Statistical Methods and Analysis
Techniques in Experimental Physics
ETHZ/UNIZH, FS09

Introduction to ROOT

Andrea Rizzi, rizzi@phys.ethz.ch
HPK/F-28

mailto:rizzi@phys.ethz.ch

Outline

What is ROOT

ROOT interactive console
mportant C++ remarks
Reading data with ROOT
Histograms

Style, options, legend, canvas

What i1s ROOT?

ROOT is an object oriented framework for data analysis
- read data from some source

- write data (persistent objects)

- selected data with some criteria

— produce results as plots, numbers, fits, ...

Supports “interactive” (C/C++ like, Python) and “compiled”
(C++) usage

Integrates several tools like random number generations, fit
methods (Minuit), Neural Network framework

Developed and supported by High Energy Ph. community

- homepage with documentation and tutorials: root.cern.ch

ROOT Interactive console

* Prepare your shell environment

« Launch ROOT interactive console (CINT interpreter)

ROOT Interactive console

First, how to quit? type .q

Some useful commands
I

Some useful tips
Some names:

—CINT: is the C/C++ interpret
of ROOT. C++ is not meant to
be an interpreted language,
so CINT has some limitations!

—-Aclic: ROOT C/C++ compiler,
invoked when you ask ROOT
to compile something

Load code from external file

L fileName.C

Load code and execute myfunction()
X myfunction.C

you can append “++” to the filename to
have code compiled

*You can use “TAB” key to complete names in
ROOT or to get help about the argument of a
funcion

root [0] TH1F histo(

TH1F THI1F ()
TH1F THI1F (const
TH1F THI1F (const
TH1F THI1F (const
TH1F THI1F (const TVectorFé& v)

TH1F THI1F (const TH1F& hlf)

*The history of your recent commands is kept
in a file ~/.root_hist

#sh cat ~/.root_hist

char* name, ...
char* name, ...
char* name, ...

Some C++ (Pointers, references, instances)

 Pointers are variables that knows where
another variable is stored in RAM

Addr:1 2 3 n

IH A var (object) of type “int”

« the operator * return the value pointed (of a ptr)
* the operator & return the pointer of a variable

Allocation, scope of objects

e new objects can be created in two ways

- objects created by the user with “new” should be deleted by
the user with “delete”

- objects declared in a block are deleted automatically when
they go out of scope

{
My2DPoint a(3.12,2.22);

My2DPoint * b = new MyObject(3.12,2.22);
} /] here “a” is deleted, b is not deleted (up to you!)

e two common problems
- memory leaks when “b” are not deleted
- invalid pointers when the address of “a” is taken
 My2DPoint * ¢ = &a; (cannot be used after a is deleted)

ROOT vs C++ memory management

ROQT objects (Histograms, Canvas, ...) are managed in memory
(and disk) by root using “names”

ROOT define a hierarchical structure of directories

In the same directory you cannot have two objects with the same

name (ROOT will complain about memory leaks)
same “name”

ROOQOT does not like the following: /
TH1F * histos[10];
for(inti = 0; i < 10 ; i++) histos[i]= new TH1F(“hist” *hist”,1,2,3):

Interactive ROQT fixes for you wrong usage of pointer vs reference
(but when you compile you MUST use correct syntax)

- objects member functions can be accessed with “.” (for instances
and reference) or “->” (for pointers) root “understand” both:
histogram->GetMean(); or histogram.GetMean();

Standard Template Library

* Recent version of ROOT also support STD
containers, e.g.

- std::vector<double> , std::vector<MyObject>
- std::map<std::string, double>

o std::string can be used but should be converted to
“C string” when ROOT needs a “const char *”

std::string histogramName;
histogramName = prefix+"“_EnergyHistogram’”;
TH1F his (histogramName.c_str(),”Title”,10,1,10);

Reading data

« ROOT can read data from different sources such as files,
network, databases

« In ROOT framework the data is usually stored in TTree (or
the simplified version TNtuple)

- Trees/Ntuples are like “tables”, each raw represent usually an
“‘event”, each column is a given quantity

- Single cells can also be “complex” objects instead of simple numbers

* Ntuple and Trees can be read from “ROOT files” in which they are
stored, can be created and filled from an ASCII file, can be created and

saved by the user

Reading from ASCII file
« Ex: text file with 3 columns space separated
 We can create an “NTuple” with three
columns and read it

