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Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy:
A comparison between theory and experiment
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The nonlinear dynamic response of atomic force microscopy cantilevers tapping on a sample is discussed
through theoretical, computational, and experimental analysis. Experimental measurements are presented for
the frequency response of a specific microcantilever-sample system to demonstrate the nonlinear features,
including multiple jump phenomena leading to reproducible hysteresis. We show that a comprehensive analysis
using modern continuation tools for computational nonlinear dynamics and bifurcation problems reproduces all
essential features of the data. A close connection is established between the features of the interaction potential
well and the nonlinear forced tip response. In particular, the effects of the nonlinear van der Waals forces, the
nanoscale contact nonlinearities, and microcantilever damping, as well as the effects of forced and parametric
excitation on the bifurcations and instabilities of forced periodic motions of the microcantilever system, are
discussed in detail. The results indicate that nonlinear system identification methods could be used as effective
tools to extract detailed information about the tip—surface interaction potential.
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[. INTRODUCTION eters that affect it, the prior work is based primarily on nu-
merical simulations of the equations of motion. While stable
Atomic force microscopyAFM) with tapping (or inter-  periodic responses are easily followed using numerical simu-
mittent contact mode operation has been widely used inlations, their stability and the presence of unstable periodic
scanning probe studies as a method to reduce damage to sofbtions have not been computed so that the mechanisms of
substrates:? Early studies of this imaging mode with the tip instability have not been described clearly. A few analytical
in close proximity to the surface have shown an interestingvorks-%560n the subject deal mostly with approximate
“bistable” behavior in which both the tip amplitude and the solutions based on variants of the multiple scale or the aver-
phase show reproducible hysteresis as the driving frequen@ging method, and they are restricted to noncontact models
is swept up and down through resonafdis phenomenon that include only the van der Waals forces. These approxi-
was explained as a result of the interaction of a harmonienate techniques are valid only for weakly nonlinear systems
oscillator with the attractive and the repulsive regions of theand are thus unsuitable for the study of the strongly nonlin-
interaction potential. It was recognized that these unusuatar tapping mode. Moreover, the existing literature has
dynamics would cause unpredictable behavior while imagmostly modeled the piezo forcing as an external excitation
ing. Attempts to further understand this behavior have beeterm. As will be shown in this paper, the base excitation of
reported by including a single degree-of-freedom oscillatoithe microcantilever leads to complex linear and nonlinear
model along with different nonlinear contact models and varparametric excitation terms in addition to an external forcing
der Waals force$*~11Of particular interest in this context is term. This can lead to significantly different stability results,
the role played by nonlinear van der Waals, nanoscale corespecially for vacuum AFM applications. Finally, a rational
tact, and capillary forces between the tip and the sample iconnection between certain features of the tip-sample inter-
controlling this bistable behavidf. The influence of van der action potential and the nonlinear response has not been es-
Waals forces was recognized and imaging artifacts such asablished satisfactorily. A comprehensive nonlinear analysis
strange contours and unexpected height shifts due to nonlief the tapping mode AFM using the dynamically correct ex-
ear dynamic instabilities were also reporfétThe effects of  citation terms and using computational continuation tools has
the nonlinear van der Waals forces on the dynamic respongeot yet been presented. Such tools are ideally suited for the
in noncontact dynamic force microscopy have beenstudy of strongly nonlinear systems and allow for convenient
reported:®!! Nonlinear hysteresis and jumps in the dynamiccontinuation of stable and unstable forced periodic solutions,
response were examined as the tip approaches and retraaisd the detection of complex bifurcations including folds,
from the sample at a fixed excitation frequefiey* The non-  period doublings, and torus bifurcations.
linear dynamic response to frequency sweeps in the tapping To address this problem, we have combined both experi-
mode was simulated using van der Waals attractive forcemental and nonlinear continuation analysis of a tapping
and the Derjaguin-Muller-ToporoDMT) and Johnson- mode AFM microcantilever including all the dynamically ex-
Kendall-RobertJKR) contact modelé® The nonlinear ef- act excitation terms. In the experimental analysis, the tip
fects in the dynamic response of a simple oscillator modeamplitude and phase were measured using a diving-board
were examined through numerical simulations of frequencycantilever, a silicon tip, and a freshly cleaved HOR®hly
sweeps. oriented pyrolytic graphitesample. Experimental data show
While this prior work has done much to demonstrate thehighly nonlinear dynamic phenomena including jumps in
occurrence of the bistable behavior and describe the paranamplitude and phase response. In the computational analysis,
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atically as a function of decreasing tip-sample separation.

