(1) (5 pts) Sketch the $P^m_\ell(x)$ function in the relevant range of x for the case of $\ell = 7, m = 4$. Point out all of the relevant features for that ℓ, m.

(2) (5 pts) In T. Li, et al, Phys. Rev. Lett. 109, 163001 (2012), they proposed an experiment that would consist of a ring of 100 trapped 9Be$^+$ ions. As a first step, they will trap one ion. You can approximate the ion motion as confined to a ring of radius 50 nm in the xy-plane. What are the lowest 3 energy levels in Joules and in Kelvins?

(3) (5 pts) You have a 1D potential with the form $V(x) = 0$ for $|x| > a$ and $V(x) = -(1/10)\hbar^2\pi^2/(2M[2a]^2)$ for $|x| < a$. There is one bound state. Give the bound state energy in the form $E = -f\hbar^2\pi^2/(2M[2a]^2)$ with your value of f good to 2 significant digits. Make sure to clearly write down your algorithm.

(4) (5 pts) Laser cooling and trapping techniques have progressed to the point where a quantum hamster with mass M_h is in the ground state of an infinite square well potential, $V(x) = 0$ for $0 < x < a$ and $V(x) = \infty$ elsewhere. (a) What is the probability to measure the hamster’s momentum between p and $p + dp$? (b) Is it ethical to expose an innocent hamster to laser cooling and trapping techniques?

(5) (10 pts) The 3D potential energy for a quark can be (crudely) approximated as linearly increasing with distance from the origin. For a specified energy $E > 0$, give the first 4 nonzero terms in the power series expansion (in r) of the radial part of the wave function for $\ell = 2, m = -1$. Do not worry about normalization or whether E is an eigenenergy.

(6) (10 pts) For classical particles, the equations for the angular momenta are $d\vec{L}/dt = \vec{N}$ where the torque $\vec{N} = \vec{r} \times \vec{F}(\vec{r})$. (a) For a quantum particle, find $d\langle \vec{L} \rangle(t)/dt = \langle ??? \rangle$. (b) Evaluate the right hand side when the potential energy is spherically symmetric.

(7) (10 pts) You have a 2×2 Hamiltonian with elements $H_{11} = 3V$, $H_{22} = -3V$, and $H_{12} = 4V$. (1 pt) (a) What is the matrix element H_{21}? Give the reason for your answer. (3 pt) (b) Determine the two eigenenergies. (3 pt) (c) Determine the two eigenstates. (3 pt) (d) At time $t = 0$, the state is $|\Psi(0)\rangle = |1\rangle$. Determine $|\Psi(t)\rangle$.

You must show work to get credit!!!!!!