Detection of Muons

Dmitri Denisov Fermilab

Academic Lecture, April 5 2000

Outline:

- •Muon
- Muon identification
- Muon interaction with matter
- •Elements of muon spectrometers
 - absorbers and magnets
 - tracking detectors
- •Examples of muon detection systems

Muon

- Discovered by Anderson and Nedermeir in 1936 in cosmic rays. Till 1947 (pion discovery) was considered Yukawa particle, but very low interaction rate was a puzzle
- Since that time muon parameters are well defined
 - Charge +/- 1
 - Mass 105.658389 MeV
 - Lifetime 2.19703 msec
 - Decay (100%) em
 - No strong interaction
- Major sources of muons
 - cosmic (decays of pions p->m)
 - $\cdot \sim 10^2$ muons/m².sec, E>1GeV
 - accelerators
 - low P_t muons product of mesons decay, 100m long 40GeV/c pion beam line
 - ~2% of pions will decay
 - muon energy is between E_{beam} and $E_{beam}/2$
 - high P_t muons product of heavy objects decays: b, W/Z, etc.

Why we would like to detect muons?

- Muons are easy to detect with high accuracy and low backgrounds: no strong interaction
- Long lifetime
- Lepton decay channels for many of heavy objects are clean and have low backgrounds:
 - ♦ T ->mm
 - ♦ W->m, Z -> mm
 - ♦ t -> bW -> mm
- Many of new particles searches contain muon(s) as final detectable particles

Particle Identification Methods

- Detection of muons consists of two major steps:
 - identification
 - muon parameters measurement
- The direct way for identification is to compare parameters of particle in question with known values:
 - mass
 - charge
 - lifetime
 - decay modes
- Typical method for a few GeV muons is to measure momentum and velocity of a particle:

 $m = p(b^1 - 1)^{1/2}$

- Velocity is measured by:
 - Time of flight
 - Cherenkov, TRD

Identification (cont)

• For high energy (above a few GeV) muons identification is based on low rate of interaction of muons with matter:

> If charged particle penetrates large amount of absorber with minor energy losses and small angular displacement such particle is considered a muon

 Details and definitions of "large amount of absorber", "minor energy losses", etc. will be discussed in this Lecture

Muon Lifetime

- Muon lifetime is 2.2 msec, tc=0.7km
- Decay path:
 p, GeV/c
 Decay path, km
 1
 7
 cosmics
 10
 70
 b-quarks
 100
 700
 muon collider
- For most high energy physics applications muon can be considered "stable" particle

Muon Energy Losses

- Muon energy loss is defined by electro-magnetic interactions:
 - ionization
 - e+e- pair production
 - bremsstrahlung
 - photo nuclear reactions

 Below ~200GeV muon energy losses are mainly due to ionization. The average loss is about 2MeV/g cm² or 1.4GeV/m of steel

Muon Energy Losses

 dE/dx energy loss curves describe average energy losses. Fluctuations of energy losses are described by Landau distribution (~20% width):

 Muon with energy above ~0.2TeV behaves similar to electron: create clouds of em showers along its trajectory

Multiple Scattering

• Muon changes its direction due to electromagnetic interactions:

$$\sigma_{\theta} = (14 \text{MeV/c})(L/L_{rad})^{1/2}/p$$

 Let's consider example of 50GeV/c muon passing via 2m of steel

^G y_{plane} = 0.6cm (L_{rad}=1.76cm)
 Above formula is good approximation for small angle scattering. Monte Carlo and more complex expressions used for high accuracy calculations

- Major parameters of muon detector:
 - punchthrough probability
 - momentum (angular) resolution

Hadron Punchthrough

- Hadrons create showers in absorber. If the absorber is too thin shower can "leak" through, so that charged particle(s) is detected after absorber
- Monte Carlo calculations and test beam measurements are used to estimate punchthrough probability

- Methods to minimize punchthrough:
 - tracking before/after absorber
 - momentum measurement before/after absorber
 - + timing

Very High Energy Muons

 At energies above ~0.5TeV muons start to loose energy due to radiation (gamma, e+e-), as a result muon track is accompanied by em showers:

- Major problem due to radiation is occupancy of tracking detectors
- Ways to reduce em backgrounds:
 - multi hit detectors/electronics
 - air gap between absorber and tracking detector
 - increase in number of detector planes

Momentum Resolution of Muon Spectrometer

 Muon track can be bent "inside" magnetized iron and steel can be easily magnetized up to ~2T:

p (GeV/c) = 0.3 B(T) L(m)/ α (rad)

- Determination of momentum is limited by bending angle measurement:
 - accuracy of tracking detectors
 - multiple scattering

Momentum Resolution

Formula for momentum resolution:

• Example of muon momentum resolution for L=2m, σ_x =0.5mm and a=2m

How to Improve σ_p/p

- Reduce multiple interaction term by bending muon in air, not in iron:
 - after target (fixed target)
 - in the central tracker (colliders)
 - in large air core magnets (colliders)

