
Physics at the LHC

• high energy interactions
• luminosity, cross sections, event rates
• accelerators and colliders
• detectors
• the total cross-section
• high-pt events
• Monte Carlo simulations



High energy interactions
• High energy particle interactions occur naturally in many environments:

– HE cosmic rays striking atoms in the atmosphere
– Plasma in center of the sun
– Energetic astrophysical systems like supernovas, rapidly spinning neutron

stars, accretion around black holes
– The hot plasma of the early universe
– Nuclear reactors, plasma reactors (ok, not natural)

• Experiments with accelerators can measure interaction rates in a
controlled environment, to study individual collisions one at a time with
specified energy/momentum distribution of initial state particles
(beam/target)

• Colliding beams produce large COM energies, with the COM at rest in
the laboratory, surrounded by particle detectors.

• Reaction rates (cross-sections) measured as a function of ECM can then
be applied to natural systems of interest to work out the consequences
(eg, energy production in the sun; evolution of matter, energy, space
and time in the early universe; etc)



Reaction rates
• When particles interact (via collisions), one particle sees the other in

“cross-section”.
• Fixed target: beam particle incident on a block of matter of density ρ, atomic

number A, and thickness t sees NA ρt/A atoms (or nucleii) per unit area, (NA
= Avogadro’s number, 6.02×1023 nucleons/gm)

• If each atom (or nucleus) has a cross-section of σ, the probability of hitting
one is (NA ρt/A) σ.

• If there is a flux of J beam particles per second, the collision rate will be
dN/dt = (JNA ρt/A) σ

• The left hand side is measured in an experiment. The terms in the
parenthesis on the right hand side (the luminosity) are under the
experimenter’s control.

• We can measure the atomic (or nuclear) cross-section σ, and compare it
with microscopic theory (quantum physics of the atom or nucleus).

• At low momenta, the beam particle has a long quantum wavelength (λ~h/p)
and “sees” the whole atom, coherently. At higher momenta (> 1 keV), the
beam can “resolve” the nucleus; and at still higher momenta (> 1 GeV) the
individual nucleons; higher (> 10 GeV), the quarks in the nucleons.



Scattering cross-section
• The scattering cross-section of a billiard ball of radius r is the

geometric “black disk”:  σ = π(2r)2 , independent of energy.
• Ideal billiard balls scatter “elastically”, losing no energy, so the

only difference between the input asymptotic state and the
output asypt. state is the scattering angle: σ(θ)  ≡ dσ/dθ



quantum scattering
• In quantum mechanics, we calculate wave scattering;

the Feynman diagram is a cartoon showing the
momentum states of the outgoing quantum plane waves

wave (and quantum) scattering

incoming plane wave  ψI 
stationary state:  ψI +ψf same thing in Feynman diagrams,

with quantum corrections



inelastic collisions
• In general, cross-sections depend on Ecms :  σ =  σ(Ecms)
• At higher energies, collisions are inelastic; final state contains

different particles than the initial state; and/or energy is lost
(to the environment; not relevant in collider experiments).

• The inelastic cross-section can be written as the sum of many parts
with different final states; depends on key (invariant) properties of the
final state:

• σtot = σel + σdiff + σjets + σEW + σbsm + …



ee -> ff



Accelerators: operating principle







Fixed target scattering

 Event Rate dNscatt / dt  = F × ρ × NA / A × t × σ  

• F = Flux (beam particles/area/sec) 
• ρ = Target density (kg/m3)
• NA = Avogadro’s number = 6 × 1026 nucleons / kg
• A = Target atomic number (nucleons/nucleus)
•  t = target thickness (m)  
• σ = Beam/target (nucleus) cross-section 
 Measure “differential” cross-sections   dσ / dΩ



Fixed target experiments
The discovery of the nucleus
Rutherford scattering (tabletop)
(wiredchemist.com)

The discovery of partons (quarks) in the nucleus (SLAC)



Colliders

• To search for ever more massive particles, need energy in the center-
of-mass to create them (E = mc2)
• Fixed-target experiments “waste” a lot of energy in recoil of the
system.
• To reach the highest energies, collide beams head-on; the center-of-
mass is at rest in the lab, ECM = 2 Ebeam and all the beam energy is
potentially available for producing massive particles.

• Event rate:    d Nscat / dt = L σ
• Luminosity:   L = f N+ N- / (4 π σx σy )
• Caution: don’t confuse the sigmas; they’re different!
• σ is the microscopic cross-section in units of area (1 barn = 1×10-24 cm2)
• σx is the “mesoscopic” beam linear dimension (Gaussian sigma), of order 10-4 cm.



Frontiers of particle
physics



Luminosity, rate,
factories
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Accelerators and the energy frontier

o   Partons, jets



Colliders around the world



• CERN, Geneva, Switzerland (SPS, ν beams, LEP, LHC)
• Fermilab, Batavia, Illinois (Tevatron, ν beams, fixed target)
• SLAC (PEP, PEP-II, SLC)
• DESY, Hamburg, Germany (PETRA, HERA)
• KEK, Tsukuba, Japan (KEK-B, ν beams, fixed target)
• CESR/Cornell, BEPC/Beijing, DAΦNI/Frascati, VEPP (Novisibirsk), etc

Accelerator labs around the world

Stanford, USA Frascati, Italia

Hamburg, Germany Tsukuba, Japan

Stanford, USA Frascati, Italia

Hamburg, Germany Tsukuba, Japan
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LHC tunnel





PDG section 26:



What is the interaction rate?
• At the LHC, there are 2808 bunches of 1011 protons, spaced ~7.5 m apart