fsisei Oscillator o . .
- n [EG&G 7260 This is accompllshe_d by rerouting .th.e control of theseg-
e— Lock-In — ment of the AFM’s piezotube to a digital-to-analog converter
Bimorph Detector  Out | 2 ADC (DAC) onboard the lock-in amplifier. The DAC provides the
) g _ voltage required to control thé expansion of the piezotube.
‘é) E] £ The expansion of the piezotube as well as the driving fre-
— |2 5 guency of the cantilever are controlled by the lock-in via a
2 S general-purpose interface bysrie) controller. The GPiB
E Eizgﬁr £ software controls the voltage step applied to the high-voltage
E T N power supply of the piezotube, the frequency used to drive
S the cantilever, and the measurement of the cantilever oscil-
NanoTec Control lation. ThecpiB code runs on a 233-MHz Pentium PC simul-
taneously and independently of the NanoTesoftware.
At each tip-sample separation, the excitation frequecy

is increased from a starting frequency to a final frequency
(9Q,—Qy) across microcantilever’s linear resonance fre-
FIG. 1. A schematic diagram of the experimental setup for meaquency w,. Then the frequency is decreased across reso-
suring the nonlinear behavior near resonance of microcantilevergance frome to Qi- For each frequency incrememt
interacting with samples. =40 Hz), the amplitude and phase of the cantilever oscilla-

tion referenced to the excitation frequency are measured by
a discretized model of the AFM microcantilever with long- the lock-in amplifier.

range attractive van der Waals force and DMT contact me- |n addition, an onboard analog-to-digital converter is used
chanics are used to model the tip—surface interactions ino measure the static force-deflection curve of the cantilever
cluding adhesion, as well as sample deformation during tipat eachZ step. As the tip-sample separation decreases, the tip
sample contact. Computational analysis of this model usingumps into contact with the sample when the surface forces
continuation techniques reveal the bifurcations and the efovercome the restoring force of the cantilever. The distance
fects of the excitation terms explicitly withowt priori ap-  from the starting position of the sample to the jump to con-
proximation of the solution form. We show that this ap- tact point provides an initial estimate of the tip-sample sepa-
proach enables a comprehensive understanding of thetion. A better estimate of this quantity was obtained by
nonlinear dynamic behavior observed in the AFM experi-taking into account the distance that the cantilever moved in
ments. Moreover, a detailed discussion of the free oscillathe z direction during the jump to contact. This quantity is
tions of the system as well as of the exact excitation termgneasured by moving the sample past the jump to contact
are used to explain the close connection between the charagoint until the cantilever returns to its unperturbgmnde-
teristics of the potential well and the microcantilever re-flected position. By combining these two values, a reason-
sponse. This suggests that nonlinear system identificatioably accurate estimate of the tip-sample separation can be
techniques may be used effectively for systematic measurexchieved.
ment of the interaction potential between various tip-sample Following this approach, the tip-sample separation is re-
combinations'® duced in increments until the cantilever oscillation displays
nonlinear resonance behavior, indicating that the tip is tap-
Il EXPERIMENT ping the sample. By plotting the qmplitqd_e and phase re-
sponse of the cantilever as a function&fit is possible to
To demonstrate the effects of nonlinearities on the AFMmap out the entire nonlinear response of the cantilever.
tip response, a commercially available air AFM produced by Representative data obtained following this procedure are
NanoTec™ was chosen to perform these experiments. Anshown in Fig. 2 that shows the resonant response in air when
Olympus™ diving-board silicon cantilevefresonance fre- (i) the tip is far away from the sample afid) the tip-sample
quency 44 kHz,Q=~33) was employed. The experimental separation is~90 nm. The excitation level of the dither pi-
setup is displayed in Fig. 1. In order to perform experimentszoactuator is identical in both cases. Discontinuities in the
on the nonlinear response of the cantilever, it is necessary @mplitude and phase at specific driving frequencies can be
have control of the tip-sample separation as the frequency afbserved in Fig. 2. Finite jumps occur on and off a “satu-
excitation is systematically varied. The amplitude and phaseated” amplitude branch. The cantilever response on this
of the cantilever response must be rapidly measured as lanch is highly nonlinear with higher harmonics of the ex-
function of the excitation frequency. In general, this is diffi- citation present in the response as the tip impacts the sample.
cult to achieve in commercial scanning probe systems andhe jumps render hysteretic the response of the cantilever
requires the use of a flexible software system. In our case, wehen the driving frequency is swept up and down. In the
used theW Sx M software available from NanoTec™. inset in Fig. 2, a small amplitude difference of the saturated
The standard AFM control system is used to bring the tipbranch is observed during frequency sweep up and down,
to a distance-200 nm above the sample while operating theand is attributed to thermal drift.
AFM in noncontact mode. After the initial coarse approach, Experimentally, it is important to measure accurately the
the frequency response of the cantilever is measured systerfiequency at which the finite jumps in amplitude occur, the
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FIG. 2. Peak-to-peak amplitude and phéséh respect to driv- . . . . .
P p phas P V" \whereA is the Hamaker constarR is the tip radiusz is the

ing frequency of the silicon tip on HOPG sample. Linear tip am- . . . ) ;
plitude (a) and phaseb) response when tip is far from samplg ( Instantaneogs tlp-samplg separat(Elfg..S?,. a is the inter-
>200 nm). Nonlinear tip amplitude) and phaséd) response with moleqular dlst_anéeat which contact is |n|t|ated,_ ang* the
90-nm tip-sample separation. Circles: response during frequenc§ffective elastic modulus of tip and sample. Figure 4 shows
sweep up; Dots: response during frequency sweep down. The ar-

rows indicate the abrupt discontinuities in amplitude and phase that 5
are important signatures of the nonlinear interaction potential. Tip
amplitude indicates the peak-to-peak tip oscillation amplitude of the
microcantilever.

