

Fabiola Gianotti, LHC Physics

The LHC physics programme

- Search for Standard Model Higgs boson over $120 < m_{\rm H} < 1000$ GeV.
- Search for Supersymmetry and other physics beyond the SM (q/l compositness, leptoquarks, W'/Z', heavy q/l, unpredicted ?) up to masses of ~ 5 TeV
- Precise measurements :
 - -- W mass
 - -- WWy, WWZ Triple Gauge Couplings
 - -- top mass, couplings and decay properties
 - -- Higgs mass, spin, couplings (if Higgs found)
 - -- B-physics: CP violation, rare decays, B⁰ oscillations (ATLAS, CMS, LHCb)
 - -- QCD jet cross-section and α_s
 - -- etc.
- Study of phase transition at high density from hadronic matter to plasma of deconfined quarks and gluons. Transition plasma → hadronic matter happened in universe ~ 10⁻⁵ s after Big Bang (ALICE)

Keyword: large event statistics

Expected event rates in ATLAS/CMS for representative (known and new) physics processes at low luminosity (L=10³³ cm⁻² s⁻¹)

Process	Events/s	Events/year	Other machines
$W \rightarrow ev$	15	108	10 ⁴ LEP / 10 ⁷ Tev.
$Z \rightarrow ee$	1.5	107	10 ⁷ LEP
$t\bar{t}$	0.8	107	10 ⁴ Tevatron
$b\overline{b}$	10 ⁵	10 ¹²	10 ⁸ Belle/BaBar
$\widetilde{g}\widetilde{g}$	0.001	104	—
(m=1 TeV)			
H (m=0.8 TeV)	0.001	104	
QCD jets $p_T > 200 \text{ GeV}$	10 ²	10 ⁹	107

High L : statistics 10 times larger

 \rightarrow LHC is a B-factory, top factory, W/Z factory Higgs factory, SUSY factory, etc.

Search for the Standard Model Higgs boson

Fabiola Gianotti, LHC Physics

What do we know today about m_H ?

Not predicted by theory (but production and decays versus m_H predicted). Experimental limits /indications:

- $m_H > 114 \text{ GeV}$ from searches at LEP
- indirect limits from fit of SM to:
 - -- LEP1/SLD precise measurements at $\sqrt{s} = m_Z$
 - -- m_W measurement LEP2/Tevatron
 - -- m_{top} measurement at Tevatron

 $-- \approx 2\sigma$ excess from LEP for $m_{H} \sim 115.6$ GeV

Higgs production at LHC

Fabiola Gianotti, LHC Physics

- $m_{\rm H} < 120 \text{ GeV: } \text{H} \rightarrow b\overline{b}$ dominates
- 130 GeV $\leq m_{\rm H} \leq 2 m_{\rm Z}$: H \rightarrow WW^(*), ZZ^(*) dominate
- $m_{H}^{>}$ 2 m_{Z}^{-} : 1/3 H \rightarrow ZZ

$$2/3 \text{ H} \rightarrow \text{WW}$$

• important rare decays : $H \rightarrow \gamma \gamma$

Fabiola Gianotti, LHC Physics

Search strategy

Fully hadronic final states dominate but cannot be extracted from large QCD background \rightarrow look for final states with leptons and photons (despite smaller BR).

Main channels:

• Low mass region ($m_H \le 150 \text{ GeV}$):

 $-H \rightarrow b\overline{b}$: BR ~ 100% $\rightarrow \sigma \approx 20 \text{ pb}$

however: huge QCD background ($N_S/N_B < 10^{-5}$)

→ can only be used with additional leptons: $W H \rightarrow \ell v b \overline{b} \quad t \overline{H} \rightarrow \ell v X \quad b \overline{b}$ associated production ($\sigma \approx 1 \text{ pb}$)

-- $H \rightarrow \gamma \gamma$: BR ~ 10⁻³ $\rightarrow \sigma \approx 50 \text{ fb}$ however: clean channel (N_S/N_B $\approx 10^{-2}$)

Fabiola Gianotti, LHC Physics

• Intermediate mass region (120 GeV $\leq m_{\rm H} \leq 2 m_{\rm Z}$):

 $--H \rightarrow WW^* \rightarrow \ell \nu \ \ell \nu$ $-- H \rightarrow ZZ^* \quad \rightarrow \ell \ell \ \ell \ell$

 \sim only two channels which can be extracted from background

• <u>High mass region ($m_{\underline{H}} > 2 m_{\underline{Z}}$):</u>

 $--H \rightarrow ZZ \rightarrow \ell \ell \ell \ell \ell$ gold-plated channel (\sim no background) !