(and ~30 cm long) around the 17 km circumference
• They collide every 25 ns (Δt = Δx/c), that is,  f = 4 × 107 /s
• Design luminosity is L = fN1N2 / (4πσxσy) ~  1 × 1034 /cm2/s
• total pp cross-section is close to geometric black disk with r = 1 fm:

σ = π(2rp)2  ≈ 0.1 × 10-24 cm2  = 0.1 barn = 100 mb
• Interaction rate is dN/dt = L σ = 109/s = 1/ns
• So there are on order of 25 interactions per collision!
• This is unique to the LHC; all previous colliders had << 1 interaction per beam

collision
• Most interactions are “soft” (low-pt), leaving little energy in the detector

(elastic, diffractive)
• Hard (high-pt, interesting) interactions are rare in a single beam collision
• The detector must be capable of distinguishing different beam collisions (25

ns apart!), and multiple interactions in a single collision



Particle detectors
• Surround the collision with detector systems to catch and

measure the properties of the final state particles
• Collider detectors must cover (almost) the full 4π solid

angle, leaving smallest hole for the beampipe and cables
• and have many (sometimes 106 or more) individual

elements (with associated readout electronics) capable of
locating a particle in space, time, momentum, energy.

• Most built as concentric cylindrical layers (plus endcaps) to
respond to different particles.



solenoidal trackers
• Most collider detectors are spectrometers that measure the

momentum of charged particles moving in a central
solenoidal magnet, with high B field (4 Tesla in CMS) along
beam axis, to bend the paths of the particles in the plane
perp. to beam axis (a helix in 3D).

• Lorentz magnetic force gives:
pt  = 0.3 q B Rc



Interactions of high energy
particles with material (detectors)

• Particle decay (π0→ γγ, µ→eνν, π→µν, K→ππ …)
decay length  <L> = γβcτ = (p/m) cτ

• High-p charged particles (e±,µ±,π±,K±,p±):
ionization (dE/dx energy loss: Bethe-Bloch)

• Charged particles: Multiple scattering, range-out
• Light particles (γ, e±): Bremsstrahlung, pair-production
⇒ electromagnetic showers

• Fast charged particles (e±,µ±,π±,K±,p±, with v > c/n):
Cerenkov radiation

• Hadronic particles (π±,K±,K0
L, n0, p±):

inelastic nuclear collisions ⇒ hadronic showers



dE/dx (BetheBloch)

EM shower schematic

Multiple coulomb scattering

EM shower in “accordion” EM calorimeter

EM shower in CsI crystal calorimeter

Hadronic shower in hadron calorimeter

Č radiation
in nuclear reactor



Particles in a detector







SM Fundamental Particle  Appears As
γ                γ (ECAL shower, no track)
e                           e (ECAL shower, with track)
µ                           µ  (ionization only)
g                           Jet in ECAL+ HCAL
q = u, d, s            Jet (narrow) in ECAL+HCAL
q = c, b               Jet (narrow) + Decay Vertex
t  → W +b            W + b
νeνµντ             Et missing in ECAL+HCAL
τ → l + ντ  + νl Et missing + charged lepton
W → l + νl Et missing + charged lepton,
 Et ~M/2
Z → l+ + l-         charged lepton pair
    → νl + νl Et missing in ECAL+HCAL

Particles in a detector



The CLEO III detector



BB production and decay CLEO event



The CMS detector





CMS exploded



Atlas at LHC



CDF Detector at Fermilab Tevatron



CDF high Et event



CDF 4-jet event



CMS
H→4e



The total cross-section
• σtot = σel + σdiff + σjets + σEW + σbsm + …



Monte Carlo simulations
• The final states of high energy collisions (“events”) are single

samples from the distributions (differential cross-sections)
predicted by Quantum Field theory.

• These final states are, in general, very complex.
• So is the response of the detector to those collisions.
• It would be impossible to understand the detected events except

through detailed, iterative comparisons with detailed simulations.
• The heart of these simulations is the “event loop”.
• The simulations generate single events using (pseudo-)random

numbers to sample the QFT predictions and fix other variables
that are essentially random; hence, “Monte Carlos”.

• A Monte Carlo is actually an extremely elaborate integral:
         N =  Σfs ∫ σ d(phase space of final state)

• Phase space is all possible configuration of final state momenta,
consistent with energy-momentum conservation.

• Sum over all final states that we choose to observe, consistent
with all known conservation laws and dynamical laws.



Monte Carlo simulations
• Monte Carlo is in two parts: physics (event) simulation, and

detector response simulation.
• The detector response is based on an elaborate and detailed

program called GEANT.
– Complete description of the detector geometry, materials, active

elements
– All the ways that particles can interact with the material:

bremsstrahlung, ionization, dE/dx, hadronic showers, EM showers
• The physics simulation is based (for LHC) on Pythia (and other

similar programs).
– choice of initial state partons based on parton distribution functions in

the proton
– hard scattering sub-process
– parton shower and fragmentation
– hadronization
– resonance and heavy particle decays
– Rigorous energy-momentum conservation



Pythia

• Download from http://home.thep.lu.se/~torbjorn/Pythia.html
• Install in linux or MacOS
• Study A Brief Introduction to PYTHIA 8.1 and/or the

Pythia 8.1 Intro and Tutorial
• Look at (and if you want, run through) the Pythia 8

Worksheet
• Run (all of) the examples
• Examine the results! What do events look like? What do

the histograms tell us?
• What are the reported cross-sections for the different final

states / processes?



a single pythia event: gg → tt



Integrated
cross section

in Pythia

pythia example main11/out11 (Top:all; Ecmmin >40, ptmin > 20)
σ = 5×10-12 mb,  L = 1×1034 /cm2/s,  dN/dt = 5×10-5/s
σ = 5×10-6 mb,  L = 1×1034 /cm2/s,  dN/dt = 50/s