Instrumentation of Muon Detectors

- Major parts of muon detector:
 - absorber/magnet
 - tracking detectors
 - (electronics, DAQ, trigger, software)
- Absorbers:
 - most common is steel: high density (smaller size), not expensive, could be magnetized
 - concrete, etc.
- Magnets:
 - dipole magnets in fixed target or solenoid magnets in colliders:
 - "a few" m³ in volume
 - field ~2T
 - cryo and/or high energy consumption
 - magnetized iron toroids:
 - hundreds m³ volume
 - saturation at ~2T
 - low power consumption
 - air core super conducting magnets:
 - field similar to iron magnets, but no multiple scattering
 - cryo and complex design

Tracking Detectors

- There are two major requirements for muon tracking detectors:
 - coordinate accuracy
 - ♦ large (~10³ m²) area
- Other considerations include:
 - resolution time
 - sensitivity to backgrounds
 - segmentation (triggering)
 - aging
 - cost
- Two most common types of detectors:
 - scintillation counters
 - gas wire detectors

Scintillation Counters

- Used before/after absorber for muon identification/triggering, rarely for momentum measurement
- Typical size 0.1m x 1m x 1cm
- Muon deposits ~2MeV of energy in a counter, which converts into 20-200 photo electrons for a typical phototube
- Major parameters of scintillation counters:
 - very fast st ~1ns
 - easy to make of any size
 - inexpensive in operation
 - due to high muon energy deposition less sensitive to backgrounds
 - ...but
 - expensive per m²
 - coordinate resolution is $s_x > 1$ cm

Gas Detectors

- Gas wire detectors are most commonly used for muon tracking:
 - drift tubes
 - cathode strip chambers (CSC)
- One of the best references is F. Sauli, Preprint CERN 77-09, 1977
- Principle of gas avalanche detectors operation:

 muon creates one electron-ion pair per 30eV of deposited energy, 100 pairs per cm of gas

dame

- electrons in electric field drift to the small diameter anode wire
- gas amplification (~10⁶) occurs near anode wire providing detectable signals (~1µA)

Drift Tubes

- Drift tube tracking detector consists of array of cells with anode wire in the center:
 - sizes ~1-10cm²
 - total number of cells ~10⁴-10⁵
 - individual chamber (up to 10m long) consists of ~10²-10³ cells

- Advantages of such scheme:
 - broken wire is localized inside cell
 - detector is made of simple repetitive cells with properties defined by individual cell
 - cell walls create self supporting detector element

Drift Tubes (cont)

- In order to define muon location with high precision electron drift time is measured
- Determination of drift time to distance relation is done by Monte Carlo and/or test beam measurements

Drift Tubes (cont)

- Factors limiting coordinate resolution of drift detectors:
 - + electronic noise
 - electron-ion pairs statistics
 - diffusion

- Drift tubes coordinate resolution:
 - typical ~ 0.2mm
 - best ~ 50µm
- In addition to physics limitations "mechanics" of the detector could affect coordinate resolution: wires location

Alignment of Tracking Detectors

- In order to measure muon tracks with high precision, exact location of wires (cells) is required:
 - temperature variations
 - movement ("sink") of heavy objects
 - complications due to detectors sizes and lack of space (hermeticity)
- Major ways of alignment:
 - passive detectors location is determined before the run by (optical) survey and these data are used for data analysis: ~0.5-1mm
 - active continuing monitoring of chambers locations by system of sensors (lasers beams, etc.): <0.1mm
 - self calibration muon tracks are used to determine final location of detector elements

Shielding of Muon Detectors

- During HEP experiments in addition to "useful" particles large amount of background particles are created:
 - particles coming from accelerator beam losses
 - spectators interactions (showers) with accelerator and detector equipment
 - neutrons
- Muon detectors are sensitive to backgrounds because:
 - have large area
 - gas detectors have low (~1keV) threshold
- Most common way is to install thick shielding to absorb backgrounds:
 - steel to catch hadrons
 - poly to absorb neutrons
 - Iead to reduce gamma fluxes
- Even moderate shielding could provide factor of ~10² reduction in number of background hits

DO Muon System

- Absorbers:
 - calorimeter and steel toroid: 151
 - punchthrough less then 10⁻⁵
- Detectors:
 - tracking: drift tubes with 1mm resolution, 3 layers
 - trigger: scintillation trigger counters, time resolution 1ns
- Momentum resolution (muon system only):
 - multiple scattering limit is 18%
 - ◆ s_p/p is ~50% at 200GeV/c

UU IVIUON System Upgrade

Muon Detection - Summary

- Muon detection is based on ability of muon to penetrate thick absorbers with minor energy losses
- Muon spectrometer momentum resolution is limited by multiple scattering in absorber and coordinate accuracy of tracking detectors:

 $s_p/p = (s_m^2 + (s_x^p/b)^2)^{1/2}$

- Due to the size of muon systems (~10³m²) scintillation counters and/or gas detectors are used
- Backgrounds estimation is important and shielding installation may be necessary
- Precision determination of detectors location is achieved via alignment
- For very high energy muons (above 0.2TeV) electromagnetic radiation becomes an issue