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Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy:
A comparison between theory and experiment
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The nonlinear dynamic response of atomic force microscopy cantilevers tapping on a sample is discussed
through theoretical, computational, and experimental analysis. Experimental measurements are presented for
the frequency response of a specific microcantilever-sample system to demonstrate the nonlinear features,
including multiple jump phenomena leading to reproducible hysteresis. We show that a comprehensive analysis
using modern continuation tools for computational nonlinear dynamics and bifurcation problems reproduces all
essential features of the data. A close connection is established between the features of the interaction potential
well and the nonlinear forced tip response. In particular, the effects of the nonlinear van der Waals forces, the
nanoscale contact nonlinearities, and microcantilever damping, as well as the effects of forced and parametric
excitation on the bifurcations and instabilities of forced periodic motions of the microcantilever system, are
discussed in detail. The results indicate that nonlinear system identification methods could be used as effective
tools to extract detailed information about the tip–surface interaction potential.
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I. INTRODUCTION

Atomic force microscopy~AFM! with tapping ~or inter-
mittent contact! mode operation has been widely used
scanning probe studies as a method to reduce damage to
substrates.1,2 Early studies of this imaging mode with the t
in close proximity to the surface have shown an interest
‘‘bistable’’ behavior in which both the tip amplitude and th
phase show reproducible hysteresis as the driving freque
is swept up and down through resonance.3 This phenomenon
was explained as a result of the interaction of a harmo
oscillator with the attractive and the repulsive regions of
interaction potential. It was recognized that these unus
dynamics would cause unpredictable behavior while im
ing. Attempts to further understand this behavior have b
reported by including a single degree-of-freedom oscilla
model along with different nonlinear contact models and v
der Waals forces.1,4–11Of particular interest in this context i
the role played by nonlinear van der Waals, nanoscale c
tact, and capillary forces between the tip and the sampl
controlling this bistable behavior.12 The influence of van de
Waals forces was recognized and imaging artifacts suc
strange contours and unexpected height shifts due to no
ear dynamic instabilities were also reported.1,4 The effects of
the nonlinear van der Waals forces on the dynamic respo
in noncontact dynamic force microscopy have be
reported.10,11 Nonlinear hysteresis and jumps in the dynam
response were examined as the tip approaches and re
from the sample at a fixed excitation frequency.13,14The non-
linear dynamic response to frequency sweeps in the tap
mode was simulated using van der Waals attractive for
and the Derjaguin-Muller-Toporov~DMT! and Johnson-
Kendall-Roberts~JKR! contact models.2,15 The nonlinear ef-
fects in the dynamic response of a simple oscillator mo
were examined through numerical simulations of freque
sweeps.9

While this prior work has done much to demonstrate
occurrence of the bistable behavior and describe the pa
0163-1829/2002/66~11!/115409~10!/$20.00 66 1154
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eters that affect it, the prior work is based primarily on n
merical simulations of the equations of motion. While stab
periodic responses are easily followed using numerical sim
lations, their stability and the presence of unstable perio
motions have not been computed so that the mechanism
instability have not been described clearly. A few analytic
works10,11,15,16on the subject deal mostly with approxima
solutions based on variants of the multiple scale or the a
aging method,17 and they are restricted to noncontact mod
that include only the van der Waals forces. These appro
mate techniques are valid only for weakly nonlinear syste
and are thus unsuitable for the study of the strongly non
ear tapping mode. Moreover, the existing literature h
mostly modeled the piezo forcing as an external excitat
term. As will be shown in this paper, the base excitation
the microcantilever leads to complex linear and nonlin
parametric excitation terms in addition to an external forc
term. This can lead to significantly different stability resul
especially for vacuum AFM applications. Finally, a ration
connection between certain features of the tip-sample in
action potential and the nonlinear response has not been
tablished satisfactorily. A comprehensive nonlinear analy
of the tapping mode AFM using the dynamically correct e
citation terms and using computational continuation tools
not yet been presented. Such tools are ideally suited for
study of strongly nonlinear systems and allow for conveni
continuation of stable and unstable forced periodic solutio
and the detection of complex bifurcations including fold
period doublings, and torus bifurcations.

To address this problem, we have combined both exp
mental and nonlinear continuation analysis of a tapp
mode AFM microcantilever including all the dynamically e
act excitation terms. In the experimental analysis, the
amplitude and phase were measured using a diving-bo
cantilever, a silicon tip, and a freshly cleaved HOPG~highly
oriented pyrolytic graphite! sample. Experimental data sho
highly nonlinear dynamic phenomena including jumps
amplitude and phase response. In the computational anal
©2002 The American Physical Society09-1
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a discretized model of the AFM microcantilever with lon
range attractive van der Waals force and DMT contact m
chanics are used to model the tip–surface interactions
cluding adhesion, as well as sample deformation during
sample contact. Computational analysis of this model us
continuation techniques reveal the bifurcations and the
fects of the excitation terms explicitly withouta priori ap-
proximation of the solution form. We show that this a
proach enables a comprehensive understanding of
nonlinear dynamic behavior observed in the AFM expe
ments. Moreover, a detailed discussion of the free osc
tions of the system as well as of the exact excitation te
are used to explain the close connection between the cha
teristics of the potential well and the microcantilever r
sponse. This suggests that nonlinear system identifica
techniques may be used effectively for systematic meas
ment of the interaction potential between various tip-sam
combinations.16

