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Abstract

This work proposes an analytical study of transverse momentum resolution in the CMS muon spec-
trometer. The uncertainty on track momentum ( δpT

pT
) is calculated as the combined effect of measure-

ment errors and Multiple Scattering. It has been obtained from a standard least squares method, i.e.
by minimizing a χ2 function of the unknown parameters. The estimator for 1/pT and its variance are
derived as functions of the geometric parameters and magnetic field of CMS. The result is compared
to Monte Carlo prediction, and good agreement is found.



1 Introduction
Reconstruction of Monte Carlo simulated muons provides detailed measurements of p T -resolution over the en-
tire barrel and for a large range of momenta. In addition, muon reconstruction takes into account all possible
interactions between charged particles and massive detectors (energy loss, showering, Multiple Scattering, δ-rays).
Alternatively, given the geometry of the transverse plane of CMS, it is possible to determine the momentum reso-
lution of the barrel muon system by performing a standard least squares calculation. Apart fromMS, these effects
can hardly be accounted for in a by-hand calculation. However, an analytical study is likely to give a more intu-
itive comprehension of how muons reconstruction job is done. The relative importance of geometric parameters
to the overall resolution can be investigated. Such a calculation should give a result not too different from MC
predictions, at least within the errors expected by assuming simplified geometry and by neglecting energy losses.

2 Least Squares method
Themethod of least squares applied to tracking in the barrel involves constructing a χ 2 function of track parameters
using the measurements from the DT system, and by minimizing it with respect to its arguments. Estimators for
the unknown parameters and for their covariance matrix are derived from this procedure. In order to study the
contribution of the single measurements to the final resolution, we will refine progressively the fit by including at
first only the angles of the segments in each muon station, then the mid-points of each segment, and, finally, the
vertex constraint.

Particles tracking in a massive detector is affected by multiple scattering. Such effect has to be considered, since
in CMS, tracking is done inside iron.

Tracking in the plane perpendicular to magnetic field involves fitting the trajectory to the curved path imposed by
Lorentz force. In CMS, this trajectory is a piecewise curved line, consisting of circular arcs inside the return yoke
(saturated by a 2 T field), connected by segments inside the stations, where magnetic stray fields can be neglected.
A charged particle path between the interaction point and the coil is a circle of radius R = p T /0.3B, where R is
measured in meters if pT and B are expressed in GeV/c and Tesla respectively.

In each r − φ station (at most) eight hits per muon are recorded, and we suppose that a straight line fit has been
carried out, producing a measurement of angle 1) and position at the center of the station, where their errors are
uncorrelated. Then, the error on the angle and position can be related to the single-point resolution σ T of a drift
tube by the relation:

σφ =
σT√

28
9 d2 + 4dh + 2h2

(1)

σx =
σT√

8
(2)

In (1), we have put h equal to the distance between the outermost layer of SLΦ 1 and the innermost layer of SLΦ2

(h ≈ 21.1 cm), and d equal to the height of one SuperLayer (d ≈ 5.2 cm).

Suppose that a muon of a given charge has been produced in a collision and that it has gone through the barrel.
Segments have been reconstructed, giving the array of measurements y. The trajectory of the particle can be
parameterized by three parameters. A convenient choice is:

• φ0: angle in MB1,

• x0: mid-position in MB1,

• 1/pT : inverse of muon transverse momentum.

