
Getting Started with PAT
Benedikt Hegner

PAT Tutorial Week, March 2010

Outline

• Analysis Model in CMS
• What is PAT?
• PAT data formats
• PAT workflow
• PAT content

• How to use PAT
– How to run it
– How to use the output

• Support and Documentation

2

Introduction - Analysis Flow

Tier-0

Tier-2
User

AOD

Tier-1 RECO

RAW

AOD

RECO

AOD

Primary Dataset

shipped at Tier-1

Central Skim output

shipped at Tier-2

fast

processing

and FWLite

at Tier-3

Final samples

shipped at Tier-3

Simplified picture

part discussed

3

every step means
a reduction in
sample size

What is the use case?

• Groups or individuals run on AOD/RECO on Tier-2 using
cmsRun to
– perform higher level reconstruction, access calibrations
– preselect objects and events

• Output is saved on some user space on Tier-2/3
• Above step possibly repeated several times
• In the last step copy data to your favorite machine and

perform interactive analysis on it as you are used to

• The PAT is designed with this use case in mind

4

What is PAT?

• The PAT is a toolkit as part of this CMSSW framework
• It serves as well tested and supported common ground for

group and user analysis
• It facilitates reproducibility and comprehensibility of

analyses
• A common language

• If another person describes you a PAT analysis you can
easily know what he/she is talking about.

5

Concepts I

• b/w reconstruction and
analysis

• simplifies access via
DataFormats

6

Common ToolInterface Common Format

• approved algorithms
and ~sensible defaults

• synergy (everybody can
profit from recent
developments)

• quick start into analysis
for beginners

• facilitates transfer and
comparisons

• PAG common
configurations

• sustained provenance

It canalizes expertise as it is the technical crossing point between
all PAGs and POGs and is a natural extension of the data model

• Make use of the modular structure of CMSSW
• Provide easy access via member functions in DataFormats
• Serve 80% of all analyses in CMS

Concepts II

7

Maximal
Configurability

User FriendlinessFlexibility

• PAT extends reco::Candidates so that they store information
useful for analysis:
 PAT object = RECO object + more

• Code of these data types can be found in
 DataFormats/PatCandidates

PAT DataFormats

8

Example - pat::Electron
• pat::Electron inherits all properties of reco::GsfElectron
• It also inherits some properties from PATObject:

9

!"# $%&%'()*%&
!"#$$%&'(#)*+ ", "+ '-".!&'

• !"#$$%&'(#)*+ ,+-'),#. "&& !)*!')#,'. */)'(*$$0./%&'(#)*+
• 1# "&.* ,+-'),#. .*2' !)*!')#,'. /)*2 !"#$345678'(#$

• 1+/*)2"#,*+ "7*9# '//,(,'+(: ,. "(('..,7&' ;,"
efficiency()2'#-*<

• 5-' 7'.# 2"#(-'< => '&'(#)*+? "(('..,7&' ;,"
genParticle()2'#-*<

• @'.*&9#,*+ *+ %+')A:? 3# "+< !*.,#,*+ "(('..,7&' ;,"
resolE(), resolPt() "+< .* *+B

• 1+/*)2"#,*+ "7*9# #),AA') *78'(# 2"#(-'< #* #-,.
'&'(#)*+? "(('..,7&' ;," triggerObjectMatches()

2'#-*<C
• 1# "&.* ,+-'),+#. ,.*&"#,*+ "##),79#'. /)*2 !"#$$D'!#*+ E'CAC
ecalIso() "+< ecalIsoDeposit() 2'#-*<.F

• G*2' ,2!*)#"+# "##),79#'. /*) ,<'+#,/,("#,*+ ")'
,2!&'2'+#'< ,+ !"#$$%&'(#)*+ ,#.'&/ "+< ")' "(('..,7&' ;,"
electronID() 2'#-*<C

HI

• Information about efficiency is accessible via
 efficiency()

• The best-matched MC electron is accessible via
 genParticle()

• Resolution on energy, pt, position,... are accessible via
 resolE(), resolPt(), ...

• Information about matched trigger objects via
 triggerObjectMatches()

• In addition to the isolation variables from
reco::GsfElectron, one can add and access userIso

• Identification variables like electronID()

• By default, reco objects keep only a reference to their
main constituents.

• For example reco::GsfElectron stores only a reference to its
track and SuperCluster.