II. EXPERIMENT

To demonstrate the effects of nonlinearities on the AF
tip response, a commercially available air AFM produced
NanoTecTM was chosen to perform these experiments.
OlympusTM diving-board silicon cantilever~resonance fre-
quency 44 kHz,Q'33) was employed. The experiment
setup is displayed in Fig. 1. In order to perform experime
on the nonlinear response of the cantilever, it is necessa
have control of the tip-sample separation as the frequenc
excitation is systematically varied. The amplitude and ph
of the cantilever response must be rapidly measured a
function of the excitation frequency. In general, this is dif
cult to achieve in commercial scanning probe systems
requires the use of a flexible software system. In our case
used theWS3M software available from NanoTec™.

The standard AFM control system is used to bring the
to a distance;200 nm above the sample while operating t
AFM in noncontact mode. After the initial coarse approa
the frequency response of the cantilever is measured sys

FIG. 1. A schematic diagram of the experimental setup for m
suring the nonlinear behavior near resonance of microcantile
interacting with samples.
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atically as a function of decreasing tip-sample separat
This is accomplished by rerouting the control of theZ seg-
ment of the AFM’s piezotube to a digital-to-analog conver
~DAC! onboard the lock-in amplifier. The DAC provides th
voltage required to control theZ expansion of the piezotube
The expansion of the piezotube as well as the driving f
quency of the cantilever are controlled by the lock-in via
general-purpose interface bus~GPIB! controller. The GPIB

software controls the voltage step applied to the high-volt
power supply of the piezotube, the frequency used to dr
the cantilever, and the measurement of the cantilever os
lation. TheGPIB code runs on a 233-MHz Pentium PC simu
taneously and independently of the NanoTecTM software.

At each tip-sample separation, the excitation frequencyV
is increased from a starting frequency to a final frequen
(V i→V f) across microcantilever’s linear resonance f
quency v1. Then the frequency is decreased across re
nance fromV f to V i . For each frequency increment (D f
540 Hz), the amplitude and phase of the cantilever osci
tion referenced to the excitation frequency are measured
the lock-in amplifier.

In addition, an onboard analog-to-digital converter is us
to measure the static force-deflection curve of the cantile
at eachZ step. As the tip-sample separation decreases, th
jumps into contact with the sample when the surface for
overcome the restoring force of the cantilever. The dista
from the starting position of the sample to the jump to co
tact point provides an initial estimate of the tip-sample se
ration. A better estimate of this quantity was obtained
taking into account the distance that the cantilever moved
the z direction during the jump to contact. This quantity
measured by moving the sample past the jump to con
point until the cantilever returns to its unperturbed~nonde-
flected! position. By combining these two values, a reaso
ably accurate estimate of the tip-sample separation can
achieved.

Following this approach, the tip-sample separation is
duced in increments until the cantilever oscillation displa
nonlinear resonance behavior, indicating that the tip is t
ping the sample. By plotting the amplitude and phase
sponse of the cantilever as a function ofZ, it is possible to
map out the entire nonlinear response of the cantilever.

Representative data obtained following this procedure
shown in Fig. 2 that shows the resonant response in air w
~i! the tip is far away from the sample and~ii ! the tip-sample
separation is;90 nm. The excitation level of the dither p
ezoactuator is identical in both cases. Discontinuities in
amplitude and phase at specific driving frequencies can
observed in Fig. 2. Finite jumps occur on and off a ‘‘sat
rated’’ amplitude branch. The cantilever response on t
branch is highly nonlinear with higher harmonics of the e
citation present in the response as the tip impacts the sam
The jumps render hysteretic the response of the cantile
when the driving frequency is swept up and down. In t
inset in Fig. 2, a small amplitude difference of the satura
branch is observed during frequency sweep up and do
and is attributed to thermalZ drift.

Experimentally, it is important to measure accurately t
frequency at which the finite jumps in amplitude occur, t

-
rs
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NONLINEAR DYNAMICS OF MICROCANTILEVERS IN . . . PHYSICAL REVIEW B66, 115409 ~2002!
extent of the observed hysteresis, as well as the extent o
saturated response of the cantilever. These quantities ar
rectly related to tip–surface interaction parameters that ar
considerable interest. As will be discussed below, all of th
nonlinear features can be explained by a complete comp
tional nonlinear dynamic analysis, and can provide import
information about the tip-sample interaction potential.