Saving/reading ROOQOT file

« We can save the TNtuple in a file

« And read it back from a new ROOT console

 When you read back, the pointer to the NTuple is owned by
root, you should not delete it

« the “Get” method identify the
objects with their “name”

e you can list the name and
type of objects in a file

TTree/TNtuple drawing

* You can make an histogram of the distribution of a variable in a TTree

root [5] calls—->Draw (“time”) = *Variable to plot
root [6] calls—>Draw(“time”,”"type == 1") _ «Cut to apply
root [7] calls—>Draw(“time”,”type == 2”,”same”%———<Options for drawing
root [8] calls—>Draw (TAB @ = *To know more...
- S (= .
|_“rn_e {t;pe =_= - I 1 | Wy% Tnl:l'f‘:ll{t::: =Q=pl:|u}r|bl Inspeil Classes - ‘r-htemp gﬂsulp
m Mean 85.42 Mr;all"les 85.42
T E' RMS T2.4 RMS T2.4
af]
05" 350 'Alr_lml 350 400
time tim

* Properties of drawn objects can be changed with right click on the
object (Right click on the top of a bin of an histogram and chose
SetFillAttributes)

Booking histograms

 |tis possible (and is better!) to (user) define histograms: dimension,

axis range, number of bins, name, title Dimension

« Histgrams objects are called TH1F, TH2F,TH3F,_TH1D,...

« To create a new histogram with 20 bins, in range [0,400]:
root [2] THI1F hist ("hist","hist",20,0,400);

root [3] calls—->Draw (“time>>hist”)

 Now we can do a lot of things on the
histogram (changing properties,
fitting, asking integrals, value of a bin,
overflow, underflow, scaling, drawing
normalized,......)

« More info: google “TH1F” or
http://root.cern.ch/root/htmI512/TH1F.html

root [4] hist.DrawNormalized ()

" — — = .

File Edit ‘“iew Optiors

L hist |

45>
40”
35
30—
25—
20=
15=
10=

=

o:|||||||||

Mean 7207
RMS 73.04

Float/Double

hist

Entries 192
Mean 72.07
RMS 73.04

ot B

PR SN [T T T S B A |
50 100 150 200 250 300 350 400

Some histogram properties

« Accessing histogram information:

hist.GetMean(); mean

hist.GetRMS(); root of variance

hist.GetMaximum(); maximum bin content

hist.GetMaximumBin(int bin_number); location of max

hist.GetBinCenter(int bin number); .
- center of bin

hist.GetBinLowEdge(int bin_number); ,
lower edge of bin

hist.GetBinContent(int bin_number);
 Bin 0 is the underflow bin
Color/Fill/Style:

Bin 1 the first (visible) bin SetLineColor() / SetLineStyle()

: : flow bin http://root.cern.ch/root/htmI512/TAttLine.html
Bin n+1 Is the overtlow b SetMarkerColor() / SetMarkerStyle()

http://root.cern.ch/root/htmI512/TAttMarker.html
SetFillColor() / SetFillStyle()
http://root.cern.ch/root/ntmI512/TAttFill.html

content of bin

Manual filling of histograms

« We have already seen how to fill an histogram from
Ttree/TNtuple::Draw (using “>>histoname”)

* An histogram can be filled by calling TH1F::Fill function

 Fill() function can be useful if in your program/macro you do “by
hand” the loop on the events:

loop (TNtuple * nt,TH1F * histo) {
Float_t time, cost type _
nt—>SetBranchAddress("tlme", &time) ;
nt—->SetBranchAddress ("cost", &cost);
nt—>SetBranchAddress("type", &type) ;

Int t nevent = nt->GetEntries|();

for (Int_t 1=0; i<nevent;i++) {

nt- >GetEntr¥(1),

1f(S == .
hlStO >Flll(COSt 2.); //weight 2
else .
histo->Fill (cost,1l.); //weight 1

Canvas, style, options

If no Canvas is available ROOT create one when you “draw”
Canvas can be created with: [root[0] ¢l = new TCanvas
Canvas can be splitted root [1] cl->Divide(2,2); cl->cd(3);

Using canvas you can set log scale or draw a grid

root[1l] cl—->SetGridx(); cl->SetGridy();
root [2] cl->SetLogy () ;

The information shown in top [Erm—— =
right box in a plot can be e
customized with gStyle-
>SetOptStat(1111111);
(before drawing the
histogram!)

