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We extend the recent gravitational decoherence analysis of Pikovski et al. to an individual mesoscopic 
system with internal state characterized by a coherent superposition of energy eigenstates. We express 
the Pikovski et al. effect directly in terms of the energy variance, and show that the interferometric 
visibility is bounded from below. Hence unlike collisional decoherence, the visibility does not approach 
zero at large times, although for a large system it can become very small.

© 2015 Elsevier B.V. All rights reserved.
In a recent interesting article, Pikovski et al. [1] show that there 
is a universal decoherence-like effect for systems in a varying grav-
itational potential. They focus on a system consisting of a large 
number N of thermally excited harmonic oscillators, and calculate 
a formula, with which we agree, for the time dependence of the 
interferometric visibility. Their formula depends on the subsystem 
number and temperature T as N1/2kB T (with kB the Boltzmann 
constant), and as they note this indicates that the internal energy 
variance is the relevant system attribute for their effect, which is 
explicit in their earlier paper [2] discussing gravitational decoher-
ence in a two state system. Two recent papers [3,4] have noted 
that the Pikovski et al. effect vanishes in a freely falling frame, and 
so it furnishes yet another interesting example of the subtle in-
terplay of quantum theory and gravitational physics. In this paper, 
however, we confine ourselves to the frame of an asymptotically 
(with respect to the Earth) inertial observer; here the nonrelativis-
tic Newtonian limit suffices to give correct answers.

In this note we extend the derivation of [1] to a single meso-
scopic system characterized by a general coherent superposition 
of energy eigenstates, and show directly that the gravitational re-
duction in interferometric visibility depends, for small times t , on 
the energy variance �E . We also show that the visibility is strictly 
bounded from below, and does not approach zero for large times. 
When extended to a large collection of N independent mesoscopic 
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subsystems, with thermal energy variance �E ∼ N1/2kB T , our re-
sult maps to that of Pikovski et al., and the lower bound vanishes 
exponentially for large N . However, this exponential vanishing is 
critically dependent on the independence assumption, and may not 
apply to strongly coupled subsystems.

To keep this article self-contained, we present a complete 
derivation, starting from the underlying gravitational physics. Ac-
cording to general relativity, gravity couples to matter via the 
stress-energy tensor Tμν(x); in the non-relativistic limit and to 
first order in weak gravitational fields, the interaction Hamiltonian 
is

HG = 1

c2

∫
d3xφ(x)T00(x) , (1)

where φ(x) is the Newtonian potential. If the energy density is 
well localized in space with respect to the distances over which 
φ(x) varies appreciably, we can bring φ(x) outside the integral to 
obtain HG = φ(x̄)H/c2, where x̄ is the mean position of the matter 
content and H is the total Hamiltonian of the matter distribution. 
In the case of the Earth’s gravitational field, where φ(x) = gx, with 
g the Earth’s gravitational acceleration and x the vertical distance 
above Earth’s surface, we therefore have

HG = gx̄H/c2 . (2)

The total H is given by

H = mc2 + Hcenter-of-mass kinetic + H int , (3)
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with H int the system internal energy. The dominant term is the 
rest mass mc2, which produces the standard Newtonian term V =
mgx̄ in the Schrödinger equation, the quantum effects of which 
have been measured in neutron interferometry [5]. The internal 
energy contribution in Eq. (3) introduces new effects, specifically 
a phase shift in the time evolution of the internal energy states, 
which is the origin for the time dilation decoherence discussed 
by Pikovski et al. In the calculation that follows, we neglect the 
mc2 term in the energy, as well as the kinetic energy associated 
with center of mass motion, since these do not contribute to the 
internal energy variance and so drop out of the final formula.

Let us now consider a single system and calculate for this the 
analog of the Pikovski et al. effect. We assume that the total initial 
state of the system is |ψ(x, 0)〉 = |ψCM(x)〉 ⊗|ψint〉, where |ψCM(x)〉
is the center-of-mass wave function, which is assumed to be well-
localized in space around the position x, while |ψint〉 is the internal 
dynamics, which we decompose as a superposition of eigenstates 
|n〉 of the internal Hamiltonian: |ψint〉 = ∑

n cn|n〉. The state at time 
t is thus

|ψ(x, t)〉 = |ψCM(x)〉 ⊗ |ψint(x, t)〉 ,

|ψint(x, t)〉 =
∑

n

cne−iEnt(1+gx/c2)/h̄|n〉 . (4)

We see that due to the presence of the Earth’s gravitational field, 
the internal states acquire a phase which depends on the position 
of the center of mass with respect to the Earth. For a single system 
in an energy eigenstate, the gravitational effect appears only as an 
overall phase of the internal wave function and does not change 
its magnitude; the more interesting case is when two or more en-
ergy eigenstates appear in the sum over n in Eq. (4), so that the 
gravitational effect cannot be factored out as an overall phase. Note 
that even in this more complex case, the gravitational effect is re-
versible, in that if the system is sent through a gravitational field, 
and then through an equal but reversed gravitational field, the ef-
fect is eliminated. This already indicates a contrast with standard 
collisional decoherence induced by interaction with a chaotic envi-
ronment, which cannot for all practical purposes be reversed.