III. TIP-SAMPLE INTERACTION MODEL
AND EQUATION OF MOTION

A. Tip-sample interaction and nonlinear static equilibrium

To analyze the tip-sample interaction in tapping mo
AFM, van der Waals and DMT contact18 forces (FvdW ,

FIG. 2. Peak-to-peak amplitude and phase~with respect to driv-
ing frequency! of the silicon tip on HOPG sample. Linear tip am
plitude ~a! and phase~b! response when tip is far from sample (Z
.200 nm). Nonlinear tip amplitude~c! and phase~d! response with
90-nm tip-sample separation. Circles: response during freque
sweep up; Dots: response during frequency sweep down. The
rows indicate the abrupt discontinuities in amplitude and phase
are important signatures of the nonlinear interaction potential.
amplitude indicates the peak-to-peak tip oscillation amplitude of
microcantilever.
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FDMT) between a sphere~tip apex! and a flat surface
~sample! are assumed. Other interaction models can be ea
incorporated to characterize more accurately the spe
physics of the interaction. For this sphere-flat surface geo
etry, the forces are2

FvdW~z!52
AR

6 z2
for z.a0 ~1!

FDMT~z!52
AR

6 a0
2

1
4

3
E* AR~a02z!3/2 for z<a0

~2!

whereA is the Hamaker constant,R is the tip radius,z is the
instantaneous tip-sample separation~Fig. 3!, a0 is the inter-
molecular distance2 at which contact is initiated, andE* the
effective elastic modulus of tip and sample. Figure 4 sho

FIG. 3. Schematic diagram of the cantilever configurations.~a!
Initial statically deflected configuration under van der Waals
forces. Z is the tip-sample separation in the absence of van
Waals forces.~b! Dynamic ~current! configuration as cantilever vi-
brates about its elastostatic equilibrium.

FIG. 4. Interaction model described by van der Waals and D
contact forces. The interaction can be divided into two regimes:
der Waals force regime@Eq. ~1!# and DMT contact regime@Eq. ~2!#.
Negative interaction implies attractive force, whereas positive in
action in contact regime represents repulsive or elastic resto
force.
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the tip-sample interaction described by van der Waals
DMT contact forces in Eqs.~1! and~2! with the values listed
in Table I.

All the key system parameters needed for the static e
libria as well as for the nonlinear dynamics computations
listed in Table I. Some of system parameters listed in Tab
are obtained from the linear vibration experiments perform
far from the sample, while other properties are taken fr
the literature. Resonance frequencyf 1 andQ factor are ob-
tained from the experimental frequency response of the
crocantilever without sample. The tip radiusR, cantilever
stiffnessk, cantilever cross-section areaAc , and area mo-
ment I c are taken from the manufacturer’s catalog~http://
www.olympus.co.jp! of the microcantilever ~OMCL-
AC240TS! used in the experiment. Cantilever mater
density rc , Young’s modulusEc , and effective elastic
modulus E* are based on typical values for silicon an
graphite using Poisson’s ratio of 0.3.12 The Hamaker con-
stantA between Si and HOPG is derived from the values
silicon-air and graphite-air Hamaker constants, which
found in the literature.19 Finally, the intermolecular distanc
a0 is calculated from the force equilibrium between t
silicon-graphite surface force and van der Waals force.2 It
may be emphasized here that none of the chosen param
values used for the computation are fitted to match the n
linear experimental data.

Static equilibrium of the microcantilever without dynam
excitation is computed by solving the nonlinear elastost
problem of the steady deflection towards the sample@w* (x)
in Fig. 3~a!# of the microcantilever interacting with a nonlin
ear deflection-dependent forces~Fig. 4!. Let Z be the gap
between the sample and probe tip in the reference confi
ration ~see Fig. 3!. Following the Bernoulli-Euler beam
theory for infinitesimal deflectionsw* (x) is given by

EcI cw* -8~x!5Fi~Z2w* ~L !!d~x2L !, ~3!

where a prime indicates derivative with respect tox, andFi
is the total tip-sample interaction forces combined byFvdW
@Eq. ~1!# andFDMT @Eq. ~2!#. Solving Eq.~3! for differentZ
yields the equilibrium gap between the tip and sample,h*

TABLE I. Used constants and properties of the Si microcant
ver and HOPG sample in numerical computation.

Description Value

Tip radius R510 nm
Cantilever cross-section area Ac58.09310211 m2

Cantilever area moment I c53.57310223 m4

Cantilever material density rc52300 kg/m3

Cantilever Young’s modulus Ec5130 GPa
Effective elastic modulus E* 510.2 GPa
Static bending stiffness k50.87 N/m
First natural frequency f 1544.0 kHz
Q factor ~in air! Q533.3
Hamaker constant~Si-HOPG! A52.96310219 J
Intermolecular distance a053.8 Å
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5Z2w* (L), as a function ofZ. The Liapunov stability of an
equilibrium is computed easily using the Lagrange-Dirich´t
theorem.20

Figure 5 shows the equilibrium solutions for the tip d
flection and their stability. For the nonlinear equilibrium s
lutions, we use the values listed in Table I. As the tip
brought closer to the surface~asZ decreases!, the tip-sample
gap decreases until pointC in Fig. 5 when the tip snaps into
the sample (C→E). As the microcantilever is pulled of
from the surface, it snaps out of the surface fromD to B in
Fig. 5. These phenomena are the well-known AFM mic
cantilever instabilities that are caused by the transition
tween the bistable region ~region I in Fig. 5! and the
monostableregion ~region II in Fig. 5!.

