
Günther Dissertori
ETH Zürich

CERN Summer Student Lectures 2010

From Raw Data to Physics Results



CSS10 G. Dissertori : From raw data to physics results 2

Outline

“Executive Summary”
The whole story in a nutshell

Some more details
Introduction
A simple example : Z decays
A more complicated example : Jets

How is it done in practice?
Track and 
Calorimeter energy reconstruction
High-level algorithms : Jets
The computing part

Summary

Disclaimer : Several slides based on past CSS lectures by B. Jacobsen
thanks also to J. Weng, T. Punz, A. Valassi
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The whole lecture in 
a nutshell

“But you should not leave immediately after this....” 
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Data Analysis Chain
Have to collect data from many channels on 
many sub-detectors (millions)

Decide to read out everything or throw event 
away (Trigger)

Build the event (put info together)

Store the data

Analyze them 
reconstruction, user analysis algorithms, 
data volume reduction

do the same with a simulation
correct data for detector effects

Compare data and theory
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DAQ chain (see lectures by N. Neufeld) 
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DAQ chain (see lectures by N. Neufeld) 
Trigger
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DAQ chain (see lectures by N. Neufeld) 
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DAQ chain (see lectures by N. Neufeld) 
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DAQ chain (see lectures by N. Neufeld) 
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DAQ chain (see lectures by N. Neufeld) 
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Data reduction/abstraction

hits
(x1,y1,z1, t1)

(x2,y2,z2, t2)

...

Track finding +
Track fit  --->

Magnetic field B:
reconstruct

     px
p =  py
        pz

Track momentum

Track 1

Track 2

Event 1
Event 2

Digitization/
Reconstruction --->

Analog 
signals

particle

detector
element

Store the
info for every

event and 
every track

<-------

helix
(R, d0, z0)

x

y
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Nch (charged tracks)  : 
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(Momentum of each track):
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File A
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High Level Data Storage
 Data are stored sequentially in files...

Nch (charged tracks)  : 
2

Pcha 
(Momentum of each track):
{{"-7.65698","42.9725","14.3404"},

 {” 7.54101","-42.1729","-14.0108"}}

       px                py                 pz

Qcha 
(Charge of each track):
{-1,1}

Event 1
Nch (charged tracks)  : 
3

Pcha
(Momentum of each track):
{{"-12.9305","12.2713","40.5615"},
 {” 12.2469","-11.606","-38.7182"},
 {"0.143435","-0.143435","-0.497444"}}

       px                   py               pz

Qcha 
(Charge of each track):

{-1,1,-1}

Event 2

File A
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Hits Track 1

Hits Track 2

Event 1

CaloEnergy 1

display

Event Display
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Simulation
data 

storage

. 
. 

. 
.

process and 
detector 

simulation
. 

. 
. 

.

Exactly 
the same 
steps as
for the 
data

Simulation of many 
(millions) of events

  simulate physics process 
e.g.   e+e- → hadrons
or      p p  → jets 

  plus the detector response
     to the produced particles

  understand detector response
  and analysis parameters
  (lost particles, resolution,
   efficiencies, backgrounds )

  and compare to real data

  Note : simulations present
    from beginning to end of
    experiment, needed to make
    design choices
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And now let’s go a 
little bit more into the 

details ...
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Our Task

Reality We use experiments
to inquire about what
“reality” (nature) does 

Theory
S = i

�
d4xL(x)

The goal is to understand
in the most general; that’s
usually also the simplest.

- A. Eddington

We intend to fill this gap 
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Theory...

14

eg. 
the Standard Model

has parameters 

coupling constants

masses

predicts: 
cross sections,
branching ratios, 
lifetimes, ...



CSS10 G. Dissertori : From raw data to physics results 

Experiment...

