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Abstract
The ionization of hydrogen in strong microwave fields is a fundamental
problem of atomic physics and nonlinear dynamics. When a strong static
field is added parallel to a linearly polarized microwave field of comparable
strength, transitions between dressed states take place simultaneously at several
resonance frequencies. We present classical and quantal simulations of this
intricate problem which reproduce its distinctive features very well.

1. Introduction

Understanding fundamental quantum systems in regimes of strong perturbation is a matter of
wide interest in physics. One-electron systems are the most fundamental at the atomic level,
and have been a source of remarkable discoveries in the past three decades. One of them,
the ionization of hydrogen in a strong microwave field [1], has revolutionized the way we
view the physics of highly excited atoms (see [2–4] for reviews). The interpretation of the
latter problem remained a puzzle to atomic theory until its stochastic, diffusional nature was
uncovered through the then-new theory of chaos [5]. In the intervening two decades, much of
the research on the theory side was motivated by the recognition of the microwave ionization
problem as a testing ground for quantal manifestations of classical chaos [6].

Recent experiments in which a strong static electric field is added parallel to a microwave
field of comparable strength [7, 8] have once again presented atomic physicists and nonlinear
dynamicists with new challenges. The detailed experiments of Koch et al [8] show ionization
yield curves which are rich with regular oscillatory features and signatures of resonance
transitions in the form of sharp dips. Transitions arise from the interplay of the strong static
fields and the dressed states created by the strong microwave field. When they are treated
coherently as multifrequency transitions [9] driven by a single-frequency microwave field
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between Floquet (or quasi-energy) states (QES) [10–13], many experimental features can
be explained very well using an analytical, closed-form theory [14, 15]. One prominent
feature of these experiments, however, remained unexplained: the rapid oscillations that
are superimposed on the resonance dips [8]. Since these oscillations were suspected to be
a subtle quantal phenomenon, we report detailed simulations—including the first quantal
simulations of the parallel fields scenario—which agree strikingly well with corresponding
classical simulations as well as existing experimental data, and provide a practical predictive
tool for future experiments in this complex scenario.

2. Theory

A quantum system placed in a periodic external field can be described in terms of nonstationary
QESs [11, 12] which play the same role as do stationary states in a time-independent system.
This development is based on the formalism of Floquet solutions [10, 13] which form an
orthonormal basis (see monographs like [16] for a general description).

Our Hamiltonian is

H (t) = H1 + ẑ F(t) = H1 + ẑ(Fs + Fω cos ωt) (1)

where H1 is the atomic Hamiltonian and F(t) is the combined external field. Because of the
cylindrical symmetry, it is natural to express its solutions in the parabolic basis. The formula-
tion in [14] identifies the operator that creates the QES and the one that drives the transitions
between them. The same theory shows the origin of the dips in the survival probability when
the integer j , the number of microwave quanta involved in the resonance, is given by

j ≡ 3n
Fs

ω
. (2)

In the experiment, condition (2) selects a series of static field strengths Fs( j) = jω/(3n)

at which dips are observed in the survival probability.

3. Simulations

We performed both quantum and classical calculations to simulate the ionization of hydrogen
atoms for experimentally accessible parameters. In all of the simulations, the hydrogen atoms
were at an energy corresponding to an n = 39 state but with a completely random orientation
and initial angular momentum. The field strength for the microwave and static fields were
ramped on at the initial time t = 0 and ramped off at the final time t f by multiplying them
by the smooth function [1 + erf(t/5τ )]/2 for the turn-on and [1 − erf([t − t f ]/5τ )]/2 for the
turn-off where τ is the microwave period, 2π/ω.