The dynamics of the microcantilever in Region I and
are significantly different with distinct nonlinear behavio
and unique instability mechanisms. This is illustrated in F
6 where the potential wells are plotted forZ52.0 nm and
Z55.0 nm corresponding, respectively, to regions I and
Additionally, the corresponding phase portraits of free os

-

FIG. 5. Equilibrium solutions of the nonlinear equilibrium an
their stability. The solid lines represent Liapunov stable solutio
while the dashed line indicates an unstable equilibrium. Tip-sam
approach:A→B→ C →E→F. Tip-sample retract:F→E→D
→B→A.

FIG. 6. Potential energy curves and their phase portraits:~a!,
and ~b! show asymmetric two-well potential in region I~at Z
52.0 nm); ~c! and ~d! show single-well potential with contact in
region II ~at Z55.0 nm).
9-4
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NONLINEAR DYNAMICS OF MICROCANTILEVERS IN . . . PHYSICAL REVIEW B66, 115409 ~2002!
lations associated with different initial energy levels a
shown in Fig. 6. This requires the use of the single degr
of-freedom model of the cantilever, which is developed
the following sections; however, the phase portraits
shown to demonstrate the qualitative difference in the
namics in regions I and II. The potential energy is an asy
metric two-well potential in region I@Figs. 6~a! and 6~b!#,
while it is a single-well potential in region II@Figs. 6~c! and
6~d!#. In both cases the tip-sample contact leads to n
smoothness of the potential well. The presence of the t
well potential in region II leads to the presence of two h
moclinic orbits connected at an unstable saddle located
tween the two equilibria. The equilibrium closer to th
sample corresponds to a state where the tip is effectiv
stuck to the sample. Note also that the forced vibration
sponses of the tip in these two potential wells are expecte
be very different. However, for sharp AFM tips theZ range
for region I is very small. In general, therefore, the practi
operating regime in tapping mode AFM is region II. Hen
our investigations in this paper for the tapping mode dyna
ics of AFM microcantilever are focused on region II.

B. Equation for microcantilever dynamics

Consider the total dynamic deflection of the beam towa
the sample

w~x,t !5u~x,t !1w* ~x!1y~ t !,

whereu(x,t) is the cantilever deflection relative to a noni
ertial frame attached to the moving base@Fig. 3~b!#. The
excitation from the dither piezoelectric actuator is mode
as a base, harmonic motiony(t) towards the sample with
frequencyV, i.e., y(t)5YsinVt. Writing the equations of
motion of the vibrating microcantilever in anoninertial ref-
erence frameattached to the base of the microcantilev
leads to the following representation of the vibrations ab
the equilibrium:

rcAcü~x,t !1EcI c@u-8~x,t !1w* -8~x!#

5Fi@Z2w~L,t !#d~x2L !1rcAcV
2YsinVt. ~4!

Equation~4! is highly nonlinear and nonautonomous, and
discretization may be achieved suitably through a projec
of the dynamics onto the linear modes of the system. Ho
ever, the linear modes and frequencies of the microcantile
about its static equilibrium are different from those of a m
crocantilever located far from the sample surface.21 Using
Galerkin’s method,22 the linear modes and frequencies of t
microcantilever about the chosen nonlinear equilibrium~a
specific position on the stable equilibrium solution in Fig.!
are computed and lead to the approximate eigenfunction
lutions.

Consider now the situation when the excitation frequen
V in Eq. ~4! is close to the lowest natural frequencyv1 of
the microcantilever about its elastostatic equilibrium. Und
near-resonant forcing, only one mode of the microcantile
is assumed to participate in the response:

u~x,t !5F1~x!q1~ t !, ~5!
11540
e-

e
-
-

-
o-
-
e-

ly
-
to

l

-

s

d

r
t

n
-
er

o-

y

r
r

where F1(x) is the first approximate eigenfunction of th
cantilever23 about the chosen equilibrium andq1(t) is the
time-dependent generalized coordinate. Substitution of
~5! into Eq.~4!, and on taking inner products of the resultin
equations withF1(x) yields the suitably discretized dimen
sionless ordinary differential equation of motion of the AF
tip:

d2h̄

dt2
1D

dh̄

dt
1h̄52C11F̄ i~ z̄!1BV̄2ȳ sinV̄t, ~6!

where

h̄5
u~L,t!

h*
, ȳ5

Y

h*
, V̄5

V

v1
, t5v1t,

D5
1

Q
, B5

F1~L !E
0

L

F1dx

E
0

L

F1
2dx

,

C152
ARF1

2~L !