– They are not independent from other parts of the event
– Their sizes are optimized

• In PAT objects, information can be kept as reference or as
alternative embedded into the object

– Being independent from other parts of the event
– Makes EventContents more flexible

• More details tomorrow

PAT DataFormats - embedding

10

SuperCluster
collection

Track
collection

reco::GsfElectron

pat::Electron

Track

SuperCluster

• Further documentation on SWGuidePATDataFormats

PAT DataFormats - documentation

11

!"# $%&%'()*%&+

',-. /0)&12) .(30*2-&%&,(- (- 4560,.2!"#$%&%'()*%&+

!"

pat[Candidates]
• The first step in PAT is making pat candidates from each reco

candidate
• In this step, PAT imports all of the standard modules by their default

values from different POGs, runs all of them and combines the
associated results with each object to make PAT objects.

• MC matching is part of this step as well

• MC matching
 PhysicsTools/PatAlgos/python/mcMatchLayer0/

• Sequences from POGs
 PhysicsTools/PatAlgos/python/recoLayer0/

• Final commands to create allLayer1 (one module each type)
 PhysicsTools/PatAlgos/python/producersLayer1/

12

To see what the configs look like, have a look at these directories

selectedPat[Candidates]
• Usually not all of the PAT objects are needed for your analysis and a

simple cut can decrease the number and save more space
• Results are stored in selectedLayer1Candidates
• Default cuts can be read in SWGuidePATConfiguration or the

config files
 PhysicsTools/PatAlgos/python/selectionLayer1

• Using the cut parser makes them very readable and easy to change

• Further documentation on the parser in the twiki:
 SWGuidePhysicsCutParser

13

selectedPatElectrons = cms.EDFilter(“PATElectronSelector”,
 src = cms.InputTag(“allPatElectrons”),
 cut = cms.string(“pt > 0. & abs(eta) < 12.”)
)

cleanPat[Candidates]
• After selecting reco objects, each collection can be cleaned utilizing

other collections

• For example, a jet collection should be cleaned from electrons
• A set of PATCandidateCleaners can help to resolve this double

counting
• This cross cleaning is the last step of the PAT workflow
• Results are stored in cleanPat[Candidates]
• The config files for the cleaning can be found at

 PhysicsTools/PatAlgos/python/cleaningLayer1

14

SuperCluster

pat::Electron

pat::Jet

EventContent
• Which part of the produced data to store is completely configurable
• Default is patEventContent which stores cleaned objects
• Typical untuned sizes/event

are around 30-40kB
• Some groups or individuals

however use sizes more in
the region of ~5kB/event

• There are tools to help with
reducing event sizes

• More details on

 SWGuidePATConfiguration
 SWGuidePATEventSize

15

!"#$$%"&'('"#)*%+)"#(,&

! !"#$%&''#()$*#+,&-)$./0#$."1&-*$2'#))3$4&%"-115-/5#$)"#$1-*
67!$)&2-#8$1+$)"#$9&44#':;$2'1*&%)/1(<

! =1'$)"#$*#+,&-)$%1(+/>&',)/1($",?#$,$-115$,)

4,@/4,--3
AB5CD#?)

!"#$%&'()*+,-.%/$012%,- !"#$#!%

Combining all previous steps

16

• Have a look at SWGuidePATWorkflow

POG pre-production steps

Basic collections

Selected collection

Cleaned collection
(the only one stored per default)

trigger part will be
explained later this

week

Maximal Configurability
• Sustain flexibility and user friendliness by maximized configurability

without writing C++ code

17

!"#$%"& '()*$+,-".$&$/0

1,2/"$) *&3#$.$&$/0 ")4 ,23- *-$3)4&$)322 .0 %"#$%$534
6()*$+,-".$&$/0

!"#$%"&
6()*$+,-".$&$/0

783)'()/3)/
!"# $%$&# '(&#$&#

13&36/$()2
!"#)$*$'#+(&)

9(-:*&(;
,(-./*(, #((*)

<"/"=(-%"/
(01$'# $20$33+&4

56

How to get started
• Enough theory. How to get PAT started?
• It is part of the release. Unfortunately the release is broken for

features outside PAT. So for this tutorial we will use a special
version:

• For each version there are release notes (and sometimes hot fixes)
on SWGuidePATRecipes

• There are example configurations in PhysicsTools/PatAlgos/test
• To get them, do

18

cmsrel CMSSW_3_5_X_2010-03-08-0200
cd CMSSW_3_5_X_2010-03-08-0200/src
cmsenv

addpkg PhysicsTools/PatAlgos
cd PhysicsTools/PatAlgos/test

One example
• The simples config file test_cfg.py you can have is

• In this simple file, you can set the input file and the number of
events to be translated into PAT format and also the name of the
output

• Default settings of PAT can now be changed by adding new lines
• Given you ran this file with cmsRun, you can use the created

PAT.root as input for the next examples

19

from PhysicsTools.PatAlgos.patTemplate_cfg. import *

process.source.fileNames = [“file:INPUT.root”]
process.maxEvents.input = 100

process.out.fileName = “PAT.root”

process.load(“PhysicsTools.PatAlgos.patSequences_cff”)

process.p = cms.Path(process.patDefaultSequence)

How to change PAT defaults
• There are various ways to learn about parameters in a configuration.