15

eg. 
1/30th of an event in 
the BaBar detector

get about 100 evts/sec

0x01e84c10:      0x01e8 0x8848 0x01e8 0x83d8 0x6c73 0x6f72 0x7400 0x0000
0x01e84c20:      0x0000 0x0019 0x0000 0x0000 0x01e8 0x4d08 0x01e8 0x5b7c
0x01e84c30:      0x01e8 0x87e8 0x01e8 0x8458 0x7061 0x636b 0x6167 0x6500
0x01e84c40:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84c50:      0x01e8 0x8788 0x01e8 0x8498 0x7072 0x6f63 0x0000 0x0000
0x01e84c60:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84c70:      0x01e8 0x8824 0x01e8 0x84d8 0x7265 0x6765 0x7870 0x0000
0x01e84c80:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84c90:      0x01e8 0x8838 0x01e8 0x8518 0x7265 0x6773 0x7562 0x0000
0x01e84ca0:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84cb0:      0x01e8 0x8818 0x01e8 0x8558 0x7265 0x6e61 0x6d65 0x0000
0x01e84cc0:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84cd0:      0x01e8 0x8798 0x01e8 0x8598 0x7265 0x7475 0x726e 0x0000
0x01e84ce0:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84cf0:      0x01e8 0x87ec 0x01e8 0x85d8 0x7363 0x616e 0x0000 0x0000
0x01e84d00:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84d10:      0x01e8 0x87e8 0x01e8 0x8618 0x7365 0x7400 0x0000 0x0000
0x01e84d20:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84d30:      0x01e8 0x87a8 0x01e8 0x8658 0x7370 0x6c69 0x7400 0x0000
0x01e84d40:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84d50:      0x01e8 0x8854 0x01e8 0x8698 0x7374 0x7269 0x6e67 0x0000
0x01e84d60:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84d70:      0x01e8 0x875c 0x01e8 0x86d8 0x7375 0x6273 0x7400 0x0000
0x01e84d80:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84d90:      0x01e8 0x87c0 0x01e8 0x8718 0x7377 0x6974 0x6368 0x0000
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eg. 
1/30th of an event in 
the BaBar detector

get about 100 evts/sec

0x01e84c10:      0x01e8 0x8848 0x01e8 0x83d8 0x6c73 0x6f72 0x7400 0x0000
0x01e84c20:      0x0000 0x0019 0x0000 0x0000 0x01e8 0x4d08 0x01e8 0x5b7c
0x01e84c30:      0x01e8 0x87e8 0x01e8 0x8458 0x7061 0x636b 0x6167 0x6500
0x01e84c40:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84c50:      0x01e8 0x8788 0x01e8 0x8498 0x7072 0x6f63 0x0000 0x0000
0x01e84c60:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84c70:      0x01e8 0x8824 0x01e8 0x84d8 0x7265 0x6765 0x7870 0x0000
0x01e84c80:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84c90:      0x01e8 0x8838 0x01e8 0x8518 0x7265 0x6773 0x7562 0x0000
0x01e84ca0:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84cb0:      0x01e8 0x8818 0x01e8 0x8558 0x7265 0x6e61 0x6d65 0x0000
0x01e84cc0:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84cd0:      0x01e8 0x8798 0x01e8 0x8598 0x7265 0x7475 0x726e 0x0000
0x01e84ce0:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84cf0:      0x01e8 0x87ec 0x01e8 0x85d8 0x7363 0x616e 0x0000 0x0000
0x01e84d00:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84d10:      0x01e8 0x87e8 0x01e8 0x8618 0x7365 0x7400 0x0000 0x0000
0x01e84d20:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84d30:      0x01e8 0x87a8 0x01e8 0x8658 0x7370 0x6c69 0x7400 0x0000
0x01e84d40:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84d50:      0x01e8 0x8854 0x01e8 0x8698 0x7374 0x7269 0x6e67 0x0000
0x01e84d60:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84d70:      0x01e8 0x875c 0x01e8 0x86d8 0x7375 0x6273 0x7400 0x0000
0x01e84d80:      0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e84d90:      0x01e8 0x87c0 0x01e8 0x8718 0x7377 0x6974 0x6368 0x0000

“Address” : 
which detector element 
took the reading

“Value(s)” : 
what the electronics 
wrote out
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lifetimes, ...
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Making the connection

Reality

The imperfect measurement of a 
(set of) interactions in the detector 

Theory
S = i

�
d4xL(x)

A small number of general equations, with 
some parameters (poorly or not known at all)

Raw Data

A unique happening:
eg. Run 23458, event 1345
which contains a Z → μ+μ-  decay

Events

Observables
cross sections (probabilities for interactions), 
branching ratios (BR), ratios of BRs, specific 
lifetimes, ...