6~h* !3v1
2rcAcE

0

L

F1
2dx

,

F̄ i~ z̄!5H C1 / z̄ 2, for z̄.ā0

C1 /~ ā0
2!1C2~ ā02 z̄!3/2 for z̄<ā0 ,

C25
4E* ARh* F1

2~L !

3v1
2rcAcE

0

L

F1
2dx

,

z̄512h̄~t!2 ȳ sinV̄t, and ā05
a0

h*
.

Note that because Eq.~6! contains explicitly time-dependen
terms inF̄ i , it is more accurate than the models investiga
in earlier works.1–6,9,15

IV. COMPUTATIONAL RESULTS AND DISCUSSION

For the system under consideration, we use the va
listed in Table I. Use of these parameter values yields
nondimensionalized, discretized model@Eq. ~6!# of the single
mode response about the chosen equilibrium~at Z590 nm)
with specific coefficients:24 D50.03, C157.550 5731027,
C254.552 253102, B51.565 98, andȳ50.020 90.

A. Free nonlinear oscillations

First consider the unforced, undamped vibrations of
system@Eq. ~6!#, D5 ȳ50 with different initial conditions
corresponding to (d/dt)h̄(0)50 and increasing initial dis-
placementsh̄(0)5h̄0. The resulting free oscillations corre
spond to different level sets of the Hamiltonian of the in
grable system. These free oscillations are simulated
9-5



nd
ig
th
n

ce
ha
n
fo
re
so

e

th

-

se

n
ria

are
ies

ndi-

ing
ens
n in
ing
-
ar

rela-
ed
ws

ys-
in

th
tric
of

rc
la-
ns
he
e of
ted
ati-

hin

t
ted,

he
ed

ase

En-
ced
rve.
ncy
tes
r.

as

-

S. I. LEE, S. W. HOWELL, A. RAMAN, AND R. REIFENBERGER PHYSICAL REVIEW B66, 115409 ~2002!
MATLAB and characterized by plots of the potential well a
phase portraits as a function of initial tip displacement in F
7. While the free oscillations contain higher harmonics,
fundamental frequency of the resulting periodic oscillatio
can also be extracted. It is useful to plot the initial displa
ment as a function of the frequency shift parameter t
specifies the change in frequency from the linear resona
frequency and the initial displacement in Figs. 7 and 8
two cases, namely~i! when only van der Waals forces a
present and~ii ! when the DMT contact interactions are al
included in the model. These loci of the variation ofnonlin-
ear frequency shift with increasing tip oscillation amplitud
are referred to as ‘‘backbone’’ curves17 and are intimately
connected to the shape of the potential well in which
AFM tip oscillates.

In Figs. 7~a!, ~b! and 8~a!, the potential well, phase por
trait, and the corresponding backbone curve for case~i!
clearly demonstrate that the van der Waals forces cau
softening nonlinear response.17 This arises in Fig. 8~a! be-
cause the potential well exhibits two local minima and o
local maximum corresponding to a pair of stable equilib

FIG. 7. Total potential energy wells and the corresponding ph
portraits~a!, ~b! with only van der Waals forces, and~c!, ~d! with
DMT contact included. In both cases, tip-sample separationZ
590 nm~in region II!. The inset in~b! shows the unstable equilib
rium point in ~a! is a saddle point in phase space.

FIG. 8. The backbone curves~nonlinear resonance! ~a! with
only van der Waals forces@corresponding to Fig. 7~a!#, and~b! with
DMT contact included@corresponding to Fig. 7~c!#. In both cases,
tip-sample separationZ590 nm ~in region II!.
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and one unstable equilibrium. As initial displacements
increased from the stable equilibrium, the natural frequenc
decrease and eventually reach zero when the initial co
tions place the tip exactly on the unstable saddle@see the
inset in Fig. 7~b!#.

Figures 7~c!, ~d! and 8~b! demonstrate the case~ii !
wherein the backbone curve displays an initial soften
nonlinearity and for larger amplitudes the response hard
as the tip taps the sample during its free oscillations. Eve
the presence of the DMT contact interaction, the result
potential well@Fig. 8~b!# is a single well, asymmetric poten
tial that always exhibits an eventually hardening nonline
response. Understanding the backbone curves and their
tionship to the potential wells is critical because the forc
vibration response near resonance of the AFM tip follo
similar trends.

B. Forced vibration response

Next, consider the forced, damped vibrations of the s
tem @Eq. ~6!#, which are the real tapping mode responses
AFM. Equation~6! represents a highly nonlinear, nonsmoo
dynamical system with simultaneous external and parame
forcing. The continuation and stability characterization
forced periodic solutions whenȳ.0 are conveniently per-
formed usingAUTO97.25AUTO97 uses sophisticated pseudo-a
length continuation and accurate Floquet multiplier calcu
tions to follow both stable and unstable periodic solutio
and also identify their bifurcations of periodic solutions. T
response often contains higher harmonics and the phas
the response with respect to the excitation is then compu
using the first harmonic of the response. To avoid mathem
cal complications due to nonsmoothness atz5a0 in AUTO

computations, we use a smooth, cubic interpolation in a t
‘‘boundary’’ layer aboutz5a0. Further, theAUTO computa-
tions are validated usingMATLAB -based simulations. In wha
follows, stable and unstable periodic solutions are deno
respectively, by solid and dotted lines.

