
Introduction to ROOT

Jan Fiete Grosse-Oetringhaus, CERN PH/ALICE

Summer Student Lectures 2010

30th July

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 2

Content

• First lecture

– Introduction to the ROOT framework

• Library structure

• CINT

• Macros

• Histograms, Graphs, Advanced graphics examples

• Input/Output: Files, Trees

• Fitting

• Second lecture

– Practical introduction to the ROOT framework (demo)

• Nomenclature

– Blue: you type it

– Red: you get it

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 3

ROOT in a Nutshell

• ROOT is a large Object-Oriented data handling
and analysis framework

• Efficient object store scaling from KB’s to PB’s

• C++ interpreter

• Extensive 2D+3D scientific data visualization capabilities

• Extensive set of multi-dimensional histograming, data
fitting, modeling and analysis methods

• Complete set of GUI widgets

• Classes for threading, shared memory, networking, etc.

• Parallel version of analysis engine runs on clusters and
multi-core

• Fully cross platform: Unix/Linux, MacOS X and Windows

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 4

ROOT in a Nutshell (2)

• The user interacts with ROOT via a graphical

user interface, the command line or scripts

• The command and scripting language is C++

– Embedded CINT C++ interpreter

– Large scripts can be compiled and dynamically

loaded

And for you?

ROOT is usually the interface (and sometimes the barrier)

between you and the data

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 5

The ROOT Libraries

• Over 2500 classes

• 3,000,000 lines of
code

• CORE (8 Mbytes)

• CINT (2 Mbytes)

• Most libraries linked
on demand via
plug-in manager
(only a subset
shown)

• 100 shared libs

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 6

ROOT: An Open Source Project

• The project was started in Jan 1995

• First release Nov 1995

• The project is developed as a collaboration between:
– Full time developers:

• 7 people full time at CERN (PH/SFT)

• 2 developers at Fermilab/USA

– Large number of part-time contributors (160 in CREDITS file)

– A long list of users giving feedback, comments, bug fixes and many small
contributions

• 4609 registered to RootTalk forum

• 10,000 posts per year

• An Open Source Project, source available under the
LGPL license

• Used by all HEP experiments in the world

• Used in many other scientific fields and in commercial
world

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 7

Some ROOT Statistics

• ROOT binaries have been downloaded more

than 800,000 times since 1997

• The estimated user base is about 20,000 people

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 8

ROOT Application Domains

Data Storage: Local, Network

Data Analysis & Visualization

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 9

Three User Interfaces

• GUI windows,

buttons, menus

• Command line

CINT (C++

interpreter)

• Macros,

applications,

libraries (C++

compiler and

interpreter)

We will see that in the demo in

the second part of the lecture

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 10

ROOT Download & Installation

• http://root.cern.ch
– Binaries for common

Linux PC flavors, Mac
OS, Windows

– Preinstalled on AFS (at
CERN)

• Source files
– Installation guide at

http://root.cern.ch/drupal/
content/installing-root-
source

– Couple of dependencies,
discussed here:
http://root.cern.ch/drupal/
content/build-
prerequisites

http://root.cern.ch/
http://root.cern.ch/drupal/content/installing-root-source
http://root.cern.ch/drupal/content/installing-root-source
http://root.cern.ch/drupal/content/installing-root-source
http://root.cern.ch/drupal/content/installing-root-source
http://root.cern.ch/drupal/content/installing-root-source
http://root.cern.ch/drupal/content/installing-root-source
http://root.cern.ch/drupal/content/build-prerequisites
http://root.cern.ch/drupal/content/build-prerequisites
http://root.cern.ch/drupal/content/build-prerequisites
http://root.cern.ch/drupal/content/build-prerequisites

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 11

Basic Blocks of ROOT

• Command line interpreter CINT

• Macros

• Histograms and Graphs

• Files

• Trees

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 12

CINT in ROOT

• CINT is used in ROOT:
– As command line interpreter

– As script interpreter

– To generate class dictionaries

– To generate function/method calling stubs

– Signals/Slots with the GUI

• The command line, script and programming
language become the same

• Large scripts can be compiled for optimal
performance

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 13

First CINT Example

$ root

root [0] 344+76.8

(const double)4.20800000000000010e+002

root [1] float x=89.7;

root [2] float y=567.8;

root [3] x+sqrt(y)

(double)1.13528550991510710e+002

root [4] float z = x+2*sqrt(y/6);

root [5] z

(float)1.09155929565429690e+002

root [6] .q

$

Display online help with: root [0] .h

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 14

Named Macros

• It is quite cumbersome to type the same lines again and

again

• Create macros for commonly used code

• Macro = file that is interpreted by CINT

• Execute with root [0] .x mymacro.C(10)

• Or root [0] .L mymacro.C

root [1] mymacro(10)

int mymacro(int value)

{

int ret = 42;

ret += value;

return ret;

}

saved in mymacro.C

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 15

Compile Macros – Libraries

• "Library": compiled code, shared library

• CINT can call its functions!