Measurements are actually randomvariables, and their mean values can be related to the above parameters. In order
to keep the dependence linear, we shall assume that angles are small enough to allow first order approximation of

1) Angles are measured w.r.t the same axis, which is taken to be normal to the stations. This axis is denoted by ŷ, while the
axis parallel to the chambers planes is denoted by x̂.
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their trigonometric functions. Of course, the higher the momenta, the better this approximation will work. Then,
we can write:

y = Hθ (3)

with theH matrix given by the geometry of transverse plane and by the B field map, and by θ we mean the array:



φ0

x0
1

pT





By a well known derivation (which can be found in the related section of [5]), estimators for θ and their covariance
matrix U are given by

θ̂ = (HT V −1H)−1HT V −1y ≡ Dy (4)
U = (HT V −1H)−1 (5)

where V is the covariance matrix of the measurements y. Multiple scattering introduces zero-mean random per-
turbation on angles and positions. After traversing a medium of thickness l, with a radiation length X 0, a β = 1
particle with momentum p (in GeV/c) and charge number z = 1 undergoes a projected angular deflection δφ and
position displacement δx with variances and correlation given by:

〈
δφ2

〉
=

(0.0136)2

p2

l

X0

(
1 + 0.038ln

l

X0

)2

(6)

〈
δx2

〉
=

1
3

〈
δφ2

〉
l2 (7)

〈δxδφ〉 =
1
2

〈
δφ2

〉
l (8)

As one can easily verify, δφ and δx are positively correlated, with correlation ρ =
√

3
2 . MS introduces correlation

between the measurements, resulting in a V matrix different from the diagonal one expected for N independent
measurements. Once this effect has been included, the variance of (the estimator for) 1/p T is given by the corre-
sponding U element, and the relative error on pT , indicated with δpT

pT
hereafter, can be derived from the chain:

δpT

pT
≡ σ(pT )

pT
=

σ( 1
pT

)
1

pT

. (9)

Because of MS, cov
[

1
pT

, 1
pT

]
depends on pT , so that momentum resolution in general does not simply scale with

pT .

2.1 Fitting angles
Suppose that only angles are measured. This situation corresponds to muons traversing a barrel wedge and being
measured only there. In this case, we can compute the difference between the angles of neighboring stations
φi − φi−1, resulting in a set of three correlated measurements. It happens however that these three measurements
are not correlated to one another by MS, since, in making the difference, contributions from previous deflections
cancel out. Only one parameter can be fitted ( 1

pT
). Then, the covariance matrix of the three measurements is given

by2)




2σ2

φ + σ2
MS −σ2

φ 0
−σ2

φ 2σ2
φ + 2σ2

MS −σ2
φ

0 −σ2
φ 2σ2

φ + 2σ2
MS



 (10)

2) For simplicity, we shall assume that σ2
MS is just half the value of MS variance in the second and third iron yokes, i.e. we

neglect the logarithmic term which violates the linear dependence on l.
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whileH vector is given by




0.3Bl
0.3B2l
0.3B2l



 (11)

where σ2
φ and σ2

MS are respectively the square of chamber angular resolution and variance of MS projected angular
distribution after crossing the distance l betweenMB1 andMB2 (second and third return yoke irons are taken twice
larger than the first iron). By applying (4) and (6), we derive the variance of 1/p T as a function of pT .

Alternatively, we can keep four angular measurements and fit φ 0 and 1/pT in a two parameters fit. In this case, the
measurements are correlated to one another by MS:





σ2
φ 0 0 0
0 σ2

φ + σ2
MS σ2

MS σ2
MS

0 σ2
MS σ2

φ + 3σ2
MS 3σ2

MS

0 σ2
MS 3σ2

MS σ2
φ + 5σ2

MS



 (12)

The parameters are related to the four angles by the vector





1 0
1 0.3Bl
1 0.3B3l
1 0.3B5l



 (13)

Of course, the variance of 1/pT is the same as before. The first parameter is assumed to be φ0, the second 1/pT .
We choose the numerical values of the geometrical parameters to be those in the following table:

B l r σT σMS

2 T 0.3 m 0.4 m 150 µm 0.0677 1
pT

with pT measured in GeV/c. The value of σMS corresponds to 20 radiation lengths. With the choice of σT made
above, 1 becomes equal to about 0.4 mrad. Momentum resolution at low-p T is found to be about 17%. At high-pT ,
δpT

pT
is around 70%. The correlation between φ0 and 1/pT is found to be ρφ01/pT

= −0.065 at 10 GeV/c and
ρφ01/pT

= −0.755 at 1 TeV/c. The sign of the covariance is in agreement with [4]. The error on φ 0 at 1 TeV/c is
equal to about 0.77 mrad.