Using AUTO, the forced responses of the model when t
tip is near tapping the surface are plotted in Fig. 9 with fix

FIG. 9. Near-resonant forced responses with the different b

excitation amplitudeȳ ~or Y) using AUTO at Z590 nm. Solid/
dotted lines indicate stable/unstable solutions, respectively.
circled points indicate the resonance points of the nonlinear for
responses. The locus of such points follows the backbone cu
The vertical dash-dotted line shows the linear natural freque
when the tip is very far from the surface. Tip amplitude indica
the peak-to-peak tip oscillation amplitude of the microcantileve
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Z590 nm, while the amplitude of base excitationȳ is in-
creased with the values of 0.0185, 0.0191, 0.0193, 0.01
0.0196, 0.0197, 0.0198, 0.0199, 0.0200, and 0.0205.
resonance points on the forced response diagram corresp
ing to a p/2 phase lag with respect to forcing of the fir
harmonic of the response are shown with a circle for eachȳ.
This result shows that with increasing amplitude of exci
tion the locus of the resonance points follows the backb
curve @Fig. 8~b!# generated for the free oscillations of th
system. Therefore, the initial softening and subsequent h
ening in forced nonlinear response mirrors the behavio
the backbone curve.

C. Comparison of theory and experiment

For the specific value ofȳ50.020 90 chosen in the ex
periment, the computational solution usingAUTO of the am-
plitude and phase~of the first harmonic of motion with re
spect to base motion! is plotted in Fig. 10. This is to be
compared to the experimental response in Fig. 2. The c
putational results reproduce very closely the experiment
observed response~Fig. 2!. As the frequency is increase
from below resonance, the computed periodic solution
lows the stable branch and jumps into another stable bra
at SN1 and SN3 in Fig. 10, where SN stands for saddle no
Likewise, during a frequency sweep up, the experiment
measured response in Fig. 2 follows the solid dots leadin
jumps atJ1 andJ3. Similarly the computed response durin
a decrease of excitation frequency from above resona
jumps at SN4 and SN2~Fig. 10! and the experimentally mea
sured response during frequency sweep down~circles in Fig.
2! encounters jumps atJ4 andJ2.

The response in Fig. 10 also follows the backbone cu
in Fig. 8~b!. The initial softening and subsequent harden
of the forced vibration response then leads to the occurre

FIG. 10. Tapping mode response prediction using periodic s
tion continuation and stability routines inAUTO. Solid/dotted lines
indicate stable/unstable solutions, respectively. Tip amplitude i
cates the peak-to-peak tip oscillation amplitude of the microca
lever. Phase between the first harmonic of response and the
excitation is computed inAUTO.
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of periodic folds or global SN bifurcations26 at points SN1,
SN2, SN3, and SN4 in Fig. 10. Each bifurcation correspo
to the creation or the destruction of a pair of a stable~indi-
cated by solid lines! periodic orbit and an unstable period
orbit ~indicated by dotted lines!. This leads directly to the
observed jumps and hysteretic behaviors in Fig. 2 becaus
a frequency sweep is performed in Fig. 10, the response
lows a stable solution up to a bifurcation point where
jumps to another stable branch that lies in its basin of attr
tion.

Several observations can be made from the measured
computed results:

~i! The computed phase response along the ‘‘saturat
amplitude branch is slightly different from the experime
tally measured response. This could arise because~a! the
experimental phase measurement technique does not
into account the higher harmonics that are present on
branch, or~b! indicate the need for better tip-sample conta
models. The present contact interaction is assumed to be
fectly elastic, suggesting that additional dissipative mec
nisms during contact may need to be included to reprod
accurately the experimental phase response.

~ii ! No period doubling bifurcation was detected on t
saturated amplitude branch, for the chosen parameter va
At lower damping or higher forcing levels, this can occ
leading to the generation of subharmonics in the response5,27

~iii ! Large-amplitude tapping and low-amplitude force
responses coexist for a range of excitation frequencies co
sponding to the saturated amplitude branch~Fig. 10!. For
example, the time histories and autopower spectra of the
coexisting at excitation frequency at 46 kHz~Fig. 10! are
plotted in Fig. 11. This demonstrates that the large-amplit
tapping solution clearly contains higher harmonics while
lower-amplitude solution is nearly purely harmonic. Th
large-amplitude resonant motions generate higher harmo
as the tip sharply taps the surface. Besides the higher
monics, a significant zero-frequency component@Fig. 11~d!#
is generated. The inherent quadratic nonlinearities in the

FIG. 11. Tip displacement response about the elastostatic e
librium when the external forcing frequency is at 46.0 kHz~indi-

cated as dots on the amplitude stable branch in Fig. 10! and ȳ
50.0209,D50.03. Small amplitude oscillation in time~a! and its
autopower spectrum~b!. Tapping mode response in time~c! and its
autopower spectrum~d!. In ~d!, tapping mode response generat
the higher harmonics.
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tractive van der Waals forces play an important role in
generation of the zero-frequency component.

