

Topics of this lecture Calorimetry \sim **Basic principles** Interaction of charged particles and photons Electromagnetic cascades Nuclear interactions Hadronic cascades Homogeneous calorimeters Sampling calorimeters

CERN Summer Student Lectures 2001 Particle Detectors

e

Energy loss by Bremsstrahlung

Radiation of real photons in the Coulomb field of the nuclei of the absorber

$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} z^2 \left(\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{E}{m^2}$$

Effect plays a role only for e^{\pm} and ultra-relativistic μ (>1000 GeV)

For electrons:

$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} r_e^2 E \ln \frac{183}{Z^{\frac{1}{3}}}$$
$$-\frac{dE}{dx} = \frac{E}{X_0}$$
$$X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{\frac{1}{3}}}}$$

radiation length [g/cm²]

Interaction of photons

In order to be detected, a photon has to create charged particles and/or transfer energy to charged particles

Photo-electric effect:

Only possible in the close neighborhood of a third collision partner \rightarrow photo effect releases mainly electrons from the K-shell.

$$\sigma_{photo}^{K} = \left(\frac{32}{\varepsilon^{7}}\right)^{\frac{1}{2}} \alpha^{4} Z^{5} \sigma_{Th}^{e} \qquad \varepsilon = \frac{E_{\gamma}}{m_{e}c^{2}} \qquad \sigma_{Th}^{e} = \frac{8}{3}\pi r_{e}^{2} \quad \text{(Thomson)}$$

Cross section shows strong modulation if $E_{\gamma} \approx E_{shell}$ At high energies ($\epsilon >>1$)

$$\sigma_{photo}^{K} = 4\pi r_{e}^{2} \alpha^{4} Z^{5} \frac{1}{\varepsilon}$$

 $\sigma_{photo} \propto Z^5$

CERN Summer Student Lectures 2001 Particle Detectors

Electromagnetic Cascades

Electron shower in a cloud chamber with lead absorbers

Simple qualitative model

Consider only Bremsstrahlung and pair production. Symmetric energy splitting in each step.

Process continues until $E(t) < E_c$

$$t_{\max} = \frac{\ln E_0 / E_c}{\ln 2} \qquad N^{total} = \sum_{t=0}^{t_{\max}} 2^t = 2^{(t_{\max}+1)} - 1 \approx 2 \cdot 2^{t_{\max}} = 2 \frac{E_0}{E_c}$$

After $t = t_{max}$ the dominating processes are ionization, Compton effect and photo effect \rightarrow absorption.

Longitudinal shower development:

$$\frac{dE}{dt} \propto t^{\alpha} e^{-t}$$

Shower maximum at $t_{\text{max}} = \ln \frac{E_0}{E_c} \frac{1}{\ln 2}$ 95% containment $t_{95\%} \approx t_{\text{max}} + 0.08Z + 9.6$

Example: 100 GeV in lead glass (E_c=11.8 MeV) \rightarrow t_{max} \approx 13, t_{95%} \approx 23

Size of a calorimeters grows only logarithmically with E

Nuclear Interactions

The interaction of energetic hadrons (charged or neutral) is determined by inelastic nuclear processes.

multiplicity $\propto \ln(E)$

 $p_t \approx 0.35 \text{ GeV/c}$

Excitation and finally breakup up nucleus \rightarrow nucleus fragments + production of secondary particles.

For high energies (>1 GeV) the cross-sections depend only little on the energy and on the type of the incident particle (p, π , K...).

$$\sigma_{inel} \approx \sigma_0 A^{0.7} \quad \sigma_0 \approx 35 \ mb$$

In analogy to X₀ a <u>hadronic absorption length</u> can be defined $\lambda_a = \frac{A}{N_A \sigma_{inel}} \propto A^{\frac{1}{4}} \text{ because } \sigma_{inel} \approx \sigma_0 A^{0.7}$ similarly a <u>hadronic interaction length</u> $\lambda_I = \frac{A}{N_A \sigma_{total}} \propto A^{\frac{1}{3}} \qquad \lambda_I < \lambda_a$

Material	Ζ	А	$\rho [g/cm^3]$	$X_0[g/cm^2]$	$\lambda_a [g/cm^2]$
Hydrogen (gas)	1	1.01	0.0899 (g/l)	63	50.8
Helium (gas)	2	4.00	0.1786 (g/l)	94	65.1
Beryllium	4	9.01	1.848	65.19	75.2
Carbon	6	12.01	2.265	43	86.3
Nitrogen (gas)	7	14.01	1.25 (g/l)	38	87.8
Oxygen (gas)	8	16.00	1.428 (g/l)	34	91.0
Aluminium	13	26.98	2.7	24	106.4
Silicon	14	28.09	2.33	22	106.0
Iron	26	55.85	7.87	13.9	131.9
Copper	29	63.55	8.96	12.9	134.9
Tungsten	74	183.85	19.3	6.8	185.0
Lead	82	207.19	11.35	6.4	194.0
Uranium	92	238.03	18.95	6.0	199.0

For Z > 6: $\lambda_a > X_0$

CERN Summer Student Lectures 2001 Particle Detectors

Interaction of neutrons

Neutrons have no charge, i.e. their interaction is based only on strong (and weak) nuclear force.