2.2 Fitting angles and positions
A much more refined resolution is expected to be obtained once mid-points are used to constrain the positions of
segments. The eight measurements are parametrized by φ0, x0 and 1/pT , and their covariance matrix is a 8 × 8
(symmetric) matrix. The cov [φi, φj ] elements are as in (12). The new elements are calculated in a straightforward
way:

cov [φi, xj ] =





0 0 0 0
0 σ2

MS

(
1
2 ; 1

2 ) σ2
MS

(
3
2 ; 5

2 ) σ2
MS

(
5
2 ; 9

2 )
0 σ2

MS

(
1
2 ; 1

2 ) σ2
MS

(
5
2 ; 9

2 ) σ2
MS

(
11
2 ; 21

2 )
0 σ2

MS

(
1
2 ; 1

2 ) σ2
MS

(
5
2 ; 9

2 ) σ2
MS

(
13
2 ; 25

2 )



 (14)

cov [xi, xj ] =





0 0 0 0
... σ2

MS

(
1
4 ; 1

2 ; 1
3 ) σ2

MS

(
3
4 ; 2; 4

3 ) σ2
MS

(
5
4 ; 7

2 ; 7
3 )

...
... σ2

MS

(
11
4 ; 19

2 ; 9) σ2
MS

(
21
4 ; 19; 18)

...
...

... σ2
MS

(
45
4 ; 85

2 , 125
3 )




(15)
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where by r we define the height of one muon station (all stations are supposed to have the same size). For sake
of brevity, by (a; b) we define ar + bl, and by (a; b; c) we define ar 2 + brl + cl2. Note that to recover the full
covariance matrix, one needs to add the intrinsic error of chamber spatial resolution σ 2

x to each diagonal element.
TheH matrix is given by





1 0 0
1 0 0.3Bl
1 0 0.3B3l
1 0 0.3B5l
0 1 0

r + l 1 0.3Bl
(

1
2r + 1

2 l)
2r + 3l 1 0.3Bl

(
5
2r + 9

2 l)
3r + 5l 1 0.3Bl

(
13
2 r + 25

2 l)





(16)

Resolution is once again obtained by applying (4) and (6), and the result is plotted in Figure 1 together with the
result from Sec. 2.1. It is worth comparing the slope of the curves, especially at high-momenta. When using the
positions, the resolution is largely improved because the full lever arm of the spectrometer is used.

Momentum resolution in low-pT region, where MS is supposed to give the dominant contribution, is roughly what
one would expect from formula (21) in [4], which holds for uniform spacing between four stations (neglecting
logarithm in (6)):

δpT

pT
≈ 0.0136

0.3BL

√
1.3

√
L

X0

where the usual units forB and L are understood. Assuming a bending power of (1.5× 2) Tm, we get a resolution
of about 18%, to be compared with 15% from the complete calculation (which uses angles too). If we include the
logarithmic correction to MS variance, then we get a 17% resolution. Momentum resolution at 1 TeV/c is found to
be about 27%. We can compare this result with the sum in quadrature (see Sec. 3):

δpT

pT
≈ 0.0136

0.3BL

√
1.3

√
L

X0
⊗ σx

√
73

0.3BL2
pT

where the expression on the right is derived from the exact formula (13) in [4], which has been derived assuming
no MS and uniform spacing between four (position) measuring stations. By choosing the value σ x = 50 µm, we
get 36% at pT = 1TeV/c. The correlation between φ0 and 1/pT is found to be ρφ01/pT