D. Sensitivity of the nonlinear response
to parameter variations

The tip-sample interaction forceF̄ i in Eq. ~6! contains
two normalized coefficientsC1 and C2 . C1 is directly pro-
portional to the product of Hamaker constantA and tip radius
R, and C2 is directly proportional to the effective elast
modulusE* . C1 therefore is a measure of the van der Wa
adhesion between the tip and sample andC2 is a measure of
the elastic indentation forces during contact. Because all
computation results useC1 and C2, which are calculated
based on the values listed in Table I, it is useful to predict
sensitivity of the nonlinear response to a variation of t
sample interaction parameters.

The computed responses inAUTO due to620% perturba-
tions of the originalC1 are shown in Fig. 12. IncreasingC1
clearly leads to larger adhesion and thus a greater softe
nonlinear response prior to contact initiation. The ‘‘hyst
etic’’ frequency range between bifurcations SN1 and SN2
quite small for this specific tip-sample combination. In ge
eral, the extent of this range depends fundamentally upon
ratio of van der Waals forces to the cantilever elastic res
ing forces just prior to contact initiation. For constant dam
ing, tip-sample separation, and excitation amplitude,
greater the van der Waals forces compared to the spring s
ness force near the onset of contact, the greater the frequ
range between SN1 and SN2. Specifically, forC1 being
120% of its nominal value, the bifurcation point SN2 occu
at 43.45 kHz compared to 43.48 kHz for the nominal ca
Therefore, for this specific cantilever located at the cho
distance from the sample, the sensitivity of the nonlin
response to variations inC1 ~or equivalently in the assume
Hamaker constant! is relatively small. This implies that the
close correspondence between the theoretical prediction
experimental results in the region near SN1 and SN2 is q
robust.

It may be noted, however, that this sensitivity analysis
valid only for the specific cantilever located at the chos
distance from the sample. Because the system is highly n

FIG. 12. Tapping amplitude responses due to variation ofC1.
The casesa,b,c indicate C156.0431027 ~80% of the nominal
value!, 7.5531027 ~nominal value!, 9.0631027 ~120% of the
nominal value!, respectively. Solid/dotted lines indicate stab
unstable solutions, respectively. Tip amplitude refers to the peak
peak tip oscillation amplitude of the microcantilever.
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linear rapid changes can possibly occur in the shapes of
tential wells as system parameters are changed. For exam
if the cantilever is sufficiently soft, or if the adhesion is ve
high, a small change in the Hamaker constant could drive
system from region II to region I resulting in qualitative
different dynamics. Therefore, the parameter sensitivity
the nonlinear response of softer cantilevers or of cantilev
located closer to the surface is expected to be much gre
than for the chosen case.

The computed nonlinear responses for620% perturba-
tions of the originalC2 are shown in Fig. 13. IncreasedC2
leads to a greater extent of hardening nonlinear response
lowing initiation of contact. IncreasedC2 leads to a larger
frequency range of the‘‘saturated’’ amplitude region and
duced slope of the tip amplitude with respect to the exc
tion frequency. The frequency range between SN3 and S
is affected by the elasticity of the sample. For softer samp
the potential well in the contact region@Fig. 7~c!# is shal-
lower. Specifically, forC2 being 120% of its nominal value
the bifurcation point SN3 occurs at 47.81 kHz compared
47.55 kHz for the nominal case. Moreover, the slope w
excitation frequency of the saturated amplitude response
pends on the sample elasticity. For a rigid sample this sl
is zero while for softer samples the slope increases.
computed responses inAUTO show that the perturbations i
C2 change the slope and length of the saturated amplit
branches. This indicates a greater sensitivity of the nonlin
response to variations in sample elasticity.

E. Effects of parametric excitations

The tip-sample interaction term~especially van der Waals
forces! in Eqs. ~1! and ~6! includes explicit time-dependen
excitationy(t)5Y sinVt. This also leads toparametricex-
citation in addition to forced excitation of the microcantil
ver, an effect that is mostly ignored in the literature. Consi
the excitation frequency to be far from the fundamental c
tilever natural frequency. Because the tip amplitude and b
excitation in this case can be assumed to be small comp
to the tip-sample separation, the interaction force can be
panded in a Taylor series expansion as

o-

FIG. 13. Tapping amplitude responses due to variation ofC2.
The casesd,e, f indicate C253.643102 ~80% of the nominal
value!, 4.553102 ~nominal value!, 5.463102 ~120% of the nominal
value!, respectively. Solid/dotted lines indicate stable/unstable s
tions, respectively. Tip amplitude refers to the peak-to-peak tip
cillation amplitude of the microcantilever.
9-8
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NONLINEAR DYNAMICS OF MICROCANTILEVERS IN . . . PHYSICAL REVIEW B66, 115409 ~2002!
F̄ i~ z̄!5C1 / z̄ 2 for z̄.ā0

5C1 /@12h̄~t!2 ȳ sinV̄t#2

'C1~112h̄12ȳ sinV̄t12h̄212ȳ2sin2V̄t

14h̄ ȳ sinV̄t1h.o.t.