To detect neutrons, we have to create charged particles.

Possible neutron conversion and elastic reactions

Interaction of neutrinos

Neutrinos interact only weakly \rightarrow tiny cross-sections For their detection we need again first a charged particle.

Possible detection reactions:

- $v_{\ell} + n \rightarrow \ell^- + p$ $\ell = e, \mu, \tau$
- $\bar{\nu}_{\ell}$ + p \rightarrow ℓ^{+} + n ℓ = e, μ , τ

The cross-section for the reaction $v_e + n \rightarrow e^- + p$ is of the order of 10⁻⁴³ cm² (per nucleon, $E_n \approx$ few MeV).

 \rightarrow detection efficiency $\varepsilon_{det} = \sigma \cdot N^{surf} = \sigma \cdot \rho \frac{N_A}{\Lambda} d$

1 m Iron: $\varepsilon_{det} \approx 5 \cdot 10^{-17}$

Neutrino detection requires big and massive detectors (ktons) and high neutrino fluxes.

In collider experiments fully hermetic detectors allow to detect neutrinos indirectly:

- Sum up all visible energy and momentum.
- Attribute missing energy and momentum to neutrino.

example UA1: W⁺ \rightarrow e⁺ + v_e. Reconstruct transverse momentum of the v_e from missing transverse momentum of the whole event.

Hadronic casacdes

Various processes involved. Much more complex than electromagnetic cascades.

Hadronic

↓ charged pions, protons, kaons Breaking up of nuclei (binding energy), neutrons, neutrinos, soft γ'S muons → invisible energy electromagnetic component

neutral pions $\rightarrow 2\gamma \rightarrow$ electromagnetic cascade $n(\pi^0) \approx \ln E(GeV) - 4.6$ example 100 GeV: $n(\pi^0) \approx 18$

Large energy fluctuations \rightarrow limited energy resolution

Material in front of calorimeter

Showers start in 'dead' material in front of calorimeter (other detectors, solenoid, support structure)

Install a highly segmented <u>pre-shower</u> detector in front of calorimeter

Homogeneous calorimeters

Two main types: Scintillator crystals or "glass" blocks (Cherenkov radiation).

 \rightarrow photons. Readout via photomultiplier, -diode/triode

Scintillator	Density	X_0 [cm]	Light	τ_1 [ns]	$\lambda_1 \text{ [nm]}$	Rad.	Comments
	[g/cm ³]		Yield			Dam.	
			γ/MeV			[Gy]	
			(rel. yield)				
NaI (Tl)	3.67	2.59	4×10^4	230	415	≥10	hydroscopic,
							fragile
CsI (Tl)	4.51	1.86	5×10 ⁴	1005	565	≥10	Slightly
			(0.49)				hygroscopic
CSI pure	4.51	1.86	4×10 ⁴	10	310	10^{3}	Slightly
			(0.04)	36	310		hygroscopic
BaF ₂	4.87	2.03	10^{4}	0.6	220	10^{5}	
			(0.13)	620	310		
BGO	7.13	1.13	8×10 ³	300	480	10	
PbW0 ₄	8.28	0.89	≈100	10	≈440	10^{4}	light yield $=f(T)$
				10	≈530		

Scintillators (crystals)

Relative light yield: rel. to Nal(TI) readout with PM (bialkali PC)

Cherenkov radiators

Material	Density	X ₀ [cm]	n	Light yield	λ_{cut} [nm]	Rad.	Comments
	$[g/cm^3]$			[p.e./GeV]		Dam.	
	-			(rel. p.e.)		[Gy]	
SF-5	4.08	2.54	1.67	600	350	10^{2}	
Lead glass				(1.5×10^{-4})			
SF-6	5.20	1.69	1.81	900	350	10^{2}	
Lead glass				(2.3×10^{-4})			
PbF ₂	7.66	0.95	1.82	2000		10^{3}	Not available
				(5×10 ⁻⁴)			in quantity

Relative light yield: rel. to Nal(TI) readout with PM (bialkali PC)

Homogeneous calorimeters

The NA48 LKr calorimeter prior to installation in the cryostat.

Homogeneous calorimeters

CERN Summer Student Lectures 2001 Particle Detectors

Sampling calorimeters

Absorber + detector separated \rightarrow additional sampling fluctuations

CERN Summer Student Lectures 2001 Particle Detectors

IV/27

4 scintillating tiles of the CMS Hadron calorimeter

CERN Summer Student Lectures 2001 Particle Detectors