Analysis : We “confront theory with experiment” by comparing
     the measured quantity (observable) with the prediction. 
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A simple example
Measurement of e+e- annihilation into hadrons and muons:

18

Number of colours electric charges of quarks,
in units of electron charge

sum over all quark flavours, which can be produced at a 
certain e+e- centre-of-mass energy ECM, ,eg. d, u, s, c, b, t 

μ+

μ- Muonic final state 
  two charged tracks, approx. back-to-back,

    with expected momentum ( ~ 1/2 ECM )
  right number of muon hits in outer layers

    (muons very penetrating, traverse whole detector)

  expected energy in calorimeter
    (electrons deposit all their energy, muons leave little)

Hadronic final state 
  many charged tracks ( >~ 10 )
  sum of energy deposits in calorimeters

     not too far from centre-of-mass energy

hadrons
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A “simple” counting experiment

19

Hadron
final 
states

R = 

Muon
final
states

# of 

# of 
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Not muonic
rather hadronic
final state
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No muons,
rather electron-positron
final state
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Z→µ+µ-
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Not muonic
rather hadronic
final state
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Z→µ+µ-
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Z→µ+µ-not

rather Z decay to τ+τ-, 
one tau decayed to electron + 2 neutrinos
the other tau decayed to muon + 2 neutrinos
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Not muonic, rather hadronic final state

And so on....
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Result

Confirmation of  : Number of colours = 3 !
27

For ECM below the Z peak and above the Υ	
 resonance we expect:

Note : small remaining difference : because of QCD correction (gluon radiation) = 1 + αs /π

6 quarks, 
3 colours  ( 45/9)

5 quarks, 
3 colours  ( 33/9)
5 quarks, 
1 colour  ( 11/9)

At Z peak :

have to include also 
couplings to Z
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process them

28

BR Z 0 → µ+µ−( ) = Nµµ

Ntotal

±
Nµµ

Ntotal

se
e 

al
so

 le
ct

ur
e 

by
 G

. C
ow

an



CSS10 G. Dissertori : From raw data to physics results 

Uncertainties
Just having a “counting result” is not all,
there’s lot more to do!
Statistical error

We saw 2 muon events, could easily have been 1 or 3
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• because of event selection (cut), detector imperfections, poor understanding, etc.

28

BR Z 0 → µ+µ−( ) = Nµµ

Ntotal

±
Nµµ

Ntotal

Nµµ seen
= εNµµ

“efficiency”

se
e 

al
so

 le
ct

ur
e 

by
 G

. C
ow

an



CSS10 G. Dissertori : From raw data to physics results 

Uncertainties
Just having a “counting result” is not all,
there’s lot more to do!
Statistical error

We saw 2 muon events, could easily have been 1 or 3
Those fluctuations go like the square-root of the number of events

To reduce this uncertainty, you need to record lots (millions) of events in the detector, and 
process them

Systematic error
What if you only see 50% of the μ+μ- events?

• because of event selection (cut), detector imperfections, poor understanding, etc.

28

BR Z 0 → µ+µ−( ) = Nµµ

Ntotal

±
Nµµ

Ntotal

Nµµ seen
= εNµµ

“efficiency”

BR Z 0 → µ+µ−( ) = Nseen ε
Ntotal

€ 

ε = 0.50 ± 0.05
from statistical error of detector simulation
imperfect modeling of geometry in simulation
model of muon interactions in simulation, etc 
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see statistics lectures, hypothesis testing etc...
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Ntracks

Nevt

hypothesis 1 : muons

hypothesis 2 : hadrons

shapes of hypotheses : from Monte Carlo simulation

“cut”

efficiency for muon selection = 
Nevt (muons) with Ntracks < Ncut 

all Nevt (muons) 
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Event selection and all that jazz
Event per event have to decide how to categorize it

eg. do we call it a muon event, or a hadronic event?
how do we estimate the efficiency?
Define an event selection, eg. “cut-based” 
see statistics lectures, hypothesis testing etc...

29

Ntracks

Nevt

hypothesis 1 : muons

hypothesis 2 : hadrons

shapes of hypotheses : from Monte Carlo simulation

“cut”
background
to be subtracted efficiency for muon selection = 

Nevt (muons) with Ntracks < Ncut 

all Nevt (muons) 
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A “more complicated” 
example

“The greater the obstacle, the more glory in overcoming it.”  (Moliere)
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JET production at hadron colliders
at the Tevatron, or now at the LHC
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JET production at hadron colliders
at the Tevatron, or now at the LHC

a

b

h1

h2

c

d

fa/h1

ŝ

fb/h2

hematic diagram for the production of final state pa

h1, h2 : p, p   ECM=1.96 TeV

h1, h2 : p, p   ECM = 7 TeV

Goal
  measure probability that quarks/gluons are produced 

     with a certain energy, at a certain angle 

  Problem : do not observe quarks and gluons directly, 
                    only hadrons, which appear collimated into jets

  Reconstruct tracks and/or energy clusters in the calorimeter

d,c : quarks/gluons 
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What do we have to measure?