 $\begin{array}{ccc} -- H \rightarrow ZZ & \rightarrow \ell \ell \nu \nu, \ell \nu j et j et \\ -- H \rightarrow WW \rightarrow \ell \nu j et j et \end{array} \begin{array}{c} \text{larger BR} \\ \rightarrow \text{increase} \\ \text{rate for} \end{array}$

 $m_{\rm H} > 500 {\rm ~GeV}$

Only a few examples discussed here

Fabiola Gianotti, LHC Physics

How can one claim a discovery ?

Suppose a new narrow particle $X \rightarrow \gamma \gamma$ is produced:

Signal significance :

$$S = \frac{Ns}{\sqrt{NB}}$$

 N_{s} = number of signal events N_{B} = number of background events

 $\sqrt{N_B} \equiv$ error on number of background events

S > 5: signal is larger than 5 times error on background. Probability that background fluctuates up by more than $5\sigma: 10^{-7} \rightarrow discovery$

Fabiola Gianotti, LHC Physics

Two critical parameters to maximise S:

- <u>detector resolution</u>: if σ_m increases by e.g. two, then need to enlarge peak region by two.
- \rightarrow N_B increases by ~ 2 (assuming background flat)

N_S unchanged

$$\Rightarrow S = N_S / \sqrt{N_B}$$

decreases by $\sqrt{2}$

$$\Rightarrow$$
 S $\approx 1 / \sqrt{\sigma_m}$

detector with better resolution has larger probability to find a signal

Note: only valid if $\Gamma_{\rm H} \ll \sigma_{\rm m}$. If Higgs is broad detector resolution is not relevant. $\Gamma_{\rm H} \sim m_{\rm H}^3 \quad \Gamma_{\rm H} \sim {\rm MeV} (\sim 100 \ {\rm GeV}) \quad m_{\rm H} = 100 \ (600) \ {\rm GeV}$

• integrated luminosity :

Fabiola Gianotti, LHC Physics

- Select events with two photons in the detector with $p_T \sim 50 \text{ GeV}$
- Measure energy and direction of each photon
- Measure invariant mass of photon pair

$$m_{\gamma\gamma} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$$

• Plot distribution of $m_{\gamma\gamma} \rightarrow Higgs$ should appear as a peak at m_H

Most challenging channel for LHC electromagnetic <u>calorimeters</u>

Main backgrounds:

• <u>yy production</u>: irreducible (i.e. same final state as signal)

e.g. :

• <u>γ jet + jet jet production</u> where one/two jets fake photons: reducible

e.g. :

Fabiola Gianotti, LHC Physics

How can one fight these backgrounds?

• <u>Reducible γ jet, jet-jet</u>: need excellent γ /jet separation (in particular γ/π^0 separation) to reject jets faking photons

 $R_{iet} \approx 10^3$ needed for $\epsilon_{\gamma} \approx 80\%$

ATLAS and CMS have calorimeters with good granularity to separate single γ from jets or from $\pi^0 \rightarrow \gamma \gamma$.

Simulation of ATLAS calorimeter

With this performance : $(\gamma jet + jet-jet) \le 30\% \gamma \gamma \rightarrow small$

Fabiola Gianotti, LHC Physics

Fabiola Gianotti, LHC Physics

<u>Irreducible γγ</u>: cannot be reduced. But signal can be extracted from background if mass resolution good enough

$$S \approx \frac{1}{\sqrt{\sigma_m}}$$
 $\Gamma_H < 10 \text{ MeV for}$
 $m_H \sim 100 \text{ GeV}$

$$m_{\gamma\gamma}^{2} = (E_{1} + E_{2})^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2} = 2E_{1}E_{2}(1 - \cos\theta_{12})$$

$$\frac{\sigma(m)}{m} = \frac{1}{\sqrt{2}} \left(\frac{\sigma(E_1)}{E_1} \oplus \frac{\sigma(E_2)}{E_2} \oplus \frac{\sigma(\vartheta)}{tg \vartheta/2} \right)$$

$$\stackrel{\uparrow}{=} \qquad \stackrel{\uparrow}{=} \qquad \stackrel{\frown}{=} \quad \stackrel{$$

