
Introduction to ROOT

Jan Fiete Grosse-Oetringhaus, CERN PH/ALICE

Summer Student Lectures 2010

30th July

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 2

Content

• First lecture

– Introduction to the ROOT framework

• Library structure

• CINT

• Macros

• Histograms, Graphs, Advanced graphics examples

• Input/Output: Files, Trees

• Fitting

• Second lecture

– Practical introduction to the ROOT framework (demo)

• Nomenclature

– Blue: you type it

– Red: you get it

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 3

ROOT in a Nutshell

• ROOT is a large Object-Oriented data handling
and analysis framework

• Efficient object store scaling from KB’s to PB’s

• C++ interpreter

• Extensive 2D+3D scientific data visualization capabilities

• Extensive set of multi-dimensional histograming, data
fitting, modeling and analysis methods

• Complete set of GUI widgets

• Classes for threading, shared memory, networking, etc.

• Parallel version of analysis engine runs on clusters and
multi-core

• Fully cross platform: Unix/Linux, MacOS X and Windows

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 4

ROOT in a Nutshell (2)

• The user interacts with ROOT via a graphical

user interface, the command line or scripts

• The command and scripting language is C++

– Embedded CINT C++ interpreter

– Large scripts can be compiled and dynamically

loaded

And for you?

ROOT is usually the interface (and sometimes the barrier)

between you and the data

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 5

The ROOT Libraries

• Over 2500 classes

• 3,000,000 lines of
code

• CORE (8 Mbytes)

• CINT (2 Mbytes)

• Most libraries linked
on demand via
plug-in manager
(only a subset
shown)

• 100 shared libs

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 6

ROOT: An Open Source Project

• The project was started in Jan 1995

• First release Nov 1995

• The project is developed as a collaboration between:
– Full time developers:

• 7 people full time at CERN (PH/SFT)

• 2 developers at Fermilab/USA

– Large number of part-time contributors (160 in CREDITS file)

– A long list of users giving feedback, comments, bug fixes and many small
contributions

• 4609 registered to RootTalk forum

• 10,000 posts per year

• An Open Source Project, source available under the
LGPL license

• Used by all HEP experiments in the world

• Used in many other scientific fields and in commercial
world

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 7

Some ROOT Statistics

• ROOT binaries have been downloaded more

than 800,000 times since 1997

• The estimated user base is about 20,000 people

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 8

ROOT Application Domains

Data Storage: Local, Network

Data Analysis & Visualization

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 9

Three User Interfaces

• GUI windows,

buttons, menus

• Command line

CINT (C++

interpreter)

• Macros,

applications,

libraries (C++

compiler and

interpreter)

We will see that in the demo in

the second part of the lecture

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 10

ROOT Download & Installation

• http://root.cern.ch
– Binaries for common

Linux PC flavors, Mac
OS, Windows

– Preinstalled on AFS (at
CERN)

• Source files
– Installation guide at

http://root.cern.ch/drupal/
content/installing-root-
source

– Couple of dependencies,
discussed here:
http://root.cern.ch/drupal/
content/build-
prerequisites

http://root.cern.ch/
http://root.cern.ch/drupal/content/installing-root-source
http://root.cern.ch/drupal/content/installing-root-source
http://root.cern.ch/drupal/content/installing-root-source
http://root.cern.ch/drupal/content/installing-root-source
http://root.cern.ch/drupal/content/installing-root-source
http://root.cern.ch/drupal/content/installing-root-source
http://root.cern.ch/drupal/content/build-prerequisites
http://root.cern.ch/drupal/content/build-prerequisites
http://root.cern.ch/drupal/content/build-prerequisites
http://root.cern.ch/drupal/content/build-prerequisites

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 11

Basic Blocks of ROOT

• Command line interpreter CINT

• Macros

• Histograms and Graphs

• Files

• Trees

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 12

CINT in ROOT

• CINT is used in ROOT:
– As command line interpreter

– As script interpreter

– To generate class dictionaries

– To generate function/method calling stubs

– Signals/Slots with the GUI

• The command line, script and programming
language become the same

• Large scripts can be compiled for optimal
performance

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 13

First CINT Example

$ root

root [0] 344+76.8

(const double)4.20800000000000010e+002

root [1] float x=89.7;

root [2] float y=567.8;

root [3] x+sqrt(y)

(double)1.13528550991510710e+002

root [4] float z = x+2*sqrt(y/6);

root [5] z

(float)1.09155929565429690e+002

root [6] .q

$

Display online help with: root [0] .h

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 14

Named Macros

• It is quite cumbersome to type the same lines again and

again

• Create macros for commonly used code

• Macro = file that is interpreted by CINT

• Execute with root [0] .x mymacro.C(10)

• Or root [0] .L mymacro.C

root [1] mymacro(10)

int mymacro(int value)

{

int ret = 42;

ret += value;

return ret;

}

saved in mymacro.C

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 15

Compile Macros – Libraries

• "Library": compiled code, shared library

• CINT can call its functions!

