

Fabiola Gianotti, LHC Physics

Search for SUperSYmmetry (SUSY)

Fabiola Gianotti, LHC Physics

SUPERSYMMETRY

(see lectures of G. Giudice)

Relates fermions and bosons:

for each particle p with spin s, there exists a SUSY partner \tilde{p} with spin s-1/2.

Ex. :	q (s=1/2)	\rightarrow	\widetilde{q} (s=0)	squarks
	Z (s=1)	\rightarrow	\widetilde{Z} (s=1/2)	zino

Motivations:

- ① unification of fermions and bosons is attractive
- ② solves problems of SM, e.g. divergence of Higgs mass :

Fermion and boson loops cancel, provided $m_{\tilde{f}} \leq \text{TeV}.$

Fabiola Gianotti, LHC Physics

③ Measured coupling constants unify at GUT scale in SUSY but not in SM.

- ④ Does not contradict predictions of SM at low energy → not ruled out by present experiments. Predicts a light Higgs
- ⑤ Ingredient of string theories that many consider best candidate for unified theory including gravity

However: no experimental evidence for

SUSY as yet

Fabiola Gianotti, LHC Physics

<u>Drawback</u> : many new particles predicted

Here : <u>Minimal</u> Supersymmetric extension of the Standard Model (MSSM) which has minimal particle content

MSSM particle spectrum :

5 Higgs bosons : h, H, A, H^{\pm}

quarks	\rightarrow	squarks	$\widetilde{u}, \widetilde{d},$ etc.
leptons	$s \rightarrow$	sleptons	$\widetilde{e}, \widetilde{\mu}, \widetilde{v},$ etc.
W^{\pm}	\rightarrow	winos	$\int \rightarrow \chi^{\pm}_{1}, \chi^{\pm}_{2}$
H±	\rightarrow	charged higgsino	$\int 2 \text{ charginos}$
γ	\rightarrow	photino	
Ζ	\rightarrow	zino	$ \begin{array}{c} \rightarrow \chi^{*}_{1,2,3,4} \\ 4 \text{ neutralinos} \end{array} $
h, H	\rightarrow	neutral higgsino	
g	\rightarrow	gluino	\widetilde{g}

Masses not known. However charginos/neutralinos are usually lighter than squarks/sleptons/gluinos. Present limits : m $_{\tilde{l},\chi_{\pm}} > 90-100 \text{ GeV}$ LEP m $_{\tilde{q},\tilde{g}}^{\tilde{l},\chi_{\pm}} > 250 \text{ GeV}$ Tevatron

SUSY phenomenology

There is a multiplicative quantum number:

which is conserved in most popular models (considered here).

Consequences:

- SUSY particles are produced in pairs
- Lightest Supersymmetric Particle (<u>LSP</u>) <u>is stable</u>.

LSP is also weakly interacting (for cosmological reasons, dark matter)

 \rightarrow LSP behaves like a v \rightarrow escape detection $\rightarrow E_{t}^{\text{miss}}$ (typical SUSY signature)

Most models :

$$LSP \equiv \chi^0_1$$

Fabiola Gianotti, LHC Physics

Production of SUSY particles at LHC

Squarks and gluinos produced via strong processes
 → large cross-section

- m $_{\widetilde{q},\widetilde{g}} \sim 1 \text{ TeV}$ $\sigma \sim 1 \text{ pb} \rightarrow 10^4 \text{ events per year}$ produced at low L
- Charginos, neutralinos, sleptons produced via electroweak processes → much smaller rate

 $\tilde{q}\tilde{q}, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ are <u>dominant</u> SUSY processes at LHC if kinematically accessible

Decays of SUSY particles : some examples

 $\widetilde{q}, \widetilde{g}$ heavier \rightarrow more complicated decay chains

Cascade decays involving many leptons and /or jets + missing energy (from LSP)

Fabiola Gianotti, LHC Physics

Exact decay chains depend on model parameters (particle masses, etc.)