• homogeneous crystal calorimeter $\frac{\sigma(E)}{E} \approx \frac{3-5\%}{\sqrt{E}}$

• no longitudinal segmentation \rightarrow vertex measured using secondary tracks from spectator partons \rightarrow difficult at high $L \rightarrow$ often pick up the wrong vertex

 $\sigma_{\rm m} \approx 0.7 \text{ GeV} \text{ m}_{\rm H} = 100 \text{ GeV}$

 $\epsilon \approx 20\%$

Fabiola Gianotti, LHC Physics

CMS crystal calorimeter

Fabiola Gianotti, LHC Physics

Fabiola Gianotti, LHC Physics

Expected performance

ATLAS : 100 fb⁻¹

m _H (GeV)	100	120	150
Significance ATLAS, 100 fb ⁻¹	4.4	6.5	4.3

Fabiola Gianotti, LHC Physics

CMS : significance is 15% better thanks to better EM calorimeter resolution

$$H \to ZZ^{(*)} \to 4 \ell$$

 $130 \le m_{\rm H} < 700 \, {\rm GeV}$

- "Gold-plated" channel for Higgs discovery at LHC
- Select events with 4 high-p_T leptons (τ excluded): e⁺e⁻ e⁺e⁻, $\mu^+\mu^-\mu^+\mu^-$, e⁺e⁻ $\mu^+\mu^-$
- Require at least one lepton pair consistent with Z mass
- Plot 4ℓ invariant mass distribution :

$$m^{2} = \sum_{i} E_{i}^{2} - (\sum_{i} \vec{p}_{i})^{2}$$

⇒ Higgs signal should appear as peak in the mass distribution

- $\underline{m}_{H} > 180 \text{ GeV: both Z are real}$
 - -- $\sigma \times BR \approx 10 \text{ fb}$ BR (H \rightarrow ZZ) $\approx 30 \%$ -- leptons have $p_T >> 10 \text{ GeV}$
 - -- $\Gamma_{\rm H} > 1 \text{ GeV}, \ \Gamma_{\rm H} \sim m_{\rm H}^{-3} \rightarrow \text{detector resolution}$
 - not relevant -- background is small (require Z have high-p_T since H is heavy)

- $\underline{m}_{H} < 180 \text{ GeV: one Z is virtual}$
 - $-\sigma \times BR \approx fb \quad BR (H \rightarrow ZZ^*) < 10 \%$
 - -- leptons from Z* can have $p_T \sim 5\text{--}10~GeV$
 - $\begin{array}{rl} -- \ \Gamma_{\rm H} << 1 \ {\rm GeV} \ \rightarrow & {\rm detector} \ {\rm resolution} \\ & {\rm important} \ {\rm for} \ {\rm good} \ {\rm S} \end{array}$
 - -- background is large (only one Z-mass constraint, etc.)

Backgrounds:

- -- irreducible : pp \rightarrow ZZ ^(*) \rightarrow 4 ℓ $\sigma_{\rm m} (H \rightarrow 4\ell) \approx 1-1.5 \text{ GeV}$ ATLAS, CMS For m_H > 300 GeV $\Gamma_{\rm H} > \sigma_{\rm m}$
- -- reducible ($\sigma \sim 100 \text{ fb}$) :

 $Zb\overline{b} \rightarrow 4l + X$

Both rejected by asking:

-- $m_{\ell\ell} \sim m_Z$

- -- leptons are isolated
- leptons come from interaction vertex
 (B lifetime : ~ 1.5 ps → leptons from B produced at ≈ 1 mm from vertex)

Distance of muon tracks from vertex (divided by resolution)

Thanks to Pixel/Silicon layers $\sigma \sim 15 \mu$

Fabiola Gianotti, LHC Physics

Expected performance

- Significance : 3-25 (depending on mass) for 30 fb⁻¹
- Observation possible up to $m_{\rm H} \approx 700$ GeV.
- For larger masses:

--
$$\sigma$$
 (pp \rightarrow H) decreases

-- $\Gamma_{\rm H} > 100 \, {\rm GeV}$

in CMS

Fabiola Gianotti, LHC Physics

Fabiola Gianotti, LHC Physics

Summary of Standard Model Higgs

Expected significance for one experiment over mass range $80 \text{ GeV} \rightarrow 1 \text{ TeV}$

