

Muon Reconstruction

R.Bellan

18 January 2008

1

Outline

- Muon reconstruction strategy
 - Muon reconstruction performance
 - Cosmic ray reconstruction strategies
- Data analysis of cosmics

The Full Chains

R.Bellan

18 January 2008

- Since the beginning (ORCA times), *very big effort* to maintain the structure of the data formats, of the fitting tools, of the geometry, ..., as generic as possible
- This allows as to use common tools for all systems (tracker, CSC, DT, RPC)
 - e.g. generic rechit interface, so the fitting tools can take a collection of tracker hits and one of muon segments and fit them all
- Our paradigms are:
 - Whenever possible, <u>use common tools instead of building specific</u> <u>ones</u>
 - If the tool you have built is suitable for both the tracker and the muon reconstruction, then <u>make it a common tool</u>

Tracking – Basic Concept

- In magnetic field the trajectory of a charged particle is an helix
 - 5 parameters
 - charge/momentum, direction and position on a given surface
 - Strong magnetic field is required for high p_T measurement
- The goal is to reconstruct the trajectory of many charged particles using position measurements

Requirements

- Estimation of multiple scattering and energy loss
- Need to
 - perform the **pattern recognition**
 - have the *best* and the *fast* estimation as possible

CERN

R.Bellan

18 January 2008

Kalman Filter

Kalman Filter

Propagation of the state on the $(k-1)^{\text{th}}$ layer (<u>black arrow</u>) on the k^{th} layer

predicted state (blue arrow)

$$x_{k}^{k-1} = F_{k-1} x_{k-1}$$

extrapolated covariance matrix

$$C_{k}^{k-1} = F_{k-1} C_{k-1} F_{k-1}^{T} + M_{MS, k-1}$$

Relation between the state and the measurement space

$$m_{k} = H_{k} x_{k, true} + \epsilon_{k}$$

Minimizing the χ^2

$$\chi^{2} = (H_{k} x_{k} - m_{k})^{T} V^{-1} (H_{k} x_{k} - m_{k})$$

we can find the equations for the **filtering** <u>updated state</u> (<u>black arrow on k</u>) $x_k = x_k^{k-1} + K_k (m_k - H_k x_k^{k-1})$ <u>updated covariance matrix</u>

$$C_{k} = (1 - K_{k}H_{k})C_{k}^{k-1}$$

with

$$K_{k} = C_{k}^{k-1} H_{k}^{T} (V_{k} + H_{k} C_{k}^{k-1} H_{k}^{T})^{-1}$$

R.Bellan

Kalman Filter

Once all the measurements have been filtered, the **smoothing** can be performed. As the filtering it is an iterative process

smoothed state

$$x_{k}^{n} = x_{k}^{n} + A_{k}^{n} (x_{k+1}^{n} - x_{k+1}^{k})$$

covariance matrix of the smoothed state vector

with (smother gain matrix)

$$A_{k} = C_{k} F_{k}^{T} (C_{k+1}^{k})^{-1}$$

The Kalman Filter needs a seed to start the iteration process

R.Bellan

18 January 2008

Stand Alone Muon System

- Seed state estimation
 - from the local segments reconstruction for the off-line reconstruction
 - from the L1 trigger in the on-line reconstruction
- "Pre"-filter from inside to outside using the DT/CSC segment granularity (1D hits for the RPC)
 - "Pre"-filter needed to avoid possible bias from the seed
 - Best state estimation on the outermost (used) layer
- Filter from <u>outside to inside</u> using the best state from the "Pre"-filter and:
 - the segment for the pattern recognition
 - the 1D hit for the trajectory updating
 - Best state estimation **on the innermost** (used) layer

For each ("Pre"-) filter step

- Propagation of the state to the next compatible layer of chamber
- looking for the measurements (segments/hit)
 - pattern recognition: choose of the most compatible (on χ^2 basis)
 - possibility to reject all the measurements (there is a χ^2 cut)
 - updating (filtering) of the state vector with the measurement
 - if the state and the measurement are not on the same plane, another propagation is performed
 - Ghost suppression
 - Extrapolation to the PCA and updating at vertex
 - update of the track parameters