contact force regime

extent of the observed hysteresis, as well as the extent of the
saturated response of the cantilever. These quantities are di-
rectly related to tip—surface interaction parameters that are of
considerable interest. As will be discussed below, all of these
nonlinear features can be explained by a complete computa-
tional nonlinear dynamic analysis, and can provide important
information about the tip-sample interaction potential.

van der Waals
a interaction regime

O 5
0 1 2 3 4 5
Tip position from sample surface (nm)

Tip—sample interaction (nN)
(=]

Il TIP-SAMPLE INTERACTION MODEL FIG. 4. Interaction model described by van der Waals and DMT
AND EQUATION OF MOTION contact forces. The interaction can be divided into two regimes: van
der Waals force regimieq. (1)] and DMT contact regimgEqg. (2)].
Negative interaction implies attractive force, whereas positive inter-
To analyze the tip-sample interaction in tapping modeaction in contact regime represents repulsive or elastic restoring
AFM, van der Waals and DMT contdtforces F,qy, force.

A. Tip-sample interaction and nonlinear static equilibrium
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TABLE I. Used constants and properties of the Si microcantile-

ver and HOPG sample in numerical computation.

Description Value

R=10 nm
A,=8.09x10 1 m?
1,=3.57x10 2 m*

pc=2300 kg/ni

Tip radius

Cantilever cross-section area
Cantilever area moment
Cantilever material density

Cantilever Young’s modulus E.=130 GPa
Effective elastic modulus E*=10.2 GPa
Static bending stiffness k=0.87 N/m
First natural frequency f,=44.0 kHz
Q factor (in air) Q=333
Hamaker constar(Si-HOPG A=2.96x10"1°)
Intermolecular distance ag=3.8 A

. . : . —B
the tip-sample interaction described by van der Waals and

DMT contact forces in Eqg1) and(2) with the values listed
in Table 1.
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FIG. 5. Equilibrium solutions of the nonlinear equilibrium and
their stability. The solid lines represent Liapunov stable solutions
while the dashed line indicates an unstable equilibrium. Tip-sample
approach:A—B— C —E—F. Tip-sample retractF—E—D
—A.

=Z—-w*(L), as a function ofZ. The Liapunov stability of an

All the key system parameters needed for the static equiequilibrium is computed easily using the Lagrange-Dirichle
libria as well as for the nonlinear dynamics computations ardheorent.

listed in Table I. Some of system parameters listed in Table |

Figure 5 shows the equilibrium solutions for the tip de-

are obtained from the linear vibration experiments performedlection and their stability. For the nonlinear equilibrium so-
far from the sample, while other properties are taken fronjutions, we use the values listed in Table I. As the tip is

the literature. Resonance frequerfgyand Q factor are ob-

brought closer to the surfadasZ decreasesthe tip-sample

tained from the experimental frequency response of the midap decreases until poiftin Fig. 5 when the tip snaps into

crocantilever without sample. The tip radiis cantilever
stiffnessk, cantilever cross-section arég, and area mo-

the sample C—E). As the microcantilever is pulled off
from the surface, it snaps out of the surface frbnto B in

ment |, are taken from the manufacturer’s catalggtp://  Fig- 5. These phenomena are the well-known AFM micro-
www.olympus.co.jp of the microcantilever (OMCL- cantilever |n§tab|llt|es t_hat are_causgd by_ the transition be-
AC240TS used in the experiment. Cantilever materialtween thebistable region (region | in Fig. 5 and the
density p., Young’s modulusE,, and effective elastic Monostableegion(region Ilin Fig. 5. _

modulus E* are based on typical values for silicon and The dynamics of the microcantilever in Region I and Il
graphite using Poisson’s ratio of 03 The Hamaker con- are S|g_n|f|cgntly d_nfferent Wlth_ dlstlnct_nqnl_lnear behgwors
stantA between Si and HOPG is derived from the values ofand unique |nstablll'gy mechanisms. This is illustrated in Fig.
silicon-air and graphite-air Hamaker constants, which aré Where the potential wells are plotted fz@r~2.0 nm and
found in the literaturé® Finally, the intermolecular distance £=15.0 nm corresponding, respectively, to regions | and II.
a, is calculated from the force equilibrium between the Additionally, the corresponding phase portraits of free oscil-
silicon-graphite surface force and van der Waals fdrée.

may be emphasized here that none of the chosen parameter
values used for the computation are fitted to match the non-
linear experimental data.