However : whatever the model is, we know that

 $\widetilde{q}, \widetilde{g}$ are heavy (m > 250 GeV)

decays through cascades favoured

 \Rightarrow many high-p_T jets/leptons/W/Z in the final state + E_T^{miss}

at LHC is easy to extract SUSY signal from SM background

Fabiola Gianotti, LHC Physics

Example: if Nature had chosen the following point in the parameter space:

 $m_{\widetilde{q}} \approx 900 \text{ GeV} \qquad m_{\chi^{\pm}} \approx 150 \text{ GeV}$ $m_{\widetilde{g}} \approx 600 \text{ GeV} \qquad m_{\chi^0} \approx 80 \text{ GeV}$

Requiring : $E_T^{miss} > 300 \text{ GeV}$ 5 jets $p_T > 150, 150, 100, 100, 90 \text{ GeV}$

Fabiola Gianotti, LHC Physics

With similar analysis, discover or exclude \tilde{q} , \tilde{g} with masses up to 1.5-2 TeV in one year at high luminosity (L = 10³⁴ cm⁻² s⁻¹)

Thanks to:

- -- large cross-section
- -- very clear signature

Conclusion on SUSY

If SUSY exists, it will be easy and fast to discover at LHC up to $m \approx 2-3$ TeV.

Several measurements of SUSY particle masses can be performed.

Thanks to large cross-section, small backgrounds and variety of signatures.

Precise measurements of: m_W, m_{top}

Fabiola Gianotti, LHC Physics

Motivation:

W mass and top mass are fundamental parameters of the Standard Model:

→ since G_F , α_{EM} , $\sin\theta_W$ are known with high precision, precise measurements of m_{top} and m_W allow constraining Higgs mass (weakly because of logarithmic dependence)

$$\mathbf{m}_{W} = \left(\frac{\pi \alpha_{EM}}{\sqrt{2} G_{F}}\right)^{1/2} \frac{1}{\sin \theta_{W} \sqrt{1 - \Delta r}}$$

 $m_W (LEP2 + Tevatron) = 80.451 \pm 0.033 \text{ GeV}$ $m_{top} (Tevatron) = 174.3 \pm 5.1 \text{ GeV}$

Fabiola Gianotti, LHC Physics

Year 2006:

 $\Delta m_W < 30 \text{ MeV} (0.4 \%)$ from LEP/Tevatron

 $\Delta m_{top} \approx 3 \text{ GeV} (2\%)$ from Tevatron

Can LHC do better ?

HN

: thanks to large statistics

Fabiola Gianotti, LHC Physics

Measurement of W mass

Method used at hadron colliders different from e⁺e⁻ colliders

- W \rightarrow jet jet : cannot be extracted from QCD jet-jet production \Rightarrow cannot be used
- W $\rightarrow \tau v$: since $\tau \rightarrow v + X$, too many undetected neutrinos \Rightarrow cannot be used

① only $W \rightarrow ev$ and $W \rightarrow \mu v$ decays are used to measure m_W at hadron colliders

Fabiola Gianotti, LHC Physics

W production at LHC :

 \sim 50 times larger statistics than at Tevatron \sim 6000 times larger statistics than at LEP

Fabiola Gianotti, LHC Physics

⁽²⁾ Since \vec{p}_L^{ν} not known (only \vec{p}_T^{ν} can be measured through E_T^{miss}), measure transverse mass, i.e. invariant of $\ell \nu$ perpendicular to the beam :

$$m_{T}^{W} = \sqrt{p_{T}^{1} p_{T}^{v} (1 - \cos \Delta \varphi_{lv})}$$
$$\stackrel{\uparrow}{=} E_{T}^{miss}$$

Fabiola Gianotti, LHC Physics

$W \rightarrow ev event$ (data) from CDF experiment at the Tevatron

Fabiola Gianotti, LHC Physics

 $\Rightarrow fit experimental distributions with$ SM prediction (Monte Carlo simulation) $for different values of <math>m_W \rightarrow find m_W$ which best fits data

CDF data : $W \rightarrow \mu \nu$ transverse mass

From fit to transverse mass distribution: $m_W = 80.465 \pm 0.100 \text{ GeV}$

<u>Uncertainties on m_W</u>

Come mainly from capability of Monte Carlo prediction to reproduce real life, that is:

- <u>detector performance</u>: energy resolution, energy scale, etc.
- <u>physics</u>: p_T^W , θ_W , Γ_W , backgrounds, etc.