DataFormats: Input/output Objects (I)

- Seed for the Stand Alone muon reconstruction
 - <u>Input</u>: CSC and DT segments (no RPC)
 - <u>Output</u>: **TrajectorySeed collection**
- Stand alone muon reconstruction
 - <u>Input</u>: rechits/segments in the muon system (CSC, DT, RPC) and the TrajectorySeed collection
 - I want to stress: all rechits/segments have the same generic interface
 - <u>Transient output</u>: Trajectory collection
 - It contains all the fit's information... indeed it is the result of the fit!
 - It has the measurements on all the used layer
 - <u>Persistent output</u>: reco::Track collections
 - DataFormat designed to be persistent: minimal disk space usage
 - Two collections: tracks with and without vertex constraint

R.Bellan

Resolution

Design performance reached

R.Bellan

Global Reconstruction

Two different strategies

- Track reconstruction inside the tracker and inside the muon system independently
 - **matching** of the two tracks and refit of all hits
- Track reconstruction inside the muon system and then in the tracker
 - the state estimated in the muon system alone is used to open a *region* of interest in the tracker
 - the tracker tracks are built
 - matching of the two tracks and refit of all hits

The reconstruction in the tracker uses the *Kalman Filter approach* as well.

- ► Global muon reconstruction → tracks matching
 - <u>Input</u>: tracker and STA muon's reco::Track collections
 - <u>Transient output</u>: the Trajectory collection corresponding to the global tracks
 - <u>Persistent output</u>: **reco::Track collection** of the tracker+muon system
 - Map to keep *three links*:
 - matched **tracker**'s track alone, **STA** muon tracks, **combined** track
- Final muon object
 - <u>Input</u>: muon's reco::Track collections
 - <u>Output</u>: reco::Muon collection
 - Info from the calorimeters added

Tracker Track Reco Efficiency

Dips due to geometrical acceptance of the tracker:

- $\eta \sim 0$ half-barrel junction
- $|\eta| \sim 1.5$ barrel-endcap transition

Global Muon Reco Efficiency

stand alone muon reconstruction

18 January 2008

Resolution

18 January 2008

Stand Alone and Global

R.Bellan

18 January 2008

- Possibility to estimate the alignment constant using the common tracking/refitting tools
- Alignment acts at geometry level:
 - hits are in the local frame of the detectors
 - Correcting the detector position automatically corrects the hit position
 - position/rotation corrections taken from DB
- The tracking tools work independently to the alignment constants:
 - Just apply corrections to the geometry model

- Track reconstruction a little bit different w.r.t. the pp collision one
- Specific services have been developed for this purpose
 - <u>navigation</u>
 - strategy to select the compatible detectors during the pattern recognition
 - <u>track matcher</u> able to join:
 - 2 stand alone tracks
 - 2 stand alone tracks and 1 tracker track
 - 2 stand alone and 2 tracker tracks
 - <u>seed generator</u> for cosmic muons
- The direction on which the energy is lost must be set carefully

Strategies for Cosmic Reconstruction

The user can follow three basic strategies, which should be chosen depending on what is her/his final goal

- Reconstruction with the **dedicated cosmic reconstruction**
 - detectors commissioning
 - alignment
 - study of the cosmic ray distribution (for fun and cross check)
- Reconstruction with the *pp* collision reconstruction
 - useful for developers to test the final reconstruction
 - needs special kind of events, i.e. cosmics which pass close to the CMS centre
- Combination of the two
 - as for the two items before, but from a different point of view

- The maximum effort will be spent to centrally provide the first two reconstruction chains and their most popular combination
 - make life easier for users and developers
 - feedback is crucial
 - create a **community** for the data analysis
- Detector and software commissioning
- Strong interest to test the <u>software which applies the alignment</u> <u>constants</u> and try the data reprocessing
- Monitoring tools

