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SUPERSYMMETRY  
     (see lectures of G. Giudice) 

Relates fermions and bosons: 

   for each particle p with spin s, 
   there exists a SUSY partner  
   with spin s-1/2.  

Ex. :       q (s=1/2)   →            (s=0)          squarks 
                  Z  (s=1)      →            (s=1/2)       zino 

Motivations: 
    unification of fermions and bosons is attractive 
    solves problems of SM, e.g. divergence of Higgs mass :  

-

f 

f 

H 

Fermion and boson loops cancel, provided 
m   ≤ TeV.  
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 Measured coupling constants unify at GUT scale 
     in SUSY but not in SM.  

SM 

SUSY 
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 Does not contradict predictions of SM at low 
    energy →  not ruled out by present experiments. 
    Predicts a light Higgs 

 Ingredient of string theories that many consider 
    best candidate for unified theory including  
    gravity 

However: no experimental evidence for 
 SUSY as yet  

       Either SUSY does not exist   

                     OR 

mSUSY  large (>> 100 GeV) → not accessible 
to present machines 

LHC should say “final word”  about 
SUSY if  mSUSY ≤ a few TeV 
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Drawback : many new particles predicted 

Here : Minimal Supersymmetric extension of  
           the Standard Model (MSSM) which 
           has minimal particle content 

MSSM particle spectrum : 

5 Higgs bosons : h, H, A, H± 

Masses not known. However charginos/neutralinos 
are usually  lighter than squarks/sleptons/gluinos. 
Present limits :  m          >   90-100 GeV    LEP 
                          m          >    250 GeV        Tevatron 

quarks   →   squarks  
leptons  →    sleptons 
W±            →    winos 
H±             →    charged higgsino 
γ           →     photino 
Z          →     zino 
h, H     →     neutral higgsino 
g          →     gluino 

→ χ ±
1, χ ±

2 
2 charginos 

→ χ 0
1,2,3,4 

4 neutralinos 
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SUSY phenomenology 

There is a multiplicative quantum number: 

R-parity         Rp= 
+ 1       SM particles 

- 1        SUSY particles 
which is conserved in most popular models 
(considered here). 

Consequences: 

•  SUSY particles are produced in pairs 
•  Lightest Supersymmetric Particle (LSP) 
  is stable. 
    LSP is also weakly interacting (for 
    cosmological reasons, dark matter)  

   → LSP behaves like a ν → escape detection 
   → Et

miss     (typical SUSY signature) 

    Most models :      LSP ≡ χ0
1 
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Production of SUSY particles at LHC 

•  Squarks and gluinos produced via strong processes 
  → large cross-section 

m       ~ 1 TeV      σ ∼ 1 pb → 104 events per year 
                                                    produced at low L          

•  Charginos, neutralinos, sleptons produced via 
  electroweak processes → much smaller rate 

Ex.:  

Ex.  σ ≈ pb  mχ ≈ 150 GeV 

          are dominant SUSY processes at LHC 
            if kinematically accessible  

q 

q’ 

χ+ 

χ0 

g 

q 

q 

q 

αs αs 

g 
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Decays of SUSY particles : some examples 

Ex. Cascade decays 
involving many 
leptons and /or  
jets + missing 
energy (from LSP) 

χ± W± 

χ0
1= LSP 

χ0
1 

Z 
χ0

2 

 

Z 

χ0
1 

χ0
2 

χ0
1 

Z 

q 

q 

χ0
2 

 heavier → more complicated decay chains 
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However : whatever the model is, we know that    

   decays through cascades favoured 

⇒  many high-pT jets/leptons/W/Z in 
      the final state + ET

miss 

Exact decay chains depend on model parameters 
(particle masses, etc.) 

at LHC is easy to extract SUSY signal  
from SM background 

are  heavy ( m > 250 GeV) 
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Example: if  Nature had chosen the following 
point in the parameter space:   

Requiring : ET
miss  > 300 GeV 

                   5 jets pT > 150, 150, 100, 100, 90 GeV 

In one year at 
low L: 
NS = 11600  events 
NB = 560  events 

    S ~ 500 !! 

m     ≈ 900 GeV 

m     ≈ 600 GeV 

m χ±   ≈ 150 GeV 

m χ0   ≈ 80 GeV 
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With similar analysis, discover or exclude 
          with masses up to 1.5-2 TeV in one 
year at high luminosity (L = 1034 cm-2 s-1) 

Thanks to: 
          -- large cross-section 
          -- very clear signature  
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    If   SUSY exists, it will be easy and fast  
   to discover  at LHC up to m ≈ 2-3 TeV. 

   Several measurements of SUSY particle masses 
   can be performed. 

   Thanks to large cross-section, small backgrounds 
   and variety of signatures.  

Conclusion on SUSY 
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      Precise  
 measurements of:  
        mW , mtop 
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Motivation: 

W mass and top mass are  fundamental 
 parameters of the Standard Model: 

f (mtop
2, log mH) 

radiative corrections 
Fermi constant  
measured in muon 
decay 

Weinberg angle 
measured at  
LEP/SLC 

Electromagnetic constant 
measured in atomic transitions,  
e+e- machines, etc. 