32

Goal
  measure cross section (probability)

    that jets are produced with a
    certain transverse energy ET,
    within a certain rapidity range 

  Test of perturbative QCD, 
     over many orders of magnitude!

  Look at very high energy tail, 
    new physics could show up there in
    form of excess 
   (eg. sub-structure of quarks?)
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Goal
  measure cross section (probability)

    that jets are produced with a
    certain transverse energy ET,
    within a certain rapidity range 

  Test of perturbative QCD, 
     over many orders of magnitude!

  Look at very high energy tail, 
    new physics could show up there in
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   (eg. sub-structure of quarks?)
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 count number of events, N, in this bin

 for a certain range in rapidity (angle) ∆η
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can be calculated 
in pert. QCD

What do we have to measure?

32

Goal
  measure cross section (probability)

    that jets are produced with a
    certain transverse energy ET,
    within a certain rapidity range 

  Test of perturbative QCD, 
     over many orders of magnitude!

  Look at very high energy tail, 
    new physics could show up there in
    form of excess 
   (eg. sub-structure of quarks?)

efficiency to reconstruct jets

           integrated accelerator luminosity

bin ∆ET

 count number of events, N, in this bin

 for a certain range in rapidity (angle) ∆η
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What is a jet? (see lecture by S. Ellis) 

“cluster/spray of particles (tracks, calorimeter deposits) or flow 
of energy in a restricted angular region”
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What is a jet? (see lecture by S. Ellis) 

“cluster/spray of particles (tracks, calorimeter deposits) or flow 
of energy in a restricted angular region”

clear : need some algorithmic definition. 

CMS
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Problem 1 : Energy scale
Question : how well do we know the energy calibration? 

Critical because of very steeply falling spectrum!

34

δN

δET

d2σ

dET dη
≈ const · ET

−6

δN

N
≈ 6 · δET

ET

relative uncertainties

so beware:
eg. an uncertainty of 5% on absolute 
energy scale (calibration) 

➔  an uncertainty of 30% (!) on the
           measured cross section
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The energy resolution can distorts the spectrum 

Again : Critical because of very steeply falling spectrum!

35

N (Emeas
T ) =

� ∞

0
N

�
Etrue

T

�
· Resol

�
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T

�
dEtrue

T

eg. Gaussian resolution function
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“true” spectrum
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Problem 2 : Energy resolution
The energy resolution can distorts the spectrum 

Again : Critical because of very steeply falling spectrum!

35

N (Emeas
T ) =

� ∞

0
N

�
Etrue

T

�
· Resol

�
Emeas

T , Etrue
T

�
dEtrue

T

eg. Gaussian resolution function

Resol
�
Emeas

T , Etrue
T

�
∝ exp

�
− (Emeas

T − Etrue
T )2

σ2
ET

�

“true” spectrum

σET

measured spectrum

so beware:
A bad energy resolution can distort the true 
spectrum

➔  have to determine the energy resolution 

➔  have to “unfold” the measured spectrum
    

➔  problem is minimized if bin width ~ σET
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Where do we stand now?
After data flow from DAQ: data reduction and abstraction

reconstruct tracks, energy deposits (clusters) in calorimeters 
calculate “high-level” physics quantities

• eg. momentum of charged particles, energy of neutral particles
apply even higher-level algorithms, eg. jet finding
store all these quantities/objects event per event

The data analysis
define the theoretically computed observable(s) to be measured
apply event selection (cuts)
estimate efficiencies and backgrounds, eg. from MC simulation
if distributions are measured : take care of absolute calibrations and effects 
because of detector resolution/smearing

• correct for these effects
determine statistical and systematic uncertainties
compare with theory, found a deviation, something new?

• if yes, book the ticket to Stockholm
determine parameters, eg. by fitting the prediction to the data
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How is all this done in 
practice?