Here the three most important ones.
• Using the edmConfigBrowser

• More in the presentation by A. Hinzmann

20

How to change PAT defaults

• Another way is using the Python interpreter directly

• To change the settings, edit the config file :

21

$ python -i test_cfg.py
>>> process.selectedPatElectrons
cms.EDFilter(“PATElectronSelector”,
 src = cms.InputTag(“allPatElectrons”),
 cut = cms.string(“pt > 0. & abs(eta) < 12.”)
)

>> process.selectedPatMuons
cms.EDFilter(“PATMuonSelector”,
 src = cms.InputTag(“allPatMuons”),
 cut = cms.string(“pt > 0. & abs(eta) < 12.”)
)

>>>

process.selectedPatElectrons.cut = “pt > 10”

the file from previous slide

full name of the module

output of the tool -
the module configuration

Ctrl-d to exit

Provenance
• The third way of learning about configs works after the fact
• The history of how an event was created is called provenance
• It consists of two parts

– where does my data come from?
– what was done to the data?

• The origin of data sets can be traced using the data bookkeeping
system (DBS)

• What was done in each job with these is stored in the file provenance
– used CMSSW version
– used parameters

• This per file information can help you to find out which PAT
configurations were used to create a file. The tool to look at it is called
 edmProvDump

22

Reminder - data model
• Up to now we were discussing what to do to create a PAT file
• Most of your time though you will be busy with reading (analyzing)

such files
• Letʼs move to that now!

• In CMS there are two ways of reading and analyzing data
– full framework (cmsRun)
– FWLite

• The full framework gives you full access to low level reconstruction,
alignment and so on and allows to store new data into the edm file

• FWLite on the other hand is an application which just reads already
created objects and gives you a much faster and easier way of doing
analysis with the same objects as in the full framework

23

Using FWLite with PAT objects
• A full blown example for FWLite can be found at

 WorkbookPATExampleFWLite
• A summary of the relevant parts:

24

// load framework libraries
gSystem->Load(“libFWCoreFWLite”);
AutoLibraryLoad::enable();

// loop the events
unsigned int iEvent = 0;
fwlite::Event ev(inFile);
for(ev.toBegin(); !ev.atEnd(); ++ev, ++iEvent){
 edm::EventBase const & event = ev;
 // break loop after end of file is reached
 // or after 1000 events have been processed
 if(iEvent==1000) break;

 // simple event counter
 if(iEvent>0 && iEvent%1==0){
 std::cout << " processing event: " << iEvent << std::endl;
 }

 // handle to to muon collection
 edm::Handle<std::vector<pat::Muon> > muons;
 edm::InputTag muonLabel("cleanPatMuons");
 event.getByLabel(event, "cleanPatMuons");

 // loop muon collection and fill histograms
 for(unsigned i=0; i<muons->size(); ++i){
 muonPt_ ->Fill((*muons)[i].pt());
 }
 }

 inFile->Close();

Never forget to enable the
AutoLibraryLoader

Loop the events of an input file

Receive a muon collection by label

Using cmsRun with PAT objects
• A full blown example for cmsRun can be found at

 WorkBookPATExampleBasic
• Again a short summary here
• Every time you want to access a PAT data format you need to include the relevant header file,

to your analyzer e.g.

• Make sure your BuildFile contains <use name=DataFormats/PatCandidates>
• Once this is done, you are free to add your analysis code to the analyze method of your

module

25

#inlucde “DataFormats/PatCandidates/interface/Muon.h”

void
PatBasicAnalyzer::analyze(const edm::Event& iEvent, const edm::EventSetup& iSetup)
{
 // get muon collection
 edm::Handle<edm::View<pat::Muon> > muons;
 iEvent.getByLabel(“cleanPatMuons”,muons);

 // loop over muons
 size_t acceptedMuons=0;
 for(edm::View<pat::Muon>::const_iterator muon=muons->begin(); muon!=muons->end(); ++muon){
 if(muon->pt()>50)
 ++acceptedMuons;
 }

}

Support
• For information on support have a look at

 SWGuidePAT

26

• Tutorials
• Hypernews
• Community
• POG/PAG contacts
• Developers

Documentation

• SWGuidePAT Main documentation page
• SWGuidePATRecipes Information about releases
• SWGuidePATExamples Tutorials and examples
• SWGuidePATDataFormats pat::Candidate description
• SWGuidePATConfiguration Module configuration
• SWGuidePATEventSize Tools for event size estimate
• SWGuidePATWorkflow PAT workflow description
• SWGuidePATTools Description of workflow tools

27