→ since GF, αEM, sinθW are known with high  
     precision, precise measurements of mtop and  
     mW allow constraining Higgs mass (weakly 
     because of logarithmic dependence) 

t 
W W 

b 
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mW (LEP2 + Tevatron) = 80.451 ± 0.033 GeV 
mtop (Tevatron) = 174.3 ± 5.1 GeV 
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Year 2006: 

ΔmW  <  30 MeV  (0.4 ‰)       from LEP/Tevatron 

Δmtop ≈ 3 GeV  (2 %)            from Tevatron 

Can  LHC  do   better   ?  

YES 
:  thanks to large 
   statistics 
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Measurement of W mass 

Method used at hadron colliders different 
from e+e- colliders  

•  W → jet jet : cannot be extracted from QCD 
  jet-jet production ⇒ cannot be used 

•  W → τν : since τ → ν + X , too many undetected 
  neutrinos ⇒ cannot be used 

  only   W →  eν and W →  µν 
decays are used to measure mW at 
hadron  colliders 
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W production at LHC :  

q’ 

q W  

ν 
Ex. 

eν, µν 
σ (pp → W + X) ≈ 30 nb    

~ 300 × 106 events produced 
~  60 × 106  events selected 
                    after analysis cuts 

one year at 
low L, per 
experiment 

~ 50 times larger statistics than at Tevatron 
~ 6000 times larger statistics than at LEP 
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 Since             not known  (only  
can be measured through ET

miss), measure 
transverse mass, i.e. invariant of ν perpendicular 
to the beam :  

≡ ET
miss 
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 Run 57515 Event11191   ana.run1b]topfnd_wele_new.pad   6JUN94  1:10:35 25-FEB-95

PHI:

ETA:

  198.

  0.49

 40.7

 DAIS E transverse Eta-Phi LEGO Plot                

 Max tower E=  40.7 Min tower E=  0.50  N clusters= 

 METS: Etotal = 314.4 GeV,   Et(scalar)=  78.6 Ge

       Et(miss)=  40.9 at Phi=  11.9 Deg.        

UON:  ETEM/ETTOT/ORG/NTW/PT             

PHI:

ETA:

  198.

  0.49

 Run 58778 Event92886   .RUN1B]RUN1B_WELE2JET_TAG.DST   1MAY94 23:43:46 25-FEB-95

PHI:

ETA:

   71.

  0.80

 23.5

Eta - Phi LEGO: Raw Data,Transverse  Energy.                

Tower energy threshold 0.5 GeV.                             

 EM                                                         (  +HA)  Maximum energy  23.5 GeV.                          

UON:  ETEM/ETTOT/ORG/NTW/PT             

PHI:

ETA:

   71.

  0.80

 Run 60428 Event 3848   [ANA.RUN1B]RUN1B_WELE3JEt.DST  29JUN94  4:12:20 25-FEB-95

PHI:

ETA:

  340.

  0.78

 24.9

Eta - Phi LEGO: Raw Data,Transverse  Energy.                

Tower energy threshold 0.5 GeV.                             

 EM                                                         (  +HA)  Maximum energy  24.9 GeV.                          

UON:  ETEM/ETTOT/ORG/NTW/PT             

PHI:

ETA:

  340.

  0.78

 Run 58322 Event31627   ANA.RUN1B]TOPFND_WELE_NEW.PAD  ??? LRID AFU ??? 26-FEB-95

PHI:

ETA:

   69.

  0.41

 28.9

 DAIS E transverse Eta-Phi LEGO Plot                

 Max tower E=  28.9 Min tower E=  0.50  N clusters= 

 METS: Etotal = 330.5 GeV,   Et(scalar)=  72.4 Ge

       Et(miss)=  31.5 at Phi= 223.7 Deg.        

UON:  ETEM/ETTOT/ORG/NTW/PT             

PHI:

ETA:

   69.

  0.41

e e

e e

ET!! 41 GeV ET!! 32 GeV

W + 0,1,2,3 jet(s) Events

ET!! 35 GeV ET!! 33 GeV

CDF

W→ eν event  (data)  from CDF experiment 
at the Tevatron  
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mT
W distribution is sensitive to mW 

mT
W distribution 

expected in  
ATLAS 

mT
W (GeV) 

mW= 79.8 GeV 
mW= 80.3 GeV 

⇒  fit experimental distributions with  
     SM prediction (Monte Carlo simulation) 
     for different values of mW   →  find mW 
    which best fits data 
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CDF data :     
W → µν transverse mass 

From fit to transverse mass distribution: 
        mW = 80.465 ± 0.100 GeV 
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Uncertainties on mW 

Come mainly from capability of Monte Carlo 
prediction to reproduce real life, that is: 

•   detector performance: energy resolution, 
   energy scale, etc.  

•   physics: pT
W, θW, ΓW, backgrounds, etc.  