• Building a library from a macro: ACLiC

(Automatic Compiler of Libraries for CINT)

• Execute it with a “+” root [0] .x mymacro.C(42)+

• Or root [0] .L mymacro.C+

root [1] mymacro(42)

• No Makefile needed

• CINT knows all functions in mymacro_C.so/.dll

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 16

Compiled vs. Interpreted

• Why compile?
– Faster execution, CINT has some limitations…

• Why interpret?
– Faster Edit → Run → Check result → Edit cycles

("rapid prototyping"). Scripting is sometimes just
easier.

• So when should I start compiling?
– For simple things: start with macros

– Rule of thumb
• Is it a lot of code or running slow?  Compile it!

• Does it behave weird?  Compile it!

• Is there an error that you do not find  Compile it!

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 17

Unnamed Macros

• No function, just statements

• Execute with root [0] .x mymacro.C

– No functions, thus no arguments

• Named macro recommended!

{

float ret = 0.42;

return sin(ret);

}

saved in mymacro.C

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 18

ROOT Types

• You can use native C types in your code (as

long as you don’t make your data persistent, i.e.

write to files)

• ROOT redefines all types to achieve platform

independency

– E.g. the type int has a different number of bits on

different systems

– int Int_t float Float_t

double Double_t long Long64_t (not Long_t)

etc.

– See $ROOTSYS/include/Rtypes.h

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 19

Histograms & Graphs

• Container for binned data

– Most of HEP’s distributions

• Container for distinct

points

– Calculation or fit results

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 20

Histograms

• Histograms are binned data containers

• There are 1, 2 and 3-dimensional histograms  TH1, TH2, TH3

• The data can be stored with different precision and in different types

(byte, short, int, float, double)

 TH1C, TH1S, TH1I, TH1F, TH1D

(same for TH2, TH3)

Histogram Example

hist = new TH1F("hist", "Vertex

distribution;z (cm);Events", 20, -10, 10);

hist->Fill(0.05);

hist->Fill(-7.4);

hist->Fill(0.2);

hist->Draw();

NB: All ROOT classes start with T

Looking for e.g. a string? Try TString

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 21

Graphs

• A graph is a data container filled with distinct points

• TGraph: x/y graph without error bars

• TGraphErrors: x/y graph with error bars

• TGraphAsymmErrors: x/y graph with asymmetric error bars

Graph Example

graph = new TGraph;

graph->SetPoint(graph->GetN(), 1, 2.3);

graph->SetPoint(graph->GetN(), 2, 0.8);

graph->SetPoint(graph->GetN(), 3, -4);

graph->Draw("AP");

graph->SetMarkerStyle(21);

graph->GetYaxis()->SetRangeUser(-10, 10);

graph->GetXaxis()->SetTitle("Run number");

graph->GetYaxis()->SetTitle("z (cm)");

graph->SetTitle("Average vertex position");

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 22

Graphs (2)

$ROOTSYS/tutorials/graphs/gerrors2.C

TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh)

TGraph(n,x,y)

TCutG(n,x,y)

TGraphErrors(n,x,y,ex,ey)

TMultiGraph

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 23

• You can draw with the

command line

• The Draw function adds the

object to the list of primitives of

the current pad

• If no pad exists, a pad is

automatically created

• A pad is embedded in a

canvas

• You create one manually with

new TCanvas

– A canvas has one pad by

default

– You can add more

Hello

root [] TLine line(.1,.9,.6,.6)

root [] line.Draw()

root [] TText text(.5,.2,”Hello”)

root [] text.Draw()

Graphics Objects

Canvas

Pad

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 24

TButton

TLine TArrow TEllipse

TCurvyLine

TPaveLabel

TPave

TDiamond

TPavesText

TPolyLine
TLatex

TCrown

TMarker

TText

TCurlyArc

TBox

More Graphics Objects

Can be accessed with the toolbar

View  Toolbar (in any canvas)

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 25

Full LateX
support

on screen
and

postscript

TCurlyArc
TCurlyLine
TWavyLine

and other building
blocks for

Feynmann diagrams

$ROOTSYS/tutorials/graphics/feynman.C

$ROOTSYS/tutorials/graphics/latex3.C

Formula or

diagrams

can be

edited with

the mouse

A lot more examples come with the ROOT installation

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 26

Graphics Examples

TGLParametric

TF3

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 27

Input/Output

Object in

Memory

Streamer

http

sockets Net File

Web File

XML XML File

SQL RDBMS

B
u
ff
e
r

The automatically generated ROOT streamer for each class streams all class

members, resolves circular dependencies and multiply referenced objects

 No streamer function needs to be written

 No need for separation of transient and persistent classes

Local File on disk

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 28

Files

• TFile is the class to access files on your file

system (and elsewhere)

• A TFile object may contain directories

(TDirectory), like a Unix file system

• ROOT files are self describing

– Dictionary for persistent classes written to the file

• Support for Backward and Forward compatibility

• Files created in 2001 must be readable in 2015

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 29

File Example

void keywrite() {

TFile f(“file.root”, ”new”);

TH1F h(“hist”, ”test”, 100, -3, 3);

h.FillRandom(“gaus”, 1000);

h.Write()

}

void keyRead() {

TFile f(“file.root”);

TH1F *h = (TH1F*) f.Get(“hist”);

h.Draw();

}

This works as well for your own

class!