- LHC can discover SM Higgs over full mass region (S > 5) after \leq 2 years of operation
- in most regions more than one channel is available
- detector performance (coverage, energy/momentum resolution, particle identification, etc.) crucial in

most cases

<u>However, it will take time to operate, understand, calibrate</u> <u>ATLAS and CMS \rightarrow Higgs physics will not be done before 2007</u> <u>given present machine schedule</u>

TEVATRON

Present Tevatron schedule :

- -- Run 2A : March 2001-end 2003 $: \sim 2 \text{ fb}^{-1} / \text{expt.}$
- -- Run 2B : middle 2004 \rightarrow ? : ~ 15 fb⁻¹ /expt by 2007

For $m_{\rm H} \sim 115$ GeV Tevatron needs (optimistic analysis): ~ 2 fb⁻¹ for 95% CL exclusion \rightarrow end 2003 ? ~ 5 fb⁻¹ for 3 σ obervation \rightarrow end 2004 ? ~ 15 fb⁻¹ for 5 σ discovery \rightarrow end 2007 ?

Both machines (Tevatron, LHC) could achieve 5σ discovery if $m_{\rm H} \approx 115$ GeV. Who will find it first ?

LHC	versi	us TEVATRON	
Higgs cross-section ~10-100 higher		$S/B \sim 5$ higher	
Conservative estimates (cross-sections, cut analyis, etc.) $m_H=115 \text{ GeV } 10 \text{ fb}^{-1} \text{ S}/\sqrt{B} \approx 4.7$ $4.7 \rightarrow 7 \text{ using Tevatron approach}$		Less conservative predictions (e.g. NN analysis) $m_{\rm H}$ =115 GeV 10 fb ⁻¹ S/ $\sqrt{B} \approx 5.3$	
Will take lot of time to understand detector and physics		Has lot of time to understand detector and physics	
Ready in 2006 ?		15 fb ⁻¹ by 2007 ? Need $3 * \overline{p}$	
- This does necessarily that this is mass !"	not means the H $\int \frac{\psi(t)}{2t} si$	$\frac{dz}{dQ_{b}}dz \int ds (s-M_{b}^{L}) \delta (e^{t}e^{-s} - sM_{H}) \int_{Q_{b}}^{M_{c}} dz}{Q_{b}} \frac{dz}{dz} \int ds (s-M_{b}^{L}) \delta (e^{t}e^{-s} - sM_{H}) \int_{Q_{b}}^{M_{c}} \frac{dz}{Q_{b}}}{Q_{b}}$ $= \sum_{e} \frac{2eQ^{L}}{(s-M_{b}^{L})^{L+1}} \frac{T^{2}}{T^{2}} + \frac{Ns}{T}}{e^{1}} eu \frac{Q^{2}}{h^{2}} \frac{-i\hbar Q^{2}}{d\mu^{2}}$ $= \int \int \frac{d}{de_{H}} \frac{Q}{Q^{2}} g(Y_{c_{1}} K_{s_{1}} \mu^{2}) g_{\mu} v e^{-i\hbar Q^{2}} \frac{d\mu^{2}}{d\mu^{2}}$ $= \int \int \frac{d}{de_{H}} \frac{Q}{Q^{2}} g(Y_{c_{1}} K_{s_{1}} \mu^{2}) g_{\mu} v e^{-i\hbar Q^{2}} \frac{d\mu^{2}}{d\mu^{2}}$ $= \int \int \frac{d}{de_{H}} \frac{Q}{Q^{2}} g(Y_{c_{1}} K_{s_{1}} \mu^{2}) g_{\mu} v e^{-i\hbar Q^{2}} \frac{d\mu^{2}}{d\mu^{2}}$ $= 115 \text{ GeV}$	

Let's assume the Higgs is found; what do we do now ? Want to measure the Higgs properties, e.g.

 \rightarrow m_H can be measured to 0.1% using precise calorimeter and muon systems of ATLAS and CMS

Summary of Part 2

- At LHC Standard Model Higgs boson can be discovered over the full mass region up to 1 TeV (upper limit from theory).
- Excellent detector performance required:
 → Higgs searches have driven the LHC detector design.
- Main channels : $H \rightarrow \gamma \gamma, H \rightarrow 4\ell$
- If SM Higgs not found at LHC, then alternative methods for electroweak symmetry breaking will have to be found

Fabiola Gianotti, LHC Physics