= −0.058 at 10 GeV/c
and ρφ01/pT

= −0.67 at 1 TeV/c. The sign of the covariance is in agreement with that in 2.1. The error on φ 0 at 1
TeV/c is equal to about 0.1 mrad, and the error on x 0 is about 50 µm.

pT (GeV/c)
10 210 310

dp
T/

pT

0

0.1

0.2

0.3

0.4
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0.6

0.7

0.8

0.9

1

pT resolution: comparison ’angles-only’ / ’angles plus positions’ without vertex

Figure 1: Comparison between pT resolution calculated with angles only (blue) and with angles plus positions
(red).
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2.3 Fitting angles and positions with vertex constraint
Finally, we can add a further constraint by forcing the muon to pass through the vertex. The resolution will benefit
from the huge bending power inside the coil (12 Tm). Nine measurements are available to fit three parameters.
The position of the interaction point is included as a fictitious measurement, with an error equal to the transverse
beam size. It is a geometrical exercise to show that, within small angles approximation, the position of the IP is
given by

xIP = x0 − y1φ0 −
(
0.3Bcoilρ2)

2
1
pT

(17)

where y1 is the vertical coordinate of MB1 mid-point (taking y IP = 0), and ρ is the lever arm inside the coil,
i.e. the length of the radius of the circle in transverse plane where magnetic field is present (we can assume that
the magnetic field vanishes in the middle of the coil). The covariance matrix for the nine measurements contains
correlations due to MS before MB1. These new elements are calculated in the same fashion as in (14) and (15).
The new covariance matrix will be a 9 × 9 matrix given by the sum of the V matrix calculated in Sec. (2.2) (to
which we now add a null column and row, since we include the vertex as a further measurement) and a new, say,
V ′ matrix, which takes care of the correlations due to MS before MB1 and of the error on vertex position. We now
adopt a different parametrization of V ′ matrix components. If we denote the average on the distribution of MS
before MB1 by 〈·〉IP , and put

〈
φ2

1

〉
IP

≡ s,
〈
x2

1

〉
IP

≡ v and 〈φ1x1〉IP ≡ c, then we have:

cov [φi, φj ]IP =





s s s s
... s s s
...

... s s
...

...
... s




(18)

cov [φi, xj ]IP =





c c + s(1; 1) c + s(2; 3) c + s(3; 5)
c c + s(1; 1) c + s(2; 3) c + s(3; 5)
c c + s(1; 1) c + s(2; 3) c + s(3; 5)
c c + s(1; 1) c + s(2; 3) c + s(3; 5)



 (19)

cov [xi, xj ]IP =





v v + c(1; 1) v + c(2; 3) v + c(3; 5)
... v + s(1; 2; 1) + c(2; 2) v + s(2; 5; 3) + c(3; 4) v + s(3; 8; 5) + c(4; 6)
...

... v + s(4; 12; 9) + c(4; 6) v + s(6; 19; 15) + c(5; 8)
...

...
... v + s(9; 30; 25) + c(6; 10)





(20)

cov [φi, xIP ] = 0 (21)

cov [xi, xIP ] = 0 (22)

cov [xIP , xIP ] = σ2
xIP

(23)

The meaning of expressions like (a; b; c) and (d; e) is explained above. The numerical values for s, v and c can be
derived by using formula (6). We have chosen the values (p T is measured in GeV/c):

s v c
0.031 1

p2
T

0.099 1
p2

T
m2 0.048 1

p2
T
m

However, because material between IP and MB1 is not homogeneous, it is not a trivial assumption that (6) still
holds. Alternatively, we could make a Monte Carlo particle-gun simulation of low-p T muons with a given momen-
tum and (η, φ) direction and get s, v and c directly from the distribution of reconstructed segments in MB1.
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The result of the complete calculation is plotted in Fig.2, and it has been superimposed with the curve calculated
without the vertex to better visualize the change in the absolute scale of momentum resolution. We have set the
new geometrical parameters to these values:

Bcoil y1 ρ σxIP σMSIP

4 T 4.2 m 3.4 m 15 µm 0.176 1
pT

The value of σMSIP corresponds to 120 radiation lengths. By choosing the numerical values listed in the table,
we find that momentum resolution at low-pT is around 6.6%. This value is to be compared with what one would
expect by considering only one angular measurement in MB1 with an error dominated by MS. The angle∆φ w.r.t
the radial passing through the mid-point of MB1 segment is an estimator of 1/p T , since we have that:

∆φ =
0.3Bcoilρ

2
ρ

y1

1
pT

≈ 1.65
pT

However, because of MS before MB1, the x position of the segment receives random displacements, which causes
the radial to be randomly reconstructed. This effect has to be taken into account, and it is easy to see that positive
correlation between MS angles and displacements tends to make ∆φ smaller. We find that the width of ∆φ
distribution is reduced by a factor

√
0.45 with respect to the value predicted by (6), so that:

δpT

pT
=

√
0.45

0.176
pT

pT

1.65
≈ 7.2% (24)

The difference between (24) and the 6.6% prediction from the global fit is due to the contribution of the remaining
measurements in the barrel, which allow the track to be reconstructed with more precision. This can be verified by
performing the following limit: let l and r tend to zero, and at the same time multiply the squares of angles and
positions errors by a factor four. Then, it is as if only MB1 existed with the same nominal error. The result of this
procedure predicts a 7.1% resolution.

Resolution at high-pT is around 9.6%. This value underestimates Monte Carlo prediction by a factor ≈ 1.5. This
could in part be due to a poor choice of geometrical parameters (see next paragraph). The correlation between φ 0

and 1/pT is ρφ01/pT
= −0.95 at 1 TeV/c; the error on φ0 is about 0.2 mrad and the error on x0 is about 310 µm.

pT (GeV/c)
10 210 310

dp
T/

pT

0

0.05

0.1

0.15

0.2

0.25

0.3
pT resolution: comparison ’no vertex’ / ’vertex’

Figure 2: Comparison between pT resolution calculated with the vertex (red) and without the vertex (blue).

3 Resolution
3.1 Analytical calculation
Momentum resolution calculated in Sec. 2.3 is a function of the geometrical parameters of the transverse plane. By
varying their values, it is possible to determine their relative contribution to the overall resolution. The dependence
of δpT

pT
on these parameters (magnetic field, lever arm, spatial resolution, . . . ) is expected to change according to
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the dominant regime of momentum resolution, i.e. whetherMS is the main source of uncertainty or if measurement
error prevails. Since MS is dominant up to 200 GeV/c [2], momentum resolution at 10 GeV/c and 1 TeV/c should
lie in pT ranges characterized by different regimes.

In tracking devices, if chamber resolution is the limiting factor, then

δpT

pT
∝ σ

BL2
pT (25)

where σ is the measurement error and L is the lever arm. If MS dominates,

δpT

pT
∝ 1

B
√

LX0
. (26)

In general, transverse resolution in collider tracking devices is parametrised by the formula:

δpT

pT
= (c1 × pT ) ⊗ c2 (27)

where ⊗ represents the sum in quadrature of the geometrical and multiple scattering terms, and c 1 and c2 do not
depend on the momentum of the particle.

Let’s now discuss howmomentum resolution at 10 GeV/c (low-momentum) and at 1000 GeV/c (high-momentum)
depends on few parameters.

3.1.1 Variation of the magnetic field

Momentum resolution scales with the inverse of the magnetic field (equations (25) and (26)). Since the effect of
the magnetic field inside the coil is dominant, if we vary only the field inside (B coil) from the nominal value of 4
T to 2 T (unrealistic scenario), then momentum resolution becomes equal to 11% and 18% respectively.