Dominant error (today at Tevatron, most likely also at LHC): knowledge of lepton energy scale of the detector: if measurement of lepton energy wrong by 1%, then measured m_W wrong by 1% Calibration of detector energy scale

Example : EM calorimeter

- if $E_{measured} = 100.000 \text{ GeV} \rightarrow \text{ calorimeter is}$ perfectly calibrated
- if $E_{\text{measured}} = 99$, 101 GeV \rightarrow energy scale known to 1%
- to measure m_W to better than 30 MeV need to to know energy scale to 0.2 %, i.e.

if $E_{electron} = 100 \text{ GeV}$ then 99.98 $\text{GeV} < E_{measured} < 100.02 \text{ GeV}$

\Rightarrow one of most serious experimental challenges

Calibration strategy:

• detectors equipped with calibration systems which inject known pulses:

- \rightarrow check that all cells give same response: if not \rightarrow correct
- calorimeter modules calibrated with test beams of known energy \rightarrow set the energy scale
- inside LHC detectors: calorimeter sits behind inner detector → electrons lose energy in material of inner detector → need a final calibration " *in situ* " by using physics samples:

Expected precision on m_W at LHC

Source of uncertainty	$\Delta m_{ m W}$
Statistical error	<< 2 MeV
Physics uncertainties $(p_T^W, \theta_W, \Gamma_W,)$	~ 15 MeV
Detector performance (energy resolution, lepton identification, etc,)	< 10 MeV
Energy scale	15 MeV
Total (per experiment, per channel)	~ 25 MeV

Combining both channels ($ev, \mu v$) and both experiments (ATLAS, CMS), $\Delta m_{W} \approx 15 \text{ MeV}$ should be achieved. However: very difficult measurement

Measurement of m_{top}

• Top is most intriguing fermion:

-- $m_{top} \approx 174 \text{ GeV} \rightarrow \text{very heavy}$

$$\begin{array}{c} - & \begin{pmatrix} u \\ d \end{pmatrix} & \begin{pmatrix} c \\ s \end{pmatrix} & \begin{pmatrix} t \\ b \end{pmatrix} \end{array} \begin{array}{c} - & \Delta m \ (t-b) \approx \\ 170 \ \text{GeV} \end{array}$$

Discovered in '94 at Tevatron → precise measurements of mass, couplings, etc.
 just started

Top production at LHC:

$\sim 10^3$ times more than at Tevatron

Top decays:

BR $\approx 100\%$ in SM

- -- <u>hadronic channel</u>: both W → jj
 ⇒ 6 jet final states. BR ≈ 50 % but large QCD multijet background.
- -- <u>leptonic channel</u>: both $W \rightarrow \ell v$ $\Rightarrow 2 \text{ jets} + 2\ell + E_T^{\text{miss}}$ final states. BR $\approx 10 \%$. Little kinematic constraints to reconstruct mass.
- -- <u>semileptonic channel</u>: one W $\rightarrow jj$, one W $\rightarrow \ell \nu$ $\Rightarrow 4 jets + 1\ell + E_T^{miss}$ final states. BR $\approx 40 \%$. If $\ell = e, \mu$: gold-plated channel for mass measurement.

In all cases two jets are b-jets \Rightarrow displaced vertices in the inner detector

Example from CDF (data) :

 $t\bar{t} \rightarrow Wb Wb \rightarrow b\ell\nu bjj$ event

<u>Selection of $t\bar{t} \rightarrow bW \, bW \rightarrow b \, \ell v \, bjj</u>$ </u>

Expected precision on m_{top} at LHC

Source of uncertainty	Δm_{top}	
Statistical error	<< 100 MeV	
Physics uncertainties (background, Final State Radiation,)	~ 1.3 GeV	
Jet scale	$\sim 0.8 \text{ GeV}$	
Total (per experiment, per channel)	~ 2 GeV	

- -- Also hadronic and leptonic channels can be used to measure m_{top}.
- --Δm_W ≈ 15 MeV, $\Delta m_{top} \approx 2 \text{ GeV} \Rightarrow \text{Higgs mass}$ constrained to ≈ 30%.
- -- Other measurements of top properties: branching ratios, rare decays, cross-section, resonances, etc.

CONCLUSIONS

LHC : most difficult and ambitious high-energy physics project ever realised (human and financial resources, technical challenges, complexity,)

Very broad and crucial physics goals: understand the origin of masses, look for physics beyond the SM, precision measurements of known particles.

It will most likely modify our understanding of world

End of lectures

Fabiola Gianotti, LHC Physics