- Separate w.r.t. the sub-detector DQMs
 - two additional "layers": monitoring of the <u>tracks</u>, monitoring of the muon <u>object</u>
- The tracks in CMSSW are the same c++ object both for the silicon tracker, the muon spectrometer and the whole tracking system
- Tracker group already has a track monitor which can be extended with our contribution. An initial agreement with the tracker community have been reached
 - we will monitor **stand alone** and **global muon tracks**
 - activity from muon POG side started this week
 - Tracking DQM foreseen for next GR

- Muon object monitoring will be separated from the tracking monitoring, as it is **muon specific**
 - energy deposits in the calorimeters
 - comparison between the three types of tracks inside the muon object, ...

Summary

- The algorithms for the muon reconstruction perform very well
 - high performance on simulated data
 - tested on many types of sample. Are currently used in CMS for all analyses which involve muons.
- The algorithms have been **successfully** tested on real data
 - the reconstruction of cosmics muons need to became "systematic"
 - validation of the reconstruction work-flow, from raw data to muon object, passing though alignment, will be the main goal to reach before the *pp* data taking

Back-Up Slides

R.Bellan

18 January 2008

- Used samples of single muon with different transverse momenta (both signs)
 - 100k events of 5 GeV, 10 GeV, 50 GeV, 100 GeV, 200 GeV, 500 GeV, 1 TeV
 - 70k events of 2 TeV, 40k events of 3 TeV, 20k events of 5 TeV
 - 400k events of 1-200 GeV (flat)
- $\blacktriangleright Z \rightarrow \mu^+ \mu^-$
 - 350k events
- Local Reconstruction
 - Local with 150
 - Track with 16X

CSC Local Reconstruction

charge distribution on a cluster of adjacent strips
 fitted with the Gatti function to determine the

centroid

- r coordinate measured by wires
 - readout in bunches to reduce the number of channel
 - ghosts
- Fit of the 2D points in the 6 layers
 - determine the 3D segments

R.Bellan

18 January 2008

RPC Local Reconstruction

Double gap chambers

- Measure the 2D points
 - up to 6 points in the barrel and 4 in the endcap

DT Local Reconstruction

It is performed in <u>three</u> steps

D Reconstruction **inside the cell**

- the drift time is **converted** in a position with respect to the wire. Two different algorithms:
 - <u>constant drift velocity</u> in the whole cell
 - <u>time to distance relation</u> parametrized by *GARFIELD*:
 - $x(t) = f(t, \alpha, B_{wire}, B_{norm})$
 - the information about α, B_{wire} and B_{norm} are not available at this step
 ⇒ iterative procedure using the information from the other two steps.
- **1D hit** with left/right ambiguity

R.Bellan

DT Local Reconstruction

2 Reconstruction in the $R-\phi$ and $R-\theta$ view independently

- pattern recognition and left/right ambiguity solved using the best X² estimation ⇒ fit of the hits
 - up to 8 hits in the R- ϕ view
 - up to 4 hits in the R- θ view
- update of the position if the 1D hits using the impact angle
 (α) ⇒ refit of the updated hits
- 2D segment
- **3** Reconstruction **in the chamber**
 - the two projection are **combined** together
 - update of the position if the 1D hits using the knowledge on B_{wire} and B_{norm} ⇒ refit of the updated hits
 - **3D** segment

R.Bellan

18 January 2008

Residual on Hit Position (I)

32

CERN

R-φ

R.Bellan

Residual on Hit Position (II)

Time to distance relation parametrized by GARFIELD

R.Bellan

18 January 2008

Algorithm Comparison

Stand-Alone Muon Reco Efficiency

Global Muon Reco Efficiency

Stand-Alone and Global Efficiency

Resolution on the Impact Parameters

R.Bellan

18 January 2008

Muon Reconstruction Efficiency