Dominant error (today at Tevatron, most likely 
also at LHC): 
knowledge of lepton energy scale of the detector: 
if  measurement of lepton energy wrong by 1%,  
then measured mW wrong by 1% 
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Calibration of detector energy scale 
Example : EM calorimeter 

CALO e-   beam 
E = 100 GeV 

 Emeasured 

•   if  Emeasured = 100.000 GeV→  calorimeter is  
   perfectly calibrated 
•   if  Emeasured = 99, 101 GeV → energy scale 
   known to 1% 

•   to measure mW to better than 30 MeV need to 
   to know energy scale to 0.2 ‰ , i.e. 
    if   E electron = 100 GeV then  
     99.98 GeV < Emeasured < 100.02 GeV                  

⇒ one of most serious experimental challenges 
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Calibration strategy: 

•   detectors equipped with calibration systems 
   which inject known pulses:  

•  calorimeter modules calibrated with test beams 
  of  known energy →  set the energy scale 

•  inside LHC detectors: calorimeter sits behind 
  inner detector → electrons lose energy in 
  material of inner detector → need a final  
  calibration “ in situ ” by using physics samples: 

     e.g.     Z → e+ e-   decays       1/sec at low L 
                constrain     mee = mZ  

reconstructed known to ≈ 10-5 
from LEP 

cell out 

in 
in 

 → check that all cells give same response: 
      if not → correct  
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Expected precision on mW at LHC 

Source of uncertainty                       ΔmW 

Statistical error                                << 2 MeV 

Physics uncertainties                       ~  15 MeV 
(pT

W,  θW, ΓW, …) 

Detector performance                       < 10 MeV 
(energy resolution, lepton 
 identification, etc,) 

Energy scale                                       15 MeV 

Total                                                 ~ 25 MeV 
(per experiment, per channel) 

Combining both channels (eν, µν) and both  
experiments (ATLAS, CMS), ΔmW ≈ 15 MeV 
should be achieved. 
However: very difficult measurement 
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Measurement of mtop 

•  Top is most intriguing fermion: 

 --     mtop ≈ 174 GeV → very heavy 

 --      u           c             t 
         d            s             b Δm (t-b) ≈ 

170 GeV  

•  Discovered in ‘94 at Tevatron → precise 
  measurements of mass, couplings, etc. 
  just started 

Top mass 
spectrum 
from CDF 
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Top production at LHC:  

e.g. 
g 

g 

t 

t 

t 

t 

q 

q 

σ (pp →     + X) ≈ 800 pb 

 107        pairs produced in one year at low L 

~ 103 times more than at Tevatron 
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Top decays:  

t W 

b 
BR ≈ 100% in SM 

-- hadronic channel: both W →  jj  
  ⇒ 6 jet final states. BR ≈ 50 % but 
   large QCD multijet background.   

 -- leptonic channel: both W → ν  
     ⇒ 2 jets + 2 + ET

miss  final states. BR ≈ 10 %. 
     Little kinematic constraints to reconstruct mass. 

 -- semileptonic channel: one W →  jj , one W → ν 
   ⇒ 4 jets + 1 + ET

miss  final states. BR ≈ 40 %. 
    If   = e, µ : gold-plated channel for mass  
    measurement.  

In all cases two jets are b-jets 
 ⇒ displaced vertices in the inner detector 
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Example from CDF (data) :  

   tt → Wb Wb → bν bjj    event 

 ν Jet 4 
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Selection of         → bW bW → b ν bjj 

Require: 
-- two b-tagged jets 
-- one lepton  
    pT > 20 GeV 
-- ET

miss > 20 GeV 
-- two more jets   

W→ jj 

Then require: 
-- |mjj-mW| < 20 GeV 
-- combine jj with  
b-jets. Choose  
combination which  
gives highest pT top  

t → bjj 

Note : W → jj can be used to calibrate jet energy scale  

ATLAS 

ATLAS 
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Expected precision on mtop at LHC 

Source of uncertainty                       Δmtop 

Statistical error                                << 100 MeV 

Physics uncertainties                       ~  1.3 GeV 
(background, Final 
 State Radiation, …) 

  Jet scale                                         ~ 0.8 GeV  

Total                                                 ~ 2 GeV 
(per experiment, per channel) 

-- Also hadronic and leptonic channels can be used to 
    measure mtop.   
-- ΔmW ≈ 15 MeV, Δmtop ≈ 2 GeV ⇒ Higgs mass  
   constrained to ≈ 30%.  
-- Other measurements of top properties: branching ratios, 
    rare decays, cross-section, resonances, etc.  
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    CONCLUSIONS 

LHC : most difficult and ambitious high-energy 
physics project  ever realised (human and  
financial resources, technical challenges,  
complexity, ….) 

Very broad and crucial physics goals: 
 understand the origin of masses, 
 look for physics beyond the SM,  
 precision measurements of  known particles. 

     It will most likely modify our  
     understanding of  world   
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End of  
lectures 