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 30

1 billion people
surfing the Web

LHC: How Much Data?

105

104

103

102

Level 1 Rate

(Hz)

High Level-1 Trigger

(1 MHz)
High No. Channels

High Bandwidth

(500 Gbit/s)

High Data Archive

(5 PetaBytes/year)

10 Gbits/s in Data base

LHCB

KLOE

HERA-B

CDF II

CDF

H1

ZEUS

UA1

LEP

NA49
ALICE

Event Size (bytes)

104 105 106

ATLAS

CMS

106

107

STARHow to store large number

of events and data

volumes efficiently?

 ROOT Trees

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 31

What is a ROOT Tree?

• Trees have been designed to support very large
collections of objects. The overhead in memory
is in general less than 4 bytes per entry.

• Trees allow direct and random access to any
entry (sequential access is the most efficient)

• Trees are structured into branches and leaves.
One can read a subset of all branches

• High level functions like TTree::Draw loop on all
entries with selection expressions

• Trees can be browsed via TBrowser

• Trees can be analyzed via TTreeViewer

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 32

Stored Trees vs. Memory

Tree On Disk One instance in memory

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 33

Trees: Split Mode

• The tree is partioned in branches

– Each class member is a branch (in split mode)

– When reading a tree, certain branches can be
switched off
 speed up of analysis when not all data is needed

point

x

y

z

x x x x x x x x x x

y y y y y y y y y y

z z z z z z z z z z

Branches File1 "Event"

Events

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 34

TTree - Writing

• You want to store 1 million objects of type

TMyEvent in a tree which is written into a file

• Initialization

• Fill the tree (1 million times)

– TTree::Fill copies content of

member as new entry into the tree

• Flush the tree to the file,

close the file

myEvent->SetMember(…);
tree->Fill();

tree->Write();

f->Close();

TFile* f = TFile::Open("events.root", "RECREATE");
TTree* tree = new TTree("Events","Event Tree");
TMyEvent* myEvent = new TMyEvent;
TBranch* branch = tree->Branch("myevent",

"TMyEvent", &myEvent);

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 35

TTree - Reading

• Open the file, retrieve the tree and connect the

branch with a pointer to TMyEvent

• Read entries from the tree and use the content

of the class

TFile *f = TFile::Open("events.root");

TTree *tree = (TTree*)f->Get("Events");

TMyEvent* myEvent = 0;

tree->SetBranchAddress("myevent", &myEvent);

Int_t nentries = tree->GetEntries();

for (Int_t i=0;i<nentries;i++) {

tree->GetEntry(i);

cout << myEvent->GetMember() << endl;

}

A quick way to

browse through a

tree is to use a

TBrowser

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 36

Fitting

• Fitting a histogram or graph

• With the GUI
– If you just try which functions works

well or need a single parameter

– Right click on graph or histogram
 Fit panel

• With the command line / macro
– If you fit many histograms/graphs or

several times

hist->Fit("gaus")

hist->FindFunction("gaus")->GetParameter(0)

Fit parameters printed to the screen

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 37

ROOT is MORE….

• In this talk, I presented the most basic classes typically

used during physics analyses

• ROOT contains many more libraries, e.g.

– FFT library

– Oracle, MySQL, etc interfaces

– XML drivers

– TMVA (Multi Variate Analysis)

– GRID, networking and thread classes

– Interfaces to Castor, Dcache, GFAL, xrootd

– Interfaces to Pythia, Geant3, Geant4, gdml

– Matrix packages, Fitting packages, etc

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 38

One Example: PROOF

• Parallel ROOT Facility

• Interactive parallel analysis on a local cluster

– Parallel processing of (local) data (trivial parallelism)

– Output handling with direct visualization

– Not a batch system

• PROOF itself is not related to Grid

– Can access Grid files

• The usage of PROOF is transparent

– The same code can be run locally and in a PROOF system

(certain rules have to be followed)

• PROOF is part of ROOT
Data does not need to be copied

Many CPUs available for analysis

 much faster processing

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 39

root

Remote PROOF Cluster

Data

root

root

root

Client –
Local PC

ana.C

stdout/result

node1

node2

node3

node4

ana.C

root

PROOF Schema

Data

Proof master

Proof slave

Result

Data

Result

Data

Result

Result

Introduction to ROOT - Jan Fiete Grosse-Oetringhaus 40

More Information...

• http://root.cern.ch

– Download

– Documentation

– Tutorials

– Online Help

– Mailing list

– Forum

The second lecture will show

many of the presented

features in a demo
Credits to Fons Rademakers