Static equilibrium of the microcantilever without dynamic
excitation is computed by solving the nonlinear elastostatic
problem of the steady deflection towards the sampl&(x)
in Fig. 3(a)] of the microcantilever interacting with a nonlin-
ear deflection-dependent forcéBig. 4). Let Z be the gap
between the sample and probe tip in the reference configu-
ration (see Fig. 3 Following the Bernoulli-Euler beam
theory for infinitesimal deflectiong™* (x) is given by

20 @ 1

100

Potential energy (eV)
o
n
s

Tip velocity (mm/sec)
(o]
n
~

50 0

0 -
0 5 10 40 5

Tip position from sample surface (nm)

EclcW*"" (x) =F;(Z—w* (L)) 8(x—L), 10

()
where a prime indicates derivative with respecki@ndF;
is the total tip-sample interaction forces combinedMyyy
[Eqg. (1)] andFpyt [EQ. (2)]. Solving Eq.(3) for differentZ
yields the equilibrium gap between the tip and sampje,

FIG. 6. Potential energy curves and their phase portréabs:
and (b) show asymmetric two-well potential in region (at Z
=2.0 nm); (c¢) and (d) show single-well potential with contact in
region Il (at Z=5.0 nm).
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lations associated with different initial energy levels arewhere ®,(x) is the first approximate eigenfunction of the
shown in Fig. 6. This requires the use of the single degreeeantilevef® about the chosen equilibrium argi(t) is the
of-freedom model of the cantilever, which is developed intime-dependent generalized coordinate. Substitution of Eg.
the following sections; however, the phase portraits ardb) into Eq.(4), and on taking inner products of the resulting
shown to demonstrate the qualitative difference in the dyequations withd,(x) yields the suitably discretized dimen-
namics in regions | and Il. The potential energy is an asymsionless ordinary differential equation of motion of the AFM
metric two-well potential in region [Figs. §a) and &b)], tip:

while it is a single-well potential in region (IFigs. 6c) and L o

6(d)]. In both cases the tip-sample contact leads to non- d?y dnp — S —— =
smoothness of the potential well. The presence of the two- E“LDEJF 7=-C+Fi(2)+BQ%sinQ7,  (6)
well potential in region Il leads to the presence of two ho-

moclinic orbits connected at an unstable saddle located bevhere

tween the two equilibria. The equilibrium closer to the _uLn) — Y — 0
sample corresponds to a state where the tip is effectively n= — y=—, O=—, r=w4t,
stuck to the sample. Note also that the forced vibration re- n* 7* @1
sponses of the tip in these two potential wells are expected to
be very different. However, for sharp AFM tips tRerange @, (L) L(D dx
for region | is very small. In general, therefore, the practical 1 1
operating regime in tapping mode AFM is region Il. Hence D= 6 B=——"—"7"—
our investigations in this paper for the tapping mode dynam- J (I)fdx
ics of AFM microcantilever are focused on region Il 0
B. Equation for microcantilever dynamics Cy=-— AR(Di(L) ’

Consider the total dynamic deflection of the beam towards 6( ﬂ*)gwEPcAcJ’LqﬁdX

the sample

W(X,t) =u(x,t) +w* (x)+y(t), _ _ [cqlz? for z>a
. . . . . Fi(z)=
whereu(x,t) is the cantilever deflection relative to a nonin- (2

C./(a2)+Cy(ag—2)%? for z=<ay,
ertial frame attached to the moving badég. 3(b)]. The

excitation from the dither piezoelectric actuator is modeled AE* W‘Dfﬂ-)

as a base, harmonic motior(t) towards the sample with C,= i ,
frequency(, i.e., y(t)=YsinQt. Writing the equations of 3w§PcAcf (I)idx
motion of the vibrating microcantilever in @oninertial ref- 0

erence frameattached to the base of the microcantilever

leads to the following representation of the vibrations about — — - — —  aq
the equilibrium: z=1-n(7)—ysinQr, and ao:F-
PAUX, )+ Ecl Ju™ (X,£) +W*"" (x)] Note that because E¢6) contains explicitly time-dependent

—F{[Z-W(L,)]8(x— L)+ pcAQ2YsinQt.  (4) }ﬁrgwas;l:grw(;:;;ﬂgr% accurate than the models investigated
Equation(4) is highly nonlinear and nonautonomous, and its

discretization may be achieved suitably through a projection 1V. COMPUTATIONAL RESULTS AND DISCUSSION

of the dynamics onto the linear modes of the system. How-

ever, the linear modes and frequencies of the microcantilever thr_th_er E{Stlenlj undefrtr(]:onmderatmnt, we Iuse thek;/altjhes
about its static equilibrium are different from those of a mi-''>©€d N Table 1. USE of these parameter values yields the

crocantilever located far from the sample surfacélsing nondimensionalized, discretized mo@Eq:(G)] of the single
Galerkin's method? the linear modes and frequencies of the m_or(]je response about tgf ch_osen equLllbr(al:r*Z= 90 rlr?)
microcantilever about the chosen nonlinear equilibri(em with specific coefficients.” D=0.03, Cy=7.5505%107",
specific position on the stable equilibrium solution in Fig. 5 C2=4.552 25<1(%, B=1.565 98, and/=0.020 90.
are computed and lead to the approximate eigenfunction so-
lutions. A. Free nonlinear oscillations