3.1.2 Spatial resolution of the chambers

At low-momentum, when MS dominates, the position error is irrelevant for momentum resolution. However, for
high-momenta, δpT

pT
increases with position resolution. If the spatial error on DT single-point measurement is

changed from 150 µm to 200 µm (300 µm), then momentum resolution becomes equal to 10.4% (12%), i.e. it
increases by a relative factor 10% (30%).

3.1.3 Radius of the coil

The coil lever arm is an extremely important parameter. Suppose that ρ in equation 17 is 5% smaller than the
assumption (that is, 3.2 m instead of 3.4 m). Then, δpT

pT
gets equal to 7.3% and 11% at 10 GeV/c and 1000 GeV/c

respectively (i.e. a fractional difference of 10%). It is worth noticing that a 5% reduction in the coil radius will
correspond also to a 10% decrease in the magnetic field in the iron (however, this effect gives a small correction to
the values shown above).

3.1.4 Effect of the magnetic field in the iron

As an academic exercise, we can turn off the magnetic field in the iron: resolution at high-p T gets smaller (8%).
This is intuitively as if the angular and position resolution of the first chamber were increased, since the linear
fit in the barrel allows a better measurement of impact (x0) and angular (φ0) parameters, which are crucial in the
measurement of pT .

3.2 Monte Carlo simulation
The analytical results of the previous Section have been compared to the Monte Carlo prediction. Samples of
di-muon pairs have been generated from the IP using both CMSSW 2 0 10 and CMSSW 2 1 9. In both cases, the
muons have been generated at η = 0 and flat in φ angle between 0 and 2π, with momenta flat in p T in the interval

8



(5)10÷1000 GeV/c. A χ2 cut on the reconstructed tracks has been applied (χ2
d.o.f ≤ 2.0). The resolution δpT

pT
is

defined as the standard deviation of the gaussian fit to the distribution ofR ≡ (1/p rec
T − 1/pgen

T ) pgen
T , where pgen

T
is the transverse momentum generated by MC and prec

T is the value of reconstructed momentum.

3.2.1 CMSSW 2 0 10

A sample of muons tracks has been generated and reconstructed as StandAlone Muons using the version 2 0 10 of
CMSSW. Muons have been reconstructed both with the vertex and without the vertex constraint. Reconstruction
with the vertex has been forced by including the option UpdatedAtVertex in the .cfg file which has generated the
sample. The result is shown in Fig. 3. Notice that the difference between the two plots is not as relevant as one
would expect from Sec. 2.2. A cut on the number of hits has been applied to the reconstructed tracks (at least 40
hits), and the resulting curve for muons reconstructed with the vertex is compared to the resolution curve obtained
without cuts (Figure 4).

The comparison between MC prediction and the analytical calculation proposed in this paper are shown in Figure
5 and 6 for muons reconstructed both with and without the vertex.
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Figure 3: Momentum resolution for StandAlone
muons reconstructed with (blue) and without (red) the
vertex constraint using CMSSW 2 0 10.

Figure 4: Comparison between momentum resolution
obtained from all tracks (blue) and momentum reso-
lution obtained from tracks with at least 40 hits (red)
using CMSSW 2 0 10.

3.2.2 CMSSW 2 1 9

A different sample of muons tracks has been generated and reconstructed as StandAlone Muons using the version
2 1 9 of CMSSW. Muons have been reconstructed both with the vertex and without the vertex constraint (Figure
7). A stronger cut has been applied to the reconstructed tracks (at least 47 hits on a maximum of 51, and four
DT segments). The resulting curve has been superimposed with the resolution curve obtained without cuts (Figure
8). Momentum resolution for muons reconstructed without the vertex at low-p T is smaller than expected from the
considerations made in Sec. 2.2. The relative difference between the curves with and without cuts is not as relevant
as it has been obtained using CMSSW 2 0 10. Resolution at 1 TeV/c is around 25%, while a 17% p T -resolution
was predicted by the previous version of the software.
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Figure 5: Comparison between pT -resolution
for muons reconstructed with the vertex using
CMSSW 2 0 10 (blue boxes) and pT -resolution from
the analytical calculation in Sec. 2.3 (red points).