We now consider a system that is in a superposition of two dif-
ferent positions in space, |ψCM(x)〉 → [|ψCM(x1)〉 + |ψCM(x2)〉]/

√
2, 

with the two center-of-mass states well localized with respect to 
�x = x1 − x2, and practically orthogonal. Then the internal states 
will entangle with the center of mass and the reduced density ma-
trix ρ̂CM of the center of mass, obtained by tracing the density 
matrix over the internal degrees of freedom, will dephase. More 
precisely, the off-diagonal element ρCM

12 = 〈ψCM(x1)|ρ̂CM|ψCM(x2)〉
evolves in time as follows,

ρCM
12 (t) = 1

2

∑
n

|cn|2e−iEntg�x/h̄c2
. (5)

We will be interested in calculating the interferometric visibility, 
which here is twice the absolute value |ρCM

12 (t)|. This is unchanged 
when we multiply ρCM

12 (t) by any phase factor, and it is convenient 
to choose this phase factor as follows. Let us define Ē = ∑

n |cn|2 En
as the mean internal energy, and define �En = En − Ē , so that ∑

n |cn|2�En = 0 and (�E)2 = ∑
n |cn|2(�En)2 gives the square of 

the internal energy variance �E . Then we get the same absolute 
value |ρCM

12 (t)| if we replace ρCM
12 (t) by ρ̃CM

12 (t) = ei Ētg�x/h̄c2
ρCM

12 (t).
Expanding 2ρ̃CM

12 (t) in powers of t , we get

2ρ̃CM
12 (t)

=
∑

n

|cn|2
[

1 − ig
�En�x

h̄c2
t − 1

2
g2 (�En)

2�x2

h̄2c4
t2 + O (t3)

]

= 1 − t2/t2 + O (t3), (6)
D
where we have introduced the phase evolution time scale (which 
governs the Pikovski et al. effect),

tD =
√

2h̄c2

g�E|�x| . (7)

The phase evolution time depends on the spatial separation of the 
two center of mass components as well as on the internal energy 
variance, and the behavior of Eq. (5) depends strongly on the sys-
tem complexity. For a single system consisting of a superposition 
of only two energy eigenstates, 2|ρ̃CM

12 (t)| oscillates in time, on a 
time scale of order of magnitude tD . For a single system consist-
ing of a superposition of many eigenstates, over large time scales 
the behavior of the visibility is still oscillatory, and is governed by 
the lower bound derived below. But for a complex system the be-
havior of the interferometric visibility for small times t 	 tD is of 
interest in understanding the Pikovski et al. effect, and is given by

2|ρCM
12 (t)| 
 1 − t2/t2

D , (8)

and for a system composed of N identical subsystems, the visibility 
for small times is given by

2|ρCM
12 (t)| 
 (1 − t2/t2

D)N 
 exp(−Nt2/t2
D) . (9)

This can be rewritten as

2|ρCM
12 (t)| 
 exp(−t2/t2

ND) , (10)

with

tND =
√

2h̄c2

√
N g�E|�x| , (11)

in which the effective energy variance �E is multiplied by 
√

N . 
Note that the exponentially vanishing behavior of Eq. (9) for large 
N is critically dependent on the assumption of N independent
systems. For a strongly coupled N particle system with �E N ∼
N1/2�E1, without further input we could only conclude that the 
right hand side of Eq. (9) is replaced by 1 − Nt2/t2

1D for small t
(i.e. Eq. (6) with �E replaced by �E N , the total internal energy 
variance), which does not imply exponentially vanishing behavior 
of the visibility for large N . A similar cautionary remark applies 
to the lower bound on the visibility of a system composed of N
independent subsystems derived in Eq. (17) below.

If the initial internal state is not a pure state, but a statisti-
cal mixture of states |ψα

int〉 =
∑

n cα
n |n〉 with probabilities pα , then 

Eq. (7) still holds, with:

(�E)2 =
∑
α,n

pα|cα
n |2(�En)

2, (12)

which measures internal energy fluctuations both of ‘quantum’ ori-
gin due to the eigenstate superposition with amplitudes cn , as 
well as of ‘classical’ origin due to the statistical probabilities pα . 
Pikovski et al. consider the case of only thermal fluctuations, in 
which case �E = √

NkB T , where N is the number of degrees of 
freedom, kB Boltzmann’s constant and T the temperature, and one 
recovers Eq. (3) of their paper. This also agrees with Eq. (11) above 
for the case of N independent subsystems with individual energy 
variance �E = kB T .