Consider now the situation when the excitation frequency st consider the unforced, undamped vibrations of the

Q in Eq. (4) is close to the lowest natural frequeney of = . . - -
the microcantilever about its elastostatic equilibrium. Undel,system[Eq. (6)], D=y=0 with different initial conditions

near-resonant forcing, only one mode of the microcantilevefOrresponding tod/d7) »(0)=0 and increasing initial dis-

is assumed to participate in the response: placementsn(0)=;0. The resulting free oscillations corre-
spond to different level sets of the Hamiltonian of the inte-
u(x,t)=>d1(x)q(t), (5) grable system. These free oscillations are simulated in
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5 185
g (a) unstable g
3} stable >
S ilibri 180f
> equilibrium = °
g 1 g = i
> 0 £ g 175 .
g -100 0 100 2 -100 0 100 = /\
o 5 o 1
= 2 5((d) 7038 440 44.2
5 5. sl ey Excitation frequency (kHz)
(o]
o equilibrium 0 - . .
2 q FIG. 9. Near-resonant forced responses with the different base
; 50 excitation amplitudey (or Y) using Auto at Z=90 nm. Solid/

dotted lines indicate stable/unstable solutions, respectively. En-
circled points indicate the resonance points of the nonlinear forced
responses. The locus of such points follows the backbone curve.

FIG. 7. Total potential energy wells and the corresponding phasérhe vertical dash-dotted line shows the linear natural frequency

portrals(a (0 with nly van dor Waals forces g, (@ witn (7 1€ 115 e o o ne stace T apiuce et
DMT contact included. In both cases, tip-sample separadon

=90 nm(in region Il). The inset in(b) shows the unstable equilib-
rium point in(a) is a saddle point in phase space.

|
—_
o
o
o

100 -100 0 100
Tip deflection from equilibrium (nm)

and one unstable equilibrium. As initial displacements are
increased from the stable equilibrium, the natural frequencies
MATLAB and characterized by plots of the potential well anddecrease and eventually reach zero when the initial condi-
phase portraits as a function of initial tip displacement in Fig.tions place the tip exactly on the unstable saddiee the
7. While the free oscillations contain higher harmonics, theinset in Fig. 7b)].
fundamental frequency of the resulting periodic oscillations Figures 7c), (d) and 8b) demonstrate the caséi)
can also be extracted. It is useful to plot the initial displaceWherein the backbone curve displays an initial softening
ment as a function of the frequency shift parameter thafionlinearity and for larger amplitudes the response hardens
specifies the change in frequency from the linear resonancs the tip taps the sample during its free oscillations. Even in
frequency and the initial displacement in Figs. 7 and 8 forthe presence of the DMT contact interaction, the resulting
two cases, namel§i) when only van der Waals forces are Potential well[Fig. 8b)] is a single well, asymmetric poten-
present andii) when the DMT contact interactions are also tial that always exhibits an eventually hardening nonlinear
included in the model. These loci of the variationrainlin-  response. Understanding the backbone curves and their rela-
ear frequency shift with increasing tip oscillation amplitude tionship to the potential wells is critical because the forced
are referred to as “backbone” curn€sand are intimately ~Vibration response near resonance of the AFM tip follows
connected to the shape of the potential well in which theSimilar trends.
AFM tip oscillates.

In Figs. 7a), (b) and 8a), the potential well, phase por-
trait, and the corresponding backbone curve for cése
clearly demonstrate that the van der Waals forces cause a Next, consider the forced, damped vibrations of the sys-
softening nonlinear respon$eThis arises in Fig. & be-  tem[Eq. (6)], which are the real tapping mode responses in
cause the potential well exhibits two local minima and oneAFM. Equation(6) represents a highly nonlinear, nonsmooth
local maximum corresponding to a pair of stable equilibriadynamical system with simultaneous external and parametric
forcing. The continuation and stability characterization of

B. Forced vibration response

N N forced periodic solutions when>0 are.c_onveniently per-
= B formed usingauT097.2°AUT097 uses sophisticated pseudo-arc
£ k3 A p p
£ 88 t length continuation and accurate Floquet multiplier calcula-
|5 86 . tions to follow both stable and unstable periodic solutions
% 200 0 200 and also identify their bifurcations of periodic solutions. The
S EI0) T el response often contains higher harmonics and the phase of
g 90 - the response with respect to the excitation is then computed
S 88 ¢ using the first harmonic of the response. To avoid mathemati-
£ : cal complications due to nonsmoothnessata, in AUTO

