

For a potential energy $\frac{1}{2} M \omega^2 x^2$, the number of physical solutions of the time independent Schrodinger equation (for random E), E $\psi(x) = -(\hbar^2/2M)d^2\psi/dx^2 + V(x) \psi(x)$, is

(a) 0

(b) 1

(c) 2

(d) 3

(e) depends on V in a complicated way.

In the classically forbidden region (x where E - V(x) < 0) the solution of $E \psi(x) = -(\hbar^2/2M)d^2\psi/dx^2 + V(x) \psi(x)$

(a) oscillates with x.

(b) is 0

(c) must be imaginary.

(d) exponentially diverges or converges with x

(e) linearly increases with x

Eigenstates & Eigenvalues of S.E.

The time independent Schrodinger equation is $H_{op} \psi_n(x) = E_n \psi_n(x)$ What is the eigenvalue? eigenstate?

E can not take every possible value if classical motion restricted to finite range.

Properties of Eigenstates of S.E.

(1) E_n are all real and increase with n.

(2) The $\psi_n(x)$ are ortho-normal (orthogonal & normalized).

(3) The eigenstates can be chosen to be real at every x.

(4) Eigenstates are continuous.

(5) Derivative of eigenstate is continuous if V(x) is finite.

(6) <H_{op}> does not depend on t.

(7) $\psi_n(x) = \psi_n(-x)$ or $-\psi_n(-x)$ if V(x) = V(-x)

Ortho-normality properties

What is <1>=?

Suppose you've found the eigen-states [standing waves, $\psi_n(x)$] and eigen-energies $[E_n]$: $E_n \psi_n(x) = -(\hbar^2/2M)d^2\psi_n/dx^2 + V(x) \psi_n(x)$ You've set the size (normalized) $\int_{-\infty}^{\infty} |\psi_n(x)|^2 dx = 1$

Is $\Psi(x,t) = A [\psi_n(x) \exp(-i E_n t/\hbar) + \psi_m(x) \exp(-i E_m t/\hbar)]$ a solution of Schrodinger Eq? Why/why not?

For this $\Psi(x,t)$, compute <1>. Use it to determine A & show that $\psi_n \& \psi_m$ must be orthogonal if E_n doesn't equal E_m .

General Behavior

 $d^2\psi/dx^2 = \text{-}2~M~[E-V(x)]~\psi/\hbar^2$

What sort of behavior when at positions where E > V(x)? What sort of behavior when at positions where E < V(x)? For a given potential where does ψ oscillate fastest w/ x? Where are the positions where curvature of ψ is 0?

Correspondence principle: period = $h/(E_{n+1} - E_n)$ If we plot E vs n, how should the curve look if classical period increases with E? decreases with E? is independent of E?

Infinite Square Well

Harmonic Oscillator

n

Linear Potential, Wall x=0

n

Coulomb Potential (-1/r)

n

Infinite Square Well

Harmonic Oscillator

Linear Potential, Wall x=0

"Molecule" Vibration