The quantum calculations were performed using a split operator method. The wavefunction
is represented by a sum of radial functions times spherical harmonics:

ψ(t) =
∑

�

R�(r, t)Y�m(θ, φ). (3)

The maximum angular momenta in a typical calculation were 60–70. The Hamiltonian was split
into two parts with H1 equal to the zero-field atomic Hamiltonian and H2 equal to the Hamilto-
nian from the static plus microwave field: F(t)·ẑ. The propagation for one time step, δt , is accu-
rate through order (δt)3 and uses an implicit propagator for H1and an explicit propagator for H2:

ψ(t + δt) = (1 − iδt H1/4)(1 + iδt H1/4)−1 exp[−iH2(t + δt/2)δt]

× (1 − iδt H1/4)(1 + iδt H1/4)−1ψ(t). (4)
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The Hamiltonian for the atom, H1, is approximated using a radial grid with a square
root mesh and a Numerov approximation for the kinetic energy operator. Typically, the
wavefunction was contained within a spherical region with a radius of 7000 au; a mask was
used to absorb outgoing electron probability and prevent the reflection of outgoing electrons
from the spherical boundary. The survival probability for a specific �, m initial state is simply
the norm of the wavefunction after the fields were ramped off.

The initial wavefunction was chosen to be an eigenstate of the n = 39 manifold. A
completely random distribution would use the average of all possible �, m for the initial state;
this would necessitate roughly n2/2 ∼ 750 runs since the ionization probability for a given
�, m is the same as for �,−m. We found that accurate results could be obtained by putting
all �, m states into a random order and computing the survival probability for only the first N
states: the results appeared to converge after ∼45 initial states.

The classical calculations were performed using an adaptive step-size Runge–Kutta
method. The calculations are deceptively complicated. The difficulty is in the chaotic nature
of the trajectories. The trajectory was calculated so that at each time step the estimated error
was less than a fixed scaled error. The estimated error was then reduced by a factor of ten. A
trajectory was considered to be converged if the final energy differed by 0.02% for electrons
that remained bound or the ionization time differed by less than five times the time step. For
some initial conditions, convergence could not be achieved (the time step would be reduced
below the level that round-off errors became significant) and the results from the smallest time
step were used to determine whether the trajectory ionized or not. The survival probability is
computed as a Monte Carlo procedure using ∼3000 initial conditions to sufficiently reduce
the statistical errors.

The distribution of initial conditions is chosen to give a completely random initial state
with the requirement of being at the energy of the n = 39 state. The angular momentum is
given by L = √

x · 39 where x is chosen from a flat, random distribution 0 � x � 1. The
initial radius is chosen to be the outer turning point for the given L; random distribution in r
is achieved by choosing an initial time as t0 − τran where τran is chosen from a flat, random
distribution between 0 and the Rydberg period. The angular part of the distribution is computed
in two steps. In the first step, the initial position is in the xz plane so that z = r cos θ with
cos θ chosen from a flat random distribution between −1 and 1; the initial velocity is chosen
so v = v0(cos θ sin φ, cos φ,− sin θ sin φ) where φ is chosen from a flat random distribution
between 0 and 2π . In the second step, the initial positions and velocities are rotated about the
z-axis through a random angle chosen from a flat distribution between 0 and 2π .

4. Comparison with experiment

The condition (2) gives the locations of the dips in the survival probability in terms of the static
electric field Fs( j) = jω/(3n). For the experimental conditions presented in figure 6 of [8] and
the maximum microwave amplitude 319 V cm−1, our paper [14] gave Fs(1) = 47 V cm−1, and
Fs(2) = 94 V cm−1, in good agreement with the experimental locations of the experimental
dips.

Now we concentrate on the dip at Fs(1) = 49 V cm−1 by simulating the survival
probability around this value for small steps of the field strength. The results appear in figure 1.
This first quantal simulation for parallel fields reproduces very well the well known slow
oscillations [8] of the survival probability. It is also interesting that the quantal simulations
practically coincide with the classical simulations and the experimental data in the vicinity
of the dip. The agreement continues to be satisfactory away from the resonance between the
classical and quantal simulations. The simulations are in qualitative agreement with the slow
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Figure 1. Survival probability, P , for n = 39 states near a resonant dip as a function of the static
field strength Fs . The solid and dashed curves show our quantal and classical simulation results,
respectively. The dotted curve is the experimental findings (see [8], figure 6). The maximum
microwave amplitude, Fω, is 319 V cm−1, the frequency is 8.1 GHz and the microwave field is
turned off at t f = 150 periods.