“The only place you’ll find SUCCESS before WORK is in the dictionary”  (May B. Smith)
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The process in practice
The reconstruction step is usually 
done in common

“Tracks”, “particle ID”, “calorimeter towers” etc 
are general concepts, not analysis-specific. 
Common algorithms make it easier to 
understand how well they work
“very coordinated” data access

Analysis
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Raw
Data

Production
Reconstruction
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The process in practice
The reconstruction step is usually 
done in common

“Tracks”, “particle ID”, “calorimeter towers” etc 
are general concepts, not analysis-specific. 
Common algorithms make it easier to 
understand how well they work
“very coordinated” data access

 Analysis is a very individual thing
Many different measurements being done at 
once
Small groups working on topics they are 
interested in
Many different time scales for these efforts
“chaotic” data access

Collaborations build 
offline computing systems 
to handle all this

Analysis
Info

Raw
Data

Production
Reconstruction

Physics
Papers

Individual
Analyses
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Track finding
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Why does tracking need to be done well? 
Determine how many charged particles were created in an event
Measure their momentum

direction, magnitude
combine these to look for decays of particles with known masses
only final stable particles are visible
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Track Fitting
1D straight line fit as simple case
Two perfect measurements

away from interaction point

no measurement uncertainty

just draw a straight line through them and extrapolate

Imperfect measurements give less precise results
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Track Fitting
1D straight line fit as simple case
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away from interaction point
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just draw a straight line through them and extrapolate

Imperfect measurements give less precise results
the farther you extrapolate, the less you know

Smaller errors and more points help to constrain the possibilities.
But how to find the best point from a large set of points?

Quantitatively
parameterize a track: 
In case of straight line                                      or, eg., helix in case of magnetic field present

Find track parameters by Least-Squares-Minimization
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Track Fitting
1D straight line fit as simple case
Two perfect measurements

away from interaction point

no measurement uncertainty

just draw a straight line through them and extrapolate

Imperfect measurements give less precise results
the farther you extrapolate, the less you know

Smaller errors and more points help to constrain the possibilities.
But how to find the best point from a large set of points?

Quantitatively
parameterize a track: 
In case of straight line                                      or, eg., helix in case of magnetic field present

Find track parameters by Least-Squares-Minimization

Obtain also uncertainties on track parameters

y(x) = θ x + d

χ2 =
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“Typical” size of errors

Error δd on position is about ±10 microns
Error δθ on angle is about ±0.1 milliradians (±0.002 degrees)
Satisfyingly small errors

allows separation of tracks that come from different particle decays (which can be separated at the order of mm)

However
we “see” particles by interaction with a detector (=material)

±10 microns±10 microns
10 cm

10 cm
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“Typical” size of errors

Error δd on position is about ±10 microns
Error δθ on angle is about ±0.1 milliradians (±0.002 degrees)
Satisfyingly small errors

allows separation of tracks that come from different particle decays (which can be separated at the order of mm)

However
we “see” particles by interaction with a detector (=material)
interaction leads to : energy loss, change in direction
This is Multiple Scattering

• Charged particles passing through matter “scatter” by a random angle

±10 microns±10 microns
10 cm

10 cm

θMS

�
�θ2

MS� =
15 MeV/c

βp

�
thickness

Xrad

examples:
300 micron Si : RMS = 0.9 mrad /βp
1 mm Be        : RMS = 0.8 mrad /βp
➔  leads to additional position errors
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Kalman filter

So?  Could extend track parameterization to take this into account 
n additional parameters

and include the multiple scattering information into the Least-Squares 
(n equations, n unknowns)

For large n, computing time grows like O(n3), quickly un-practicable

1

2

3 n

θ1
θ2

θ3 θn

y(x) = d + θ x + Θ(x− x1)θ1(x− x1) + Θ(x− x2)θ1(x− x2) + · · ·



CSS10 G. Dissertori : From raw data to physics results 43

Kalman filter

So?  Could extend track parameterization to take this into account 
n additional parameters

and include the multiple scattering information into the Least-Squares 
(n equations, n unknowns)

For large n, computing time grows like O(n3), quickly un-practicable
anyway, not interested in all these angles, only in parameters at the origin