• Building a library from a macro: ACLiC

(Automatic Compiler of Libraries for CINT)

• Execute it with a “+” root [0] .x mymacro.C(42)+

• Or root [0] .L mymacro.C+

root [1] mymacro(42)

• No Makefile needed

• CINT knows all functions in mymacro_C.so/.dll

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 16

Compiled vs. Interpreted

• Why compile?
– Faster execution, CINT has some limitations…

• Why interpret?
– Faster Edit → Run → Check result → Edit cycles

("rapid prototyping"). Scripting is sometimes just
easier.

• So when should I start compiling?
– For simple things: start with macros

– Rule of thumb
• Is it a lot of code or running slow? Compile it!

• Does it behave weird? Compile it!

• Is there an error that you do not find Compile it!

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 17

Unnamed Macros

• No function, just statements

• Execute with root [0] .x mymacro.C

– No functions, thus no arguments

• Named macro recommended!

{

float ret = 0.42;

return sin(ret);

}

saved in mymacro.C

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 18

ROOT Types

• You can use native C types in your code (as

long as you don’t make your data persistent, i.e.

write to files)

• ROOT redefines all types to achieve platform

independency

– E.g. the type int has a different number of bits on

different systems

– int Int_t float Float_t

double Double_t long Long64_t (not Long_t)

etc.

– See $ROOTSYS/include/Rtypes.h

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 19

Histograms & Graphs

• Container for binned data

– Most of HEP’s distributions

• Container for distinct

points

– Calculation or fit results

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 20

Histograms

• Histograms are binned data containers

• There are 1, 2 and 3-dimensional histograms TH1, TH2, TH3

• The data can be stored with different precision and in different types

(byte, short, int, float, double)

 TH1C, TH1S, TH1I, TH1F, TH1D

(same for TH2, TH3)

Histogram Example

hist = new TH1F("hist", "Vertex

distribution;z (cm);Events", 20, -10, 10);

hist->Fill(0.05);

hist->Fill(-7.4);

hist->Fill(0.2);

hist->Draw();

NB: All ROOT classes start with T

Looking for e.g. a string? Try TString

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 21

Graphs

• A graph is a data container filled with distinct points

• TGraph: x/y graph without error bars

• TGraphErrors: x/y graph with error bars

• TGraphAsymmErrors: x/y graph with asymmetric error bars

Graph Example

graph = new TGraph;

graph->SetPoint(graph->GetN(), 1, 2.3);

graph->SetPoint(graph->GetN(), 2, 0.8);

graph->SetPoint(graph->GetN(), 3, -4);

graph->Draw("AP");

graph->SetMarkerStyle(21);

graph->GetYaxis()->SetRangeUser(-10, 10);

graph->GetXaxis()->SetTitle("Run number");

graph->GetYaxis()->SetTitle("z (cm)");

graph->SetTitle("Average vertex position");

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 22

Graphs (2)

$ROOTSYS/tutorials/graphs/gerrors2.C

TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh)

TGraph(n,x,y)

TCutG(n,x,y)

TGraphErrors(n,x,y,ex,ey)

TMultiGraph

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 23

• You can draw with the

command line

• The Draw function adds the

object to the list of primitives of

the current pad

• If no pad exists, a pad is

automatically created

• A pad is embedded in a

canvas

• You create one manually with

new TCanvas

– A canvas has one pad by

default

– You can add more

Hello

root [] TLine line(.1,.9,.6,.6)

root [] line.Draw()

root [] TText text(.5,.2,”Hello”)

root [] text.Draw()

Graphics Objects

Canvas

Pad

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 24

TButton

TLine TArrow TEllipse

TCurvyLine

TPaveLabel

TPave

TDiamond

TPavesText

TPolyLine
TLatex

TCrown

TMarker

TText

TCurlyArc

TBox

More Graphics Objects

Can be accessed with the toolbar

View Toolbar (in any canvas)

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 25

Full LateX
support

on screen
and

postscript

TCurlyArc
TCurlyLine
TWavyLine

and other building
blocks for

Feynmann diagrams

$ROOTSYS/tutorials/graphics/feynman.C

$ROOTSYS/tutorials/graphics/latex3.C

Formula or

diagrams

can be

edited with

the mouse

A lot more examples come with the ROOT installation

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 26

Graphics Examples

TGLParametric

TF3

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 27

Input/Output

Object in

Memory

Streamer

http

sockets Net File

Web File

XML XML File

SQL RDBMS

B
u
ff
e
r

The automatically generated ROOT streamer for each class streams all class

members, resolves circular dependencies and multiply referenced objects

 No streamer function needs to be written

 No need for separation of transient and persistent classes

Local File on disk

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 28

Files

• TFile is the class to access files on your file

system (and elsewhere)

• A TFile object may contain directories

(TDirectory), like a Unix file system

• ROOT files are self describing

– Dictionary for persistent classes written to the file

• Support for Backward and Forward compatibility

• Files created in 2001 must be readable in 2015

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 29

File Example

void keywrite() {

TFile f(“file.root”, ”new”);

TH1F h(“hist”, ”test”, 100, -3, 3);

h.FillRandom(“gaus”, 1000);

h.Write()

}

void keyRead() {

TFile f(“file.root”);

TH1F *h = (TH1F*) f.Get(“hist”);

h.Draw();

}

This works as well for your own

class!