86 200 (’) 200 computations, we use a smooth, cubic interpolation in a thin

Frequency shift (Hz)

“boundary” layer aboutz=a,. Further, theauTo computa-
tions are validated usingATLAB -based simulations. In what
follows, stable and unstable periodic solutions are denoted,

FIG. 8. The backbone curvesonlinear resonangeg(a@ with
only van der Waals forcggorresponding to Fig.(3@)], and(b) with
DMT contact includedcorresponding to Fig.(€)]. In both cases,
tip-sample separatiod=90 nm(in region ).

respectively, by solid and dotted lines.
Using AUTO, the forced responses of the model when the
tip is near tapping the surface are plotted in Fig. 9 with fixed

115409-6



NONLINEAR DYNAMICS OF MICROCANTILEVERS IN .. .. PHYSICAL REVIEW B66, 115409 (2002

400 183 (a) -
SN2 Y1 100
e ESSH

;/sm 443 447
SN3

0

(b) =

w

[=]

(=]
=
[+2]

Tip Amplitude (nm)
s 8
[=] [=]
3

O
<}
n
n
'S
»
n
»
'
[s2]
o
o

Tip displacement (nm)
(9%
[=3
w
[=2
[33]
w
Auto power spectrum (dB)
o
[41)
(=]
o
(=)
&
o

-100

Phase (rad)
|
LN
I
—_—
A}
w
=
w
o
W §
LN L
OU'! o
@
a

\ \T\S'“ ______ _ | 30 305 3 50 100 150
- SN?L SN4¥J Time (ms) Frequency (kHz)
-3 T2 as a7 FIG. 11. Tip displacement response about the elastostatic equi-
40 42 44 46 48 50 librium when the external forcing frequency is at 46.0 kfitzdi-
Excitation Frequency (kHz) cated as dots on the amplitude stable branch in Fig.a@ y

FIG. 10. Tapping mode response prediction using periodic So|u=0.0209,D=0.03. Small amplitude oscillation in tim@) and its
o - . . . ! autopower spectrurtb). Tapping mode response in ti and its
tion continuation and stability routines kuTo. Solid/dotted lines P P (o). Tapping P e

. . ) . . > ,.autopower spectruntd). In (d), tapping mode response generates
indicate stable/unstable solutions, respectively. Tip amplitude |nd|-the higher harmonics.

cates the peak-to-peak tip oscillation amplitude of the microcanti-

lever. Phase between the first harmonic of response and the base

excitation is computed iauTo. of periodic folds or global SN bifurcatiofsat points SN1,

SN2, SN3, and SN4 in Fig. 10. Each bifurcation corresponds

to the creation or the destruction of a pair of a stalineli-

ated by solid linesperiodic orbit and an unstable periodic

rbit (indicated by dotted lings This leads directly to the
served jumps and hysteretic behaviors in Fig. 2 because as

Z=90 nm, while the amplitude of base excitati§r1is in-
creased with the values of 0.0185, 0.0191, 0.0193, 0.019%
0.0196, 0.0197, 0.0198, 0.0199, 0.0200, and 0.0205. Th

resonance points on the fqrced response diagram correspo frequency sweep is performed in Fig. 10, the response fol-
ing to a /2 phase lag with respect to forcing of the first lows a stable solution up to a bifurcation point where it

harmonic of the response are shown with a circle for gach jumps to another stable branch that lies in its basin of attrac-
This result shows that with increasing amplitude of excita-jgn.

tion the locus of the resonance points follows the backbone geyeral observations can be made from the measured and
curve [Fig. 8b)] generated for the free oscillations of the computed results:
system. Therefore, the initial softening and subsequent hard- (i) The computed phase response along the “saturated”
ening in forced nonlinear response mirrors the behavior Oémplitude branch is slightly different from the experimen-
the backbone curve. tally measured response. This could arise becdasehe
experimental phase measurement technique does not take
into account the higher harmonics that are present on this
. branch, or(b) indicate the need for better tip-sample contact
For the specific value of=0.02090 chosen in the ex- models. The present contact interaction is assumed to be per-
periment, the computational solution usimgto of the am-  fectly elastic, suggesting that additional dissipative mecha-
plitude and phaséof the first harmonic of motion with re- nisms during contact may need to be included to reproduce
spect to base motignis plotted in Fig. 10. This is to be accurately the experimental phase response.
compared to the experimental response in Fig. 2. The com- (ii) No period doubling bifurcation was detected on the
putational results reproduce very closely the experimentallysaturated amplitude branch, for the chosen parameter values.
observed responsg-ig. 2). As the frequency is increased At lower damping or higher forcing levels, this can occur
from below resonance, the computed periodic solution foldeading to the generation of subharmonics in the respofise.
lows the stable branch and jumps into another stable branch (iii) Large-amplitude tapping and low-amplitude forced
at SN1 and SN3 in Fig. 10, where SN stands for saddle nodeesponses coexist for a range of excitation frequencies corre-
Likewise, during a frequency sweep up, the experimentallysponding to the saturated amplitude brariEig. 10. For
measured response in Fig. 2 follows the solid dots leading texample, the time histories and autopower spectra of the two
jumps atJ1 andJ3. Similarly the computed response during coexisting at excitation frequency at 46 kHEig. 10 are
a decrease of excitation frequency from above resonangglotted in Fig. 11. This demonstrates that the large-amplitude
jumps at SN4 and SN@ig. 10 and the experimentally mea- tapping solution clearly contains higher harmonics while the
sured response during frequency sweep d¢uintles in Fig.  lower-amplitude solution is nearly purely harmonic. The
2) encounters jumps &4 andJ2. large-amplitude resonant motions generate higher harmonics
The response in Fig. 10 also follows the backbone curvas the tip sharply taps the surface. Besides the higher har-
in Fig. 8b). The initial softening and subsequent hardeningmonics, a significant zero-frequency componigig. 11(d)]
of the forced vibration response then leads to the occurrends generated. The inherent quadratic nonlinearities in the at-