1

2

3 n

θ1
θ2

θ3 θn

y(x) = d + θ x + Θ(x− x1)θ1(x− x1) + Θ(x− x2)θ1(x− x2) + · · ·

χ2 = χ2
old +

�

i

θ2
i

σ2
MS



CSS10 G. Dissertori : From raw data to physics results 43

Kalman filter

So?  Could extend track parameterization to take this into account 
n additional parameters

and include the multiple scattering information into the Least-Squares 
(n equations, n unknowns)

For large n, computing time grows like O(n3), quickly un-practicable
anyway, not interested in all these angles, only in parameters at the origin

Instead, approximate, work inward N times

1

2

3 n

θ1
θ2

θ3 θn

1

2

3 n

y(x) = d + θ x + Θ(x− x1)θ1(x− x1) + Θ(x− x2)θ1(x− x2) + · · ·

χ2 = χ2
old +

�

i

θ2
i

σ2
MS



CSS10 G. Dissertori : From raw data to physics results 43

Kalman filter

So?  Could extend track parameterization to take this into account 
n additional parameters

and include the multiple scattering information into the Least-Squares 
(n equations, n unknowns)

For large n, computing time grows like O(n3), quickly un-practicable
anyway, not interested in all these angles, only in parameters at the origin

Instead, approximate, work inward N times

1

2

3 n

θ1
θ2

θ3 θn

1

2

3 n

y(x) = d + θ x + Θ(x− x1)θ1(x− x1) + Θ(x− x2)θ1(x− x2) + · · ·

χ2 = χ2
old +

�

i

θ2
i

σ2
MS



CSS10 G. Dissertori : From raw data to physics results 43

Kalman filter

So?  Could extend track parameterization to take this into account 
n additional parameters

and include the multiple scattering information into the Least-Squares 
(n equations, n unknowns)

For large n, computing time grows like O(n3), quickly un-practicable
anyway, not interested in all these angles, only in parameters at the origin

Instead, approximate, work inward N times

1

2

3 n

θ1
θ2

θ3 θn

1

2

3 n

y(x) = d + θ x + Θ(x− x1)θ1(x− x1) + Θ(x− x2)θ1(x− x2) + · · ·

χ2 = χ2
old +

�

i

θ2
i

σ2
MS



CSS10 G. Dissertori : From raw data to physics results 43

Kalman filter

So?  Could extend track parameterization to take this into account 
n additional parameters

and include the multiple scattering information into the Least-Squares 
(n equations, n unknowns)

For large n, computing time grows like O(n3), quickly un-practicable
anyway, not interested in all these angles, only in parameters at the origin

Instead, approximate, work inward N times

1

2

3 n

θ1
θ2

θ3 θn

1

2

3 n

y(x) = d + θ x + Θ(x− x1)θ1(x− x1) + Θ(x− x2)θ1(x− x2) + · · ·

χ2 = χ2
old +

�

i

θ2
i

σ2
MS



CSS10 G. Dissertori : From raw data to physics results 43

Kalman filter

So?  Could extend track parameterization to take this into account 
n additional parameters

and include the multiple scattering information into the Least-Squares 
(n equations, n unknowns)

For large n, computing time grows like O(n3), quickly un-practicable
anyway, not interested in all these angles, only in parameters at the origin

Instead, approximate, work inward N times

1

2

3 n

θ1
θ2

θ3 θn

1

2

3 n

y(x) = d + θ x + Θ(x− x1)θ1(x− x1) + Θ(x− x2)θ1(x− x2) + · · ·

χ2 = χ2
old +

�

i

θ2
i

σ2
MS



CSS10 G. Dissertori : From raw data to physics results 43

Kalman filter

So?  Could extend track parameterization to take this into account 
n additional parameters

and include the multiple scattering information into the Least-Squares 
(n equations, n unknowns)

For large n, computing time grows like O(n3), quickly un-practicable
anyway, not interested in all these angles, only in parameters at the origin

Instead, approximate, work inward N times

1

2

3 n

θ1
θ2

θ3 θn

1

2

3 n

y(x) = d + θ x + Θ(x− x1)θ1(x− x1) + Θ(x− x2)θ1(x− x2) + · · ·

χ2 = χ2
old +

�

i

θ2
i

σ2
MS



CSS10 G. Dissertori : From raw data to physics results 43

Kalman filter

So?  Could extend track parameterization to take this into account 
n additional parameters

and include the multiple scattering information into the Least-Squares 
(n equations, n unknowns)

For large n, computing time grows like O(n3), quickly un-practicable
anyway, not interested in all these angles, only in parameters at the origin

Instead, approximate, work inward N times

leads to O(n) computations!
in each step, make extrapolation to next layer, using information from current track 
parameters, expected scattering error, and measurement at next layer
Needs a starting estimate (seed) and may need some iterations, smoothing
This method is based on theory of the Kalman Filter
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Calorimeter energy 
reconstruction
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Goals 
Reconstruct energy deposited by charged and neutral particles
Determine position of deposit, direction of incident particles
Be insensitive to noise and “un-wanted” (un-correlated) energy

and obtain the best possible
resolution!