We now show that the effect produced by the coupling of the 
internal degrees of freedom to the gravitational field, being a sum 
of phase shifts, does not correspond to decoherence in the usual 
sense. Forming the absolute value squared of the visibility, we have

(2|ρCM
12 (t)|)2 =

∑
|cn|2|cm|2e−i(�En−�Em)tg�x/h̄c2

, (13)

n,m
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which implies that the average of the visibility over a large time 
interval is

lim
T →+∞

1

T

T∫
0

(2|ρCM
12 (t)|)2dt =

∑
n

|cn|4 > 0, (14)

where we have assumed �En �= �Em for n �= m. When there are 
energy degeneracies, this formula still holds, with |cn|2 the sum of 
the absolute value squared coefficients of all states with the same 
energy.

Since 
∑

n |cn|2 = 1, the lower bound of Eq. (14) is always a 
number smaller than 1, but greater than 0. A stronger statement 
can be made when the number of states in the superposition is a 
finite number L. Expanding out the inequality

L∑
m=1

L∑
n=1

(|cn|2 − |cm|2)2 ≥ 0 , (15)

and using state vector normalization 
∑L

n=1 |cn|2 = 1 and state 
counting 

∑L
n=1 1 = L gives

L∑
n=1

|cn|4 ≥ L−1 . (16)

Equations (14) and (16) mean that |ρCM
12 (t)| cannot vanish for large 

times. This is in contrast to usual collisional decoherence, where 
the effect of a single interaction is of the form ρCM

12 → c12ρ
CM
12 with 

|c12| < 1, and so after Ni interactions, the off-diagonal element ap-
proaches zero as |c12|Ni . When Ni is linear in time this gives an 
exponential vanishing of the visibility as a function of time. By way 
of contrast, the gravitational decoherence calculated above gives a 
visibility that vanishes exponentially as the number of indepen-
dent subsystems N approaches infinity, but which has a Gaussian 
decrease in time only for small times. For N independent subsys-
tems, the lower bound of Eq. (14) is replaced by

(
∑

n

|cn|4)N , (17)

which since 
∑

n |cn|4 < 1 approaches zero exponentially as the 
subsystem number N approaches infinity.

As a concrete illustration of the smallness of the lower bound 
for large systems, consider a cube 10−7 cm on a side, contain-
ing roughly 1000 atoms, with of order 1000 acoustical vibration 
modes. Since these modes are approximately independent, we can 
apply Eq. (17); assuming that the cube state is prepared so that 
the average mode is in a superposition of 3 states, we can also 
use Eq. (16) with L = 3 as an estimate for 

∑
n |cn|4, giving for the 

lower bound on the long time average of the visibility

lim
T →+∞

1

T

T∫
0

(2|ρCM
12 (t)|)2dt ≥ 3−1000, (18)

which is zero for all practical purposes. With this same model in 
mind, it is also instructive to consider the competition between 
gravitational decoherence and standard collisional decoherence. 
For collisional decoherence, in the limit of small spatial superposi-
tions, the analog of Eq. (10) is [6]

|ρCM
12 (t)| = |ρCM

12 (0)|exp(−t/tColl) , (19)

with

tColl = 1

�|�x|2 ,

� = nσ 〈q2 v〉AV
2

. (20)

3h̄
In this formula, n is the density of scatterers that scatter from 
the decohering object with cross section σ , and q and v are re-
spectively the scatterer momentum and velocity. If the scattering 
particles have mass m and form a thermal bath at temperature T , 
then

〈q2 v〉AV = 4(m/π)
1
2 (2kB T )

3
2 . (21)

Assuming that the decohering object is in thermal equilibrium 
with the bath, we can take its temperature also as T , and so in the 
formula for tND we can take �E = √

NkB T . Combining the various 
formulas, the condition for tND < tColl can be written as

n ≤ 3(Nπ)
1
2

16

h̄g

c2|�x|σ(mkB T )
1
2

. (22)

Taking as an example the 10 atom cube and assuming the scat-
terers are nitrogen molecules at room temperature, we have as 
inputs for a numerical estimate of decoherence of a superposi-
tion in which the cube center is displaced by the cube diame-
ter,

σ = 10−14 cm2 ,

N = 1000 ,

kB T = 1

39
eV ,

|�x| = 10−7 cm ,

m = 14 × 109 eV/c2 ,

g = 981 cm/s2 ,

h̄ = 6.6 × 10−16 eV s ,

c = 3 × 1010 cm/s , (23)

the inequality of Eq. (22) becomes

n ≤ 1.2 × 10−5 cm−3 . (24)

This is a density of 10−24 of atmospheric density at standard tem-
perature and pressure, and corresponds to a vacuum presently 
unattainable in the laboratory. So under normal laboratory con-
ditions, collisional decoherence occurs on a more rapid time scale 
than gravitational decoherence.

To summarize, we have given a generalized and simplified 
derivation of the gravitational decoherence effect of [1] that ap-
plies to a single mesoscopic system containing an arbitrary super-
position of energy states, and have shown that there are important 
limitations on the size and applicability of the effect.
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