EEEEEE

IIIIIII
Skewness 2.926
Kurtosis 11.01

hhhhh
aaaaaaa

Kurtosls __2.054

2D histograms

« 2D histograms can be drawn with many different styles

root [2] calls—->Draw (“cost:time”) //default:scatter plot
root [3] calls—->Draw(“cost:time”,””,"1lego”)

root [4] gStyle->SetPalette(l) //set nice palette colors
root [5] calls—>Draw (“cost:time”,””,”COLZ")

 |tis possible to rotate with mouse 3D graphics (e.g. lego plot)

« SetlLogz can be used to set log scale for the histogram bins
- S - e 12 s ol 11 o

File Edit View Options Inspect Classes Help Eile Edit Miew Options Inspect Classes Help| | Eile Edit ¥iew Options Inspect Classes Help
cost:time | ml cost:time |
i g ¥ 7C .
=] - =] L
o - Q -
6 6:_
r F — 10
5 5t
ar- a-
- - — 1
3 3 3
2F 2
1 1= 10°
u;f.-’l;“..-l.:l-lIIII|IIII|IIII|IIII|IIII|IIII|IIII|I uiu-uu||||||||||I|||||||||I||||I||||I||||I|
0 50 100 150 200 250 300 350 400 1] 50 100 150 200 250 300 350 400
time time

Fitting histograms

« ROOT provides predefined fittable functions for polynomials,
exponential, gaussian, landaua

User defined functions can be defined

G cl_n
_ - Entries 192

« Histograms can be fitted with) e &
TH1F::Fit(name of the function)

- RMS 73.04
— 72 I ndf 9.923 /12
- Constant 4.291+ 0.109
— Slope -0.01484 + 0.00121

_IIIIIIIIIIIIIIIIIIIII
% 50 100 150 200 250 300 350 400

Plot options and additional info

axis labeling:
hist->SetXTitle("#sqrt{s}");

center title:
hist->GetXaxis()->CenterTitle(1);

Legends:
leg = new TLegend(0.1,0.5,0.3,0.8);
leg->AddEntry(histl, "description 1");
leg->AddEntry(hist2, "description 2");

a“ ”y .,
leg->Draw(“FLP Lv\ F = show the “Fill” color/style
* Printing: L = show the “Line” color/style
gPad->SaveAs("test.ps"); P = show the “Point” color/marker style
. ’

Can also be saved as .eps, .gif, root binary file, root macro and
other graphic formats

TBrowser

* You can open a new TBrowser in a ROOT session

— TBrower o

Eile Miew Options Help
A calls =] | Egl“;s- |_| <}1| |$| &J| Optiﬂnl vl
All Folders |C|:|ntents of “YROOT Filessrootfile. root‘calls”
[CAroat T cost By time b type
[CIPROOF Sessions
Dmnme.lhiliban.l'ETH.l’STAMET
[IROOT Files
E---l:lru:u:utﬂle.ru:u:ut
T

B Ohiects. | calls 4

« Can be useful to interactively browse the content of
root files, available histograms, TTree structure, ...

Example standalone application

 The program (myapp.cc):

#include <TROOT.h>
#include <TApplication.h>
ROOT init #include <TH1l.h>

int main(int argc, char **argv)
{
> TROOT my_ root_app(“myapp", "myapp");
TH1F histo("myhisto","myhisto",20,0.5,20.5);
onP/needed histo.Draw();
(TOrUser __, gApplication->Run();
Interaction

« To compile

g++ -I$RO0OTSYS/include "root-config —glibs’
myapp.cc -0 myapp

For Stamet09:

 This introduction:
http://ihp-Ix.ethz.ch/CompMethPP/lectureNotes/exercises/rootintro.pdf

« ROOT installation is in:

ROOTSYS=/h1/cern/RooT/5.04.00
http://ihp-Ix.ethz.ch/CompMethPP/lectureNotes/exercises/setroot

« Some ROOT & C++ examples, calls.ixt, loop.C available at

http://ihp-Ix.ethz.ch/CompMethPP/lectureNotes/exercises/RootExamples.tar.gz

- To unpack the archive (.tar.gz)
wget http://inp-Ix.ethz.ch/CompMethPP/lectureNotes/exercises/RootExamples.tar.gz

tar -xzvf RootExamples.tar.gz

http://ihp-lx.ethz.ch/CompMethPP/lectureNotes/exercises/RootExamples.tar.gz
http://ihp-lx.ethz.ch/CompMethPP/lectureNotes/exercises/RootExamples.tar.gz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Example standalone application
	Slide 23