CMS
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Clusters of energy 
Calorimeters are segmented in cells
Typically a shower extends over several cells

Useful to reconstruct precisely the impact point from the “center-of-gravity” of the deposits 
in the various cells
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Clusters of energy 
Calorimeters are segmented in cells
Typically a shower extends over several cells

Useful to reconstruct precisely the impact point from the “center-of-gravity” of the deposits 
in the various cells

Example CMS Crystal Calorimeter:
electron energy in central crystal ~ 80 %, in 5x5 matrix around it ~ 96 %

So task is : identify these clusters and reconstruct the energy they contain
front view

side view
view in (φ,η) cells
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Cluster Finding
Clusters of energy in a calorimeter are due to the original particles

Clustering algorithm groups individual channel energies
Don’t want to miss any; don’t want to pick up fakes
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Cluster Finding
Clusters of energy in a calorimeter are due to the original particles

Clustering algorithm groups individual channel energies
Don’t want to miss any; don’t want to pick up fakes
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low threshold,
against noise

high threshold,
for seed finding

Simple example of an algorithm
  Scan for seed crystals = local energy maximum above a defined seed threshold
  Starting from the seed position, adjacent crystals are examined, scanning first in φ and then in η
  Along each scan line, crystals are added to the cluster if

1. The crystal’s energy is above the noise level (lower threshold) 
2. The crystal has not been assigned to another cluster already
3. The previous crystal added (in the same direction) has higher energy
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Difficulties 
Careful tuning of thresholds needed

needs usually learning phase
adapt to noise conditions
too low : pick up too much unwanted energy
too high : loose too much of “real” energy. Corrections/Calibrations will be larger

Sometimes several clustering stages, in order separate or 
combine nearby clusters

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Channe l

low threshold,
against noise

high threshold,
for seed finding

example : one lump or two?
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Jet Algorithms
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Jets in Hadron Collider Detectors

Introducing a cone prescription seems “natural”...
But how to make it more quantitative?

don’t want people “guessing” at whether there are 2,3, ...  jets

Jets in       DØ CDF
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Cones...

51
from J. Huston, CTEQ summer school 2004

The natural (?) definition of a jet in a hadron collider environment
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Jets in Hadron Collider Detectors
Jets in       CMS

no cut on track momenta
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Requirements
  Applicable at all levels 

partons, stable particles
 for theoretical calculations

measured objects (calorimeter objects, tracks, etc)

and always find the same jet
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Requirements
  Applicable at all levels 

partons, stable particles
 for theoretical calculations

measured objects (calorimeter objects, tracks, etc)

and always find the same jet

                  
  Independent of the very details of the 
detector 

example : granularity of the 
calorimeter, energy response,...                                                                 

                  
Easy to implement !

Energy
Momentum

angle

Close correspondence between

Pparton           Pjet
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The CONE algorithm

Compute centroid 
using R

Is new axis 
same as old 
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Pile Up : many additional
soft proton-proton interactions
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Further difficulties 
Pile Up : many additional
soft proton-proton interactions

up to 20 at highest LHC luminosity

Underlying event  
beam-beam remnants, initial state radiation, 
multiple parton interactions
gives additional energy in the event

All this additional energy has nothing to do with jet energies
have to subtract it  

 

Proton AntiProton 

PT(hard) 

Outgoing Parton 

Outgoing Parton 

Underlying Event Underlying Event 

Initial-State Radiation 

Final-State 
Radiation 

no cut on track momenta minimum track pT = 10 GeV/c 
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The computing 
behind all this
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Some numbers
Examples from CMS

Rate of events streaming out from High-Level Trigger farm ~150 Hz
each event has a size of the order of 200 kByte