C. Comparison of theory and experiment
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FIG. 12. Tapping amplitude responses due to variatiolC of

The casesa,b,c indicate C;=6.04<x10"’ (80% of the nominal FIG. 13. Tapping amplitude responses due to variatiol of

valug, 7.55<10°7 (nominal valug, 9.06<10 7 (120% of the The casesd,e,f indicate C,=3.64x10? (80% of the nominal

nominal valug, respectively. Solid/dotted lines indicate stable/ value, 4.55x< 107 (nominal valug, 5.46x 107 (120% of the nominal

unstable solutions, respectively. Tip amplitude refers to the peak-tovalue), respectively. Solid/dotted lines indicate stable/unstable solu-

peak tip oscillation amplitude of the microcantilever. tions, respectively. Tip amplitude refers to the peak-to-peak tip os-
cillation amplitude of the microcantilever.

tractive van der Waals forces play an important role in the

generation of the zero-frequency component. linear rapid changes can possibly occur in the shapes of po-
tential wells as system parameters are changed. For example,
D. Sensitivity of the nonlinear response if the cantilever is sufficiently soft, or if the adhesion is very
to parameter variations high, a small change in the Hamaker constant could drive the

system from region Il to region | resulting in qualitatively
> < H- - different dynamics. Therefore, the parameter sensitivity of
two normalized coefficient€; andC,. C, is directly pro-  {he nonlinear response of softer cantilevers or of cantilevers

portional to the product of Hamaker consténand tip radius  |5cated closer to the surface is expected to be much greater
R, and C, is directly proportional to the effective elastic 50 for the chosen case.

moduluse*. C, therefore is a measure of the van der Waals  The computed nonlinear responses f0R0% perturba-
adhesion between the tip and sample &3ds a measure of {jons of the originalC, are shown in Fig. 13. Increase),

the elasti(_: indentation forces during contact. Because all the.ads to a greater extent of hardening nonlinear response fol-
computation results us€, and C,, which are calculated |oying initiation of contact. Increase@, leads to a larger
based on the values listed in Table |, it is useful to predict thffrequency range of the“saturated” amplitude region and re-
sensitivi.ty of th.e nonlinear response to a variation of tip-§,ced slope of the tip amplitude with respect to the excita-
sample interaction parameters. tion frequency. The frequency range between SN3 and SN4
~ The computed responsesAnTo due to+20% perturba- g affected by the elasticity of the sample. For softer samples,
tions of the originalC; are shown in Fig. 12. Increasir@;  the potential well in the contact regidirig. 7(c)] is shal-
clearly leads to larger adhesion and thus a greater softeningyer. Specifically, forC, being 120% of its nominal value,
nonlinear response prior to contact initiation. The “hyster-ine pifurcation point SN3 occurs at 47.81 kHz compared to
etic” frequency range between bifurcations SN1 and SN2 iy7 55 kHz for the nominal case. Moreover, the slope with

quite small for this specific tip-sample combination. In gen-eycitation frequency of the saturated amplitude response de-
eral, the extent of this range depends fundamentally upon thgands on the sample elasticity. For a rigid sample this slope
ratio of van der Waals forces to the cantilever elastic restoris yero while for softer samples the slope increases. The
ing forces just prior to contact initiation. For constant damp-computed responses auTo show that the perturbations in

ing, tip-sample separation, and excitation amplitude, thes, change the slope and length of the saturated amplitude

greater the van der Waals forces compared to the spring stiffranches, This indicates a greater sensitivity of the nonlinear
ness force near the onset of contact, the greater the frequenpé(sponse to variations in sample elasticity.