Figure 6: Comparison between pT -resolution for
muons reconstructed without the vertex using
CMSSW 2 0 10 (blue boxes) and pT -resolution from
the analytical calculation in Sec. 2.2 (red points).

The comparison between MC prediction and the analytical calculation proposed in this paper are shown in Figure
9 and 10 for muons reconstructed both with and without the vertex.

4 Effect of misalignment on momentum resolution (analytical study)
In the LS method, the estimator for the unknown parameters is given by (4). Each parameter is a linear combination
of the y measurements. Suppose that one chamber suffers from misalignment (bad orientation or lateral shift of
the station). A systematic error is introduced, which has to be taken into account. A biased measurement changes
the estimator value for 1/pT by an amount proportional to the shift of the measurement. If y i → yi + δ, where δ
can be either an angle or a position shift, then:

1
pT

→ 1
pT

+ D3,iδ (28)

where 1/pT is taken to be the third parameter. The relative systematic error on pT is equal to the relative error on
1

pT
, as in (9).

Suppose that the i-th station is rotated by−δφ (angles are supposed to increase clockwise), and the muon in bending
clockwise because of magnetic field. All angular measurements in MBi will be biased by+δφ. Taking δφ equal to
0.25 mrad (First Data Taking Scenario), we notice that the magnetic rotation 0.3Bl/p T is greater then δφ up to pT

equal to 700 GeV/c, so that, for not too high momenta, the misaligned station will be more aligned with MB(i+1)
and less with MB(i-1). It turns out that if MB1 and MB2 are misaligned as described above, then the muon is
reconstructed with a higher-pT , while the opposite occurs for the other stations.

Consider now the effect of a lateral displacement of one station at the time by −δ x. It happens that such a mis-
placement of MB1 and MB4 causes the track to be reconstructed with a lower curvature (i.e. lower-p T ), while the
opposite occurs for the other two stations.

As far the absolute scale of error is concerned, we notice that the misplacement of a station has a much more
critical effect on the resolution then an angular misalignment, especially at high-p T . Relative error on pT remains
within 1% up to 1 TeV/c for 0.25 mrad misalignment on every stations. If we put δ x = 1 mm (again, this value
is taken from First Data Taking Scenario), then the systematic error for MB1 or MB4 misplacement is expected to
be around 100% already at 500 GeV/c. If we displace MB2 by the same amount, the relative error exceeds 100%
over about 600 GeV/c, while for MB3 the same happens over about 300 GeV/c.
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Figure 7: Momentum resolution for StandAlone
muons reconstructed with (blue) and without (red) the
vertex constraint using CMSSW 2 1 9.

Figure 8: Comparison between momentum resolution
obtained from all tracks (blue) and momentum reso-
lution obtained from tracks with at least 47 hits and 4
DT segments (red) using CMSSW 2 1 9.
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Figure 9: Comparison between pT -resolution
for muons reconstructed with the vertex using
CMSSW 2 1 9 (blue boxes) and pT -resolution from
the analytical calculation in Sec. 2.3 (red points).

Figure 10: Comparison between pT -resolution
for muons reconstructed without the vertex using
CMSSW 2 1 9 (blue boxes) and pT -resolution from
the analytical calculation in Sec. 2.2 (red points).
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The shift of 1/pT due to misalignment of angles and positions of the four muon stations is shown in Figure 11 and
12 for some momenta. These values are derived according to (28), with the D matrix calculated in Section 2.2.
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Figure 11: Shift of 1/pT due to a misalignment δφ =
0.25 mrad of one muon station at the time.

Figure 12: Shift of 1/pT due to a misplacement δx =
1 mm of one muon station at the time.
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