Note that the leading-order nonlinearity is quadratic in nat
and that external excitations occur at higher harmonics a
More importantly, the Taylor series expansion reveals
occurrence of the parametric excitation term 4h̄ ȳ sinV̄t. The
higher-order terms~h.o.t.! in the expansion also contain non
linear parametric excitation terms. Parametric excitat
leads to primary parametric instability whenV̄ is close to
twice the microcantilever fundamental frequency.17,28 In the
presence of additional external forcing, the effect of the pa
metric instability is to destabilize the forced periodic r
sponse in specific frequency ranges.

Parametric instability depends critically on the magnitu
of parametric excitation relative to the modal damping.28 Be-
cause the magnitude of parametric excitation depends onC1,
the parametric effects can be increased by increasing the
der Waals forces or by bringing the tip closer to the samp
Likewise, the modal damping is greatly reduced in vacu
AFM applications. This is demonstrated in Fig. 14 for t
case of a tip located 10 nm from the sample withQ5105

with ȳ50.1. It is observed that the primary parametric ins
bility occurs at an excitation frequency close to twice t
natural frequency~inset in Fig. 14!. Numerical simulations
of the response at an excitation frequency are shown
below the unstable range in the inset of Fig. 14 and in
stable range are shown in Fig. 15.

The primary parametric instability clearly occurs as a p
riod doubling bifurcation that destabilizes the forced h
monic response of the microcantilever. A pair of period do
bling bifurcations is also observed at large amplitudes in F
14 ~see inset for details! whenV̄ is close to the fundamenta
natural frequency of the microcantilever. The occurrence
this pair of period doubling bifurcations just preceding co
tact with the sample can be due to both the effects of
nonlinear forced response as well as the secondary para

FIG. 14. Computed tapping mode response inAUTO with very

high-Q factor (Q513105, Z510 nm, ȳ50.1). SN stands for a
saddle-node or period-fold, and PD stands for a period-doub
bifurcation. Tip amplitude indicates the peak-to-peak tip oscillat
amplitude of the microcantilever.
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ric resonance. Therefore, the consistent inclusion of the
plicit time-dependent terms in the interaction force@Eqs.~1!
and ~6!# can lead to significantly different results for th
stability of periodic motions of the microcantilever. The
terms are especially important to include for vacuum AF
applications and/or for applications with large adhesion
tween the tip and sample.

F. Role of nonlinear system identification

The clear connection between the tip-surface interac
potential and the resulting nonlinear tip response as wel
the sensitivity of the nonlinear response to variations in
teraction parameters, suggest that nonlinear system ide
cation techniques can be used to extract the tip-sample in
action parameters from the vibration response. This idea
also been suggested by Paulo and Garcı´a.15 A variety of tech-
niques exist in the literature for the identification of nonli
ear vibratory systems.29–33However, several unique feature
of the AFM microcantilever system preclude the applicati
of many of the above techniques. The response of AFM
crocantilever is strongly nonlinear in the tapping mode w
multiple sources of nonlinearities and the presence of
pacts with the sample. In the tapping mode, the input ex
tation in AFM microcantilever is purely harmonic. The ta
ping mode response as demonstrated in Fig. 11 contai
zero-frequency component in addition to higher harmon
This suggests that harmonic-balance-based frequency
main analysis29 of AFM data can lead to rapid and conve
nient estimation of the tip-sample interaction paramet
such as the Hamaker constants and sample elasticity. It
be noted that harmonic-balance-based frequency-dom
methods require ana priori prescription of the tip–surface
interaction potential model and estimate directly the mo
parameters. This is a current area of research of the auth

V. CONCLUSIONS

The nonlinear dynamic response of diving board mic
cantilevers interacting with samples in tapping mode AF

g

FIG. 15. Time responses and their phase portraits with n
twice of the fundamental frequency of the microcantilever~a!,~b!
before the period-doubling bifurcation, and~c!,~d! after the period-
doubling bifurcation.
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are investigated computationally as well as experimentall
range of observed nonlinear behavior in experiments suc
jumps and hysteresis in amplitude and phase response c
explained quantitatively from nonlinear dynamical syste
theory. Specifically, the presence of softening-hardening n
linearities are directly correlated to the asymmetric sing
well potential between the tip and sample. The nonlin
response depends sensitively on the interaction paramete
well as on the forced and parametric excitation terms. T
results also suggest strongly that nonlinear system identi
tion methods could accurately extract from tapping mo
pl
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vibration data quantitative estimates of the tip-sample in
action parameters.
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