range between SN1 and SN2. Specifically, fof being
120% of its nominal value, the bifurcation point SN2 occurs
at 43.45 kHz compared to 43.48 kHz for the nominal case.
Therefore, for this specific cantilever located at the chosen The tip-sample interaction terfespecially van der Waals
distance from the sample, the sensitivity of the nonlinearfforce9 in Egs. (1) and (6) includes explicit time-dependent
response to variations i@, (or equivalently in the assumed excitationy(t) =Y sinQt. This also leads tparametricex-
Hamaker constajts relatively small. This implies that the citation in addition to forced excitation of the microcantile-
close correspondence between the theoretical prediction aner, an effect that is mostly ignored in the literature. Consider
experimental results in the region near SN1 and SN2 is quitéhe excitation frequency to be far from the fundamental can-
robust. tilever natural frequency. Because the tip amplitude and base

It may be noted, however, that this sensitivity analysis isexcitation in this case can be assumed to be small compared
valid only for the specific cantilever located at the choserto the tip-sample separation, the interaction force can be ex-
distance from the sample. Because the system is highly nopanded in a Taylor series expansion as

The tip-sample interaction forcgi in Eqg. (6) contains

E. Effects of parametric excitations
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FIG. 15. Time responses and their phase portraits with near

Fi(z)=C,/z? for z>a, twice of the fundamental frequency of the microcantilet@i(b)
before the period-doubling bifurcation, afe),(d) after the period-
=Cy/[1—- 5(7)—y sinQ 7] doubling bifurcation.

ric resonance. Therefore, the consistent inclusion of the ex-
plicit time-dependent terms in the interaction fof€ays. (1)

and (6)] can lead to significantly different results for the
stability of periodic motions of the microcantilever. These
Note that the leading-order nonlinearity is quadratic in naturéerms are especially important to include for vacuum AFM
and that external excitations occur at higher harmonics als@pplications and/or for applications with large adhesion be-
More importantly, the Taylor series expansion reveals théween the tip and sample.

occurrence of the parametric excitation termydsin)7. The
higher-order termgh.o.t) in the expansion also contain non- F. Role of nonlinear system identification
linear parametric excitation terms. Pararﬂetric excitation The clear connection between the tip_surface interaction
leads to primary parametric instability whed is close to  potential and the resulting nonlinear tip response as well as
twice the microcantilever fundamental frequeh€s® In the  the sensitivity of the nonlinear response to variations in in-
presence of additional external forcing, the effect of the parateraction parameters, suggest that nonlinear system identifi-
metric instability is to destabilize the forced periodic re- cation techniques can be used to extract the tip-sample inter-
sponse in specific frequency ranges. action parameters from the vibration response. This idea has
Parametric instability depends critically on the magnitudealso been suggested by Paulo and GelrtA variety of tech-
of parametric excitation relative to the modal dampii@e-  niques exist in the literature for the identification of nonlin-
cause the magnitude of parametric excitation depend3,on ear vibratory systen’s—33However, several unique features
the parametric effects can be increased by increasing the vani the AFM microcantilever system preclude the application
der Waals forces or by bringing the tip closer to the sampleof many of the above techniques. The response of AFM mi-
Likewise, the modal damping is greatly reduced in vacuuncrocantilever is strongly nonlinear in the tapping mode with
AFM applications. This is demonstrated in Fig. 14 for themultiple sources of nonlinearities and the presence of im-
case of a tip located 10 nm from the sample w@k- 10° pacts with the sample. In the tapping mode, the input exci-
with y=0.1. It is observed that the primary parametric insta-tation in AFM microcantilever is purely harmonic. The tap-
bility occurs at an excitation frequency close to twice thePing mode response as demonstrated in Fig. 11 contains a
natural frequencyinset in Fig. 14. Numerical simulations Z€ro-frequency component in addition to higher harmonics.
of the response at an excitation frequency are shown justhiS suggests that harmonic-balance-based frequency do-
below the unstable range in the inset of Fig. 14 and in théNain analysi€ of AFM data can lead to rapid and conve-
stable range are shown in Fig. 15. nient estimation of the tip-sample interaction parameters
The primary parametric instability clearly occurs as a pe_such as the Hamaker co_nstants and sample elasticity. It may
riod doubling bifurcation that destabilizes the forced har-P€ noted that harmonic-balance-based frequency-domain
monic response of the microcantilever. A pair of period dou-methods require aa priori prescription of the tip—surface
bling bifurcations is also observed at large amplitudes in Figinteraction potential model and estimate directly the model

14 (see inset for detailsvhend) is close to the fundamental parameters. This is a current area of research of the authors.
natural frequency of the microcantilever. The occurrence of
this pair of period doubling bifurcations just preceding con-
tact with the sample can be due to both the effects of the The nonlinear dynamic response of diving board micro-
nonlinear forced response as well as the secondary paramefantilevers interacting with samples in tapping mode AFM

~Cy(1+27n+2ysinQr+2 7%+ 2y3sitQ 7

+ 4Wsin§r+ h.o.t.

V. CONCLUSIONS
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are investigated computationally as well as experimentally. Avibration data quantitative estimates of the tip-sample inter-
range of observed nonlinear behavior in experiments such asction parameters.

jumps and hysteresis in amplitude and phase response can be
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