Figure 2. The survival probability, P , as a function of time in units of the microwave period, τ .
The microwave parameters are the same as in figure 1. The static field strengths are below the
resonance (41 V cm−1, dotted curve), on resonance (49 V cm−1, solid curve) and above resonance
(52 V cm−1, dashed curve).

dependence of the experimental survival probability on the static field. However, the quantal
simulations do not yield the rapid oscillations [8] of the survival probability, the origin of
which have been subject of speculation. Our simulations eliminate the hypothesis that these
rapid oscillations are a fundamental quantal result.

The theoretical findings displayed in figure 2 will have to await future experiments: these
are time-resolved simulations of the survival probability for various field strengths near the
resonance; the results are for static fields below resonance (41 V cm−1, dotted curve), on
resonance (49 V cm−1, dotted solid curve) and above resonance (52 V cm−1, dashed curve).
For times t � 17τ

(i) the static field does not play a role since the survival probability does not depend on the
field strength during this period,

(ii) about 60% of hydrogen atoms (initially in n = 39) are ionized during this time.

During later times, the ionization shuts down for all practical purposes except when the static
field satisfies the resonance condition.
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Figure 3. The distribution, D, of the z-component of the angular momentum. The initial
distribution is the solid curve, the distribution for the population that survived 150 microwave
periods is the dotted curve, and the distribution for the population that ionized is the dashed curve.
The microwave field parameters are the same as in figure 1. (a) Static field below resonance
(41 V cm−1). (b) Static field on resonance (49 V cm−1). (c) Static field above resonance
(52 V cm−1). Note that the small |Lz| population has the highest probability for ionization;
the population with the largest |Lz| (>35) does not ionize, even at resonance.

For 17τ � t � 35τ the ionization continues at the same pace at the resonance dip, that
is, the survival curve has the same slope as for t � 17τ . It is during this time that the static
field being at resonance plays a significant role in the process. Finally, for t � 35τ , even the
ionization at the resonance shuts down.

The classical simulations in figure 3 show the original distribution of the z-projection of the
angular momentum (solid curve) and the distributions for the atoms that ionized (dashed curve)
and survived (dotted curve). The data in figure 3 are for

(a) static field below resonance (41 V cm−1),
(b) static field at resonance (49 V cm−1), and
(c) static field above resonance (52 V cm−1).

All the results shown in figure 3 confirm a statement that we made in a previously published
analytical paper [17]: namely, that in parallel microwave and static fields the states with small
|Lz | are the easiest to ionize. Conversely, note that the largest |Lz | (>35) do not ionize, even
at the resonance.

5. Conclusions

The recent parallel-fields experiments of Koch et al [8] contain new challenges for atomic
physicists and nonlinear dynamicists: the fields are too strong for standard time-dependent
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perturbation theory to work and we lack reliable nonlinear-dynamical tools to analyse these
multidimensional systems. Some aspects of the resulting ionization yield curves (regular
oscillatory features and signatures of resonance transitions in the form of sharp dips) have
already been explained using classical and semiclassical methods, leaving open the question
of the origin of the very fast oscillations. In this paper, we report detailed simulations of
the survival probability of hydrogen atoms in parallel static and microwave fields. In one
simulation, we used classical trajectory Monte Carlo techniques with an isotropic distribution
for the hydrogen atom before entering the field region. In the second simulation, we time-
propagated Schrödinger’s equation using a split operator method and a mask to allow ionization.
The simulations agreed with each other and are in qualitative agreement with the slow variation
of the experimental survival probability with the static field strength, Fs ; the disagreement
between the classical and quantum simulation is mostly due to the different definition of
survival used in the two simulations (the quantum simulation uses a mask to remove electron
probability over a range of distances from the proton while the classical simulation removes
trajectories at a specific distance). Neither the classical or quantum simulation contained the
fast oscillation of the survival probability with the static field strength that is present in the
experiments. Our quantum calculation rules out the possibility that this fast oscillation is due
to quantum interference.
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