The language of particle physics

- In non-relativistic QM you learned about the hydrogen atom, multi-electron atoms, maybe a bit about molecules and nucleii
- To probe short distances (structure of nucleus) requires probes with short de Broglie wavelength, ie, high energy probes, such as relativistic electrons, protons, photons, etc.
- Particle physics is inherently relativistic (as well as quantum mechanical).
- At high energies, it becomes easy and natural to convert matter to different forms (E = mc²); the theory must be many-body (unlike non-rel QM). Classical particle mechanics, x(t), can't accommodate this, but field theory, φ(x,t), can.

 The language of particle physics is Relativistic Quantum Field Theory (QFT) A somewhat forced marriage of Quantum mechanics, Relativity, Field theory

- Observables (energy levels, reaction rates) in non-trivial QFTs can be computed in perturbation theory.
- A broad class of "gauge invariant" Quantum field theories are "renormalizable" - perturbative calculations converge to a finite (physically meaningful) result (Nobel prize 1999).

The Standard Model on one slide

- The language: Quantum Field Theory
 - = QM + Relativity + Field Theory (E&M)
- Origin of forces: Gauge Symmetries $-SU(3)_c \times SU(2)_Y \times U(1)$
- "Elementary" Particles:

Each fermion has antiparticle: same mass, opposite charges. The (d, s, b) quarks mix quantum-mechanically (CKM)! "Elementary" forces:

carrier boson Spin couples to Force Mass 1 charged particle EM photon γ 0 W^{\pm}, Z^{0} 1 80, 91 GeV all fermions weak gluons gquarks 1 0 strong graviton 2 0 all fermions gravity

The incredible success of the Standard model is our boon and our bane. Arising from it are many questions whose answers lie Beyond the Standard Model

Particles and forces

The particle drawings are simple artistic representations

Particles and forces

FUNDAMENTAL FERMIONS

- Paradigm of Elementary Particle Physics: Matter is composed of fundamental fermions (Pauli Exclusion) bound together by fundamental forces (carried by bosons)
- Fundamental = simply and completely describable
- Ordinary matter: electrons, protons, neutrons (fermions) bound by EM (photons), nuclear forces, and gravity
- a simple fermion is structureless
 (no internal degrees of freedom) ⇒ pointlike
- 1950's: protons, neutrons have structure, $R \sim 1 fm$ (requires probes with energy > 10 MeV or more)
- 1960's: nucleon structure is due to quarks (u, d);
 1970's 1990's: six "flavors" of quarks: u, d, s, c, b, t
- Even structureless fermions have "size" due to force couplings: $r_e = \alpha \hbar c / m_e c^2 = 2.8$ fm
- What do the properties of "fundamental" fermions tell us about nature?
 Fundamental fermions

Interactions: coupling of forces to matter

The mathematical description of the fundamental interactions, all built by analogy to Maxwell's theory of EM, is based on continuous gauge groups: $U(1)_{Y} \times SU(2)_{I} \times SU(3)_{c}$

Strengths of fundamental forces

Interaction	exchanged boson	relative strength	example	
Strong	Gluon (g)	1	$\left {\begin{array}{*{20}c} & g \\ u \end{array} } \right _{d} \left {\begin{array}{*{20}c} g \\ d \end{array} } \right _{d}$	SU(3) confining
Electromagnet.	Photon (y)	<u>1</u> 137	e^{e}	U(1) ∞ range
Weak	W ⁺ , W ⁻ , Z ⁰	10 ⁻¹⁴	$e^{V_c} W_{d}$	SSB short-range
Gravitation	Graviton (G)?	10 ⁻⁴⁰	$u \longrightarrow G e_e$	Tensor field geometric

Electroweak Lagrangian

• From the PDG review, Ch.10:

$$\mathcal{L}_{F} = \sum_{i} \overline{\psi}_{i} \left(i \not \partial - m_{i} - \frac{gm_{i}H}{2M_{W}} \right) \psi_{i}$$

$$- \frac{g}{2\sqrt{2}} \sum_{i} \overline{\psi}_{i} \gamma^{\mu} (1 - \gamma^{5})(T^{+} W^{+}_{\mu} + T^{-} W^{-}_{\mu}) \psi_{i}$$

$$- e \sum_{i} q_{i} \overline{\psi}_{i} \gamma^{\mu} \psi_{i} A_{\mu}$$

$$- \frac{g}{2\cos\theta_{W}} \sum_{i} \overline{\psi}_{i} \gamma^{\mu} (g^{i}_{V} - g^{i}_{A}\gamma^{5}) \psi_{i} Z_{\mu} . \qquad (10.1)$$

 $\theta_W \equiv \tan^{-1}(g'/g)$ is the weak angle; $e = g \sin \theta_W$ is the positron electric charge; and $A \equiv B \cos \theta_W + W^3 \sin \theta_W$ is the (massless) photon field. $W^{\pm} \equiv (W^1 \mp i W^2)/\sqrt{2}$ and $Z \equiv -B \sin \theta_W + W^3 \cos \theta_W$ are the massive charged and neutral weak boson fields,

QCD Lagrangian

• From the PDG review, Ch 9:

$$L_{\text{QCD}} = -\frac{1}{4} F^{(a)}_{\mu\nu} F^{(a)\mu\nu} + i \sum_{q} \overline{\psi}^{i}_{q} \gamma^{\mu} (D_{\mu})_{ij} \psi^{j}_{q} -\sum_{a} m_{q} \overline{\psi}^{i}_{q} \psi_{qi} , \qquad (9.1)$$

$$F^{(a)}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} - g_{s} f_{abc} A^{b}_{\mu} A^{c}_{\nu} , \qquad (9.2)$$

$$(D_{\mu})_{ij} = \delta_{ij} \ \partial_{\mu} + ig_s \ \sum_a \frac{\lambda^a_{i,j}}{2} A^a_{\mu} \ , \tag{9.3}$$

where g_s is the QCD coupling constant, and the f_{abc} are the structure constants of the SU(3) algebra (the λ matrices and values for f_{abc} can be found in "SU(3) Isoscalar Factors and Representation Matrices," Sec. 36 of this *Review*). The $\psi_q^i(x)$ are the 4-component Dirac spinors associated with each quark field of (3) color *i* and flavor *q*, and the $A^a_{\mu}(x)$ are the (8) Yang-Mills (gluon) fields. A complete list of the Feynman rules which derive from this Lagrangian, together with some useful color-algebra identities, can be found in Ref. 1.