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 30

1 billion people
surfing the Web

LHC: How Much Data?

105

104

103

102

Level 1 Rate

(Hz)

High Level-1 Trigger

(1 MHz)
High No. Channels

High Bandwidth

(500 Gbit/s)

High Data Archive

(5 PetaBytes/year)

10 Gbits/s in Data base

LHCB

KLOE

HERA-B

CDF II

CDF

H1

ZEUS

UA1

LEP

NA49
ALICE

Event Size (bytes)

104 105 106

ATLAS

CMS

106

107

STARHow to store large number

of events and data

volumes efficiently?

 ROOT Trees

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 31

What is a ROOT Tree?

• Trees have been designed to support very large
collections of objects. The overhead in memory
is in general less than 4 bytes per entry.

• Trees allow direct and random access to any
entry (sequential access is the most efficient)

• Trees are structured into branches and leaves.
One can read a subset of all branches

• High level functions like TTree::Draw loop on all
entries with selection expressions

• Trees can be browsed via TBrowser

• Trees can be analyzed via TTreeViewer

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 32

Stored Trees vs. Memory

Tree On Disk One instance in memory

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 33

Trees: Split Mode

• The tree is partioned in branches

– Each class member is a branch (in split mode)

– When reading a tree, certain branches can be
switched off
 speed up of analysis when not all data is needed

point

x

y

z

x x x x x x x x x x

y y y y y y y y y y

z z z z z z z z z z

Branches File1 "Event"

Events

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 34

TTree - Writing

• You want to store 1 million objects of type

TMyEvent in a tree which is written into a file

• Initialization

• Fill the tree (1 million times)

– TTree::Fill copies content of

member as new entry into the tree

• Flush the tree to the file,

close the file

myEvent->SetMember(…);
tree->Fill();

tree->Write();

f->Close();

TFile* f = TFile::Open("events.root", "RECREATE");
TTree* tree = new TTree("Events","Event Tree");
TMyEvent* myEvent = new TMyEvent;
TBranch* branch = tree->Branch("myevent",

"TMyEvent", &myEvent);

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 35

TTree - Reading

• Open the file, retrieve the tree and connect the

branch with a pointer to TMyEvent

• Read entries from the tree and use the content

of the class

TFile *f = TFile::Open("events.root");

TTree *tree = (TTree*)f->Get("Events");

TMyEvent* myEvent = 0;

tree->SetBranchAddress("myevent", &myEvent);

Int_t nentries = tree->GetEntries();

for (Int_t i=0;i<nentries;i++) {

tree->GetEntry(i);

cout << myEvent->GetMember() << endl;

}

A quick way to

browse through a

tree is to use a

TBrowser

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 36

Fitting

• Fitting a histogram or graph

• With the GUI
– If you just try which functions works

well or need a single parameter

– Right click on graph or histogram
 Fit panel

• With the command line / macro
– If you fit many histograms/graphs or

several times

hist->Fit("gaus")

hist->FindFunction("gaus")->GetParameter(0)

Fit parameters printed to the screen

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 37

ROOT is MORE….

• In this talk, I presented the most basic classes typically

used during physics analyses

• ROOT contains many more libraries, e.g.

– FFT library

– Oracle, MySQL, etc interfaces

– XML drivers

– TMVA (Multi Variate Analysis)

– GRID, networking and thread classes

– Interfaces to Castor, Dcache, GFAL, xrootd

– Interfaces to Pythia, Geant3, Geant4, gdml

– Matrix packages, Fitting packages, etc

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 38

One Example: PROOF

• Parallel ROOT Facility

• Interactive parallel analysis on a local cluster

– Parallel processing of (local) data (trivial parallelism)

– Output handling with direct visualization

– Not a batch system

• PROOF itself is not related to Grid

– Can access Grid files

• The usage of PROOF is transparent

– The same code can be run locally and in a PROOF system

(certain rules have to be followed)

• PROOF is part of ROOT
Data does not need to be copied

Many CPUs available for analysis

 much faster processing

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 39

root

Remote PROOF Cluster

Data

root

root

root

Client –
Local PC

ana.C

stdout/result

node1

node2

node3

node4

ana.C

root

PROOF Schema

Data

Proof master

Proof slave

Result

Data

Result

Data

Result

Result

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 40

More Information...

• http://root.cern.ch

– Download

– Documentation

– Tutorials

– Online Help

– Mailing list

– Forum

The second lecture will show

many of the presented

features in a demo
Credits to Fons Rademakers