CSS10 G. Dissertori : From raw data to physics results 57

Some numbers
Examples from CMS

Rate of events streaming out from High-Level Trigger farm ~150 Hz
each event has a size of the order of 200 kByte

at high Lumi : CMS will record ~100k top-quark events per day
among about 107 events in total per day
will have roughly 150 “physics” days per year
thus about 109 evts/year, a few Pbyte



CSS10 G. Dissertori : From raw data to physics results 57

Some numbers
Examples from CMS

Rate of events streaming out from High-Level Trigger farm ~150 Hz
each event has a size of the order of 200 kByte

at high Lumi : CMS will record ~100k top-quark events per day
among about 107 events in total per day
will have roughly 150 “physics” days per year
thus about 109 evts/year, a few Pbyte

 “prompt” processing
first reprocessing step within one day (within hours...)
Reco time per event on std. CPU: < 5 sec (on lxplus)
Note : will have to reprocess several times

• new/better algorithms, updated calibrations, etc.



CSS10 G. Dissertori : From raw data to physics results 57

Some numbers
Examples from CMS

Rate of events streaming out from High-Level Trigger farm ~150 Hz
each event has a size of the order of 200 kByte

at high Lumi : CMS will record ~100k top-quark events per day
among about 107 events in total per day
will have roughly 150 “physics” days per year
thus about 109 evts/year, a few Pbyte

 “prompt” processing
first reprocessing step within one day (within hours...)
Reco time per event on std. CPU: < 5 sec (on lxplus)
Note : will have to reprocess several times

• new/better algorithms, updated calibrations, etc.

 simulating several 100s to 1000s of millions of events
are mostly done at computing centres outside CERN
Simulation time per event now ~ 100 secs (eg. for QCD or top evts)



CSS10 G. Dissertori : From raw data to physics results 57

Some numbers
Examples from CMS

Rate of events streaming out from High-Level Trigger farm ~150 Hz
each event has a size of the order of 200 kByte

at high Lumi : CMS will record ~100k top-quark events per day
among about 107 events in total per day
will have roughly 150 “physics” days per year
thus about 109 evts/year, a few Pbyte

 “prompt” processing
first reprocessing step within one day (within hours...)
Reco time per event on std. CPU: < 5 sec (on lxplus)
Note : will have to reprocess several times

• new/better algorithms, updated calibrations, etc.

 simulating several 100s to 1000s of millions of events
are mostly done at computing centres outside CERN
Simulation time per event now ~ 100 secs (eg. for QCD or top evts)

 ~2 million lines of code (reconstruction and simulation)



CSS10 G. Dissertori : From raw data to physics results 58

RECO flow
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signals

DAQ
system



CSS10 G. Dissertori : From raw data to physics results 58

RECO flow

Recorded
signals

DAQ
system

Prompt
Reconstruction

Reconstruction Observed 
tracks, etc

Interpreted
events

Physics Tools
eg. jet algos



CSS10 G. Dissertori : From raw data to physics results 58

RECO flow

Recorded
signals

DAQ
system

Prompt
Reconstruction

Reconstruction Observed 
tracks, etc

Interpreted
events

Physics Tools
eg. jet algos

Root,
... Individual

Analyses Data storage
Various formats:
Full Event info,
only RECO info,

reduced/selected RECO 
info



CSS10 G. Dissertori : From raw data to physics results 58

RECO flow

Recorded
signals

DAQ
system

Prompt
Reconstruction

Reconstruction Observed 
tracks, etc

Interpreted
events

Physics Tools
eg. jet algos

Root,
... Individual

Analyses Data storage
Various formats:
Full Event info,
only RECO info,

reduced/selected RECO 
info

today: ~120000 jobs/day, 400-500 users/week
on 120000 CPU-cores
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Flow of simulated data
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Response
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Geometry
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Specific
reaction

Particle 
paths
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Flow of simulated data
Generators

Response
Simulation

Geometry
Simulation

Specific
reaction

Particle 
paths

Background
reaction

Measured
backgrounds

Merge 
Processing

Background
generator

Reconstruction Observed 
tracks, etc

Interpreted
events

Physics Tools
eg. jet algos

Individual
Analyses

Recorded
signals

Separate components:
often made by different experts

makes it more manageable 

Product is realistic “data” for analysis

Building a better model:
improved details (eg. better detector geometry)

real backgrounds
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Summary

“Doing something ordinary is a waste of time”  (Madonna