experimental value
of 27.5 eV [25]. Using a 192 × 192 × 192 point mesh
with a uniform mesh spacing of �r = 0.20, the TDCC-3D
equations were propagated in real time for L = 0–5 S = 1

2
total symmetries and for five incident energies ranging from
40 eV to 100 eV. The partial cross sections were extrapolated
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Figure 2. Electron-impact double ionization of Be. Solid squares:
TDCC calculations for direct double ionization of the 2s2 subshell;
long dashed line: CADW calculations using VN−1

ief potentials for
indirect ionization–autoionization of the 1s2 subshell; short dashed
line: CADW calculations using VN

if /VN−1
e potentials for indirect

ionization–autoionization of the 1s2 subshell (1.0 Mb = 1.0 ×
10−18 cm2).

to higher L using a nonlinear angular momentum fitting
expression given by

σ(L) = c1Lc2 e− 2Id
E

L, (13)

where Id is the double ionization potential, E is the incident
energy, and c1, c2 are fitting coefficients. Total cross sections
for electron-impact double ionization are shown in figures 1
and 2. As seen in figure 1, the non-perturbative RMDPS and
TDCC-3D methods are in good agreement for the direct double
ionization cross section of the 2s2 subshell of Be at an incident
electron energy of 40 eV.

Finally, perturbative CADW calculations were carried out
for the electron-impact single ionization of the 1s2 subshell
of ground state Be. For ionization of a tightly bound inner
subshell, the CADW method should be reasonably accurate.
We assume the branching ratio for autoionization of the 1s2s2

state of Be+ to be 1. Total cross sections for the indirect
ionization–autoionization of Be are shown in figure 2 from
the 1s inner subshell ionization threshold of 124 eV to 500 eV.
The CADW calculations using the VN−1

ief potentials are found to
give cross sections slightly larger than the CADW calculations
using VN

if

/
VN−1

e potentials, opposite to what is found in table 1
for the single ionization of the 2s2 subshell. As seen in
figure 2, the non-perturbative TDCC-3D cross sections for the
direct double ionization of Be peak at 1.0 Mb around 70 eV,
while the perturbative CADW cross sections for the indirect
double ionization of Be peak at 2.0 Mb close to 450 eV.

4. Summary

In conclusion, the TDCC, RMDPS and distorted-wave
methods were used to calculate the electron-impact double
ionization of the beryllium atom. For the first time, the
R-matrix method was applied to an electron–atom collision
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process involving three continuum electrons. At an incident
energy of 40 eV, the non-perturbative RMDPS and TDCC-
3D methods were found to be in good agreement for the
magnitude of the direct double ionization cross section of the
outer subshell of Be. Further TDCC-3D calculations found
that the direct double ionization cross section for Be peaks at
1.0 Mb around 70 eV. The perturbative CADW method was
then used to calculate indirect ionization–autoionization cross
sections for the inner subshell of Be. The indirect double
ionization cross section for Be was found to peak at 2.0 Mb
around 450 eV. Thus for the Be atom, the magnitude of the
double ionization cross section is approximately two orders
of magnitude smaller than the single ionization cross section
[12], as compared to a factor of 16 for Mg [8, 11]. In addition,
the ratio of indirect to direct double ionization of a factor of
2.0 for Be compares to a factor of 8.0 for Mg. The 1s inner
subshell ionization cross sections for Be are much smaller
than the 2s and 2p inner subshell ionization cross sections for
Mg.

We hope that the current calculations will stimulate an
experimental study of the electron-impact double ionization
of Be. In the future, we plan to apply the non-perturbative
RMDPS and TDCC-3D methods to study direct double
ionization processes in electron collisions with singly charged
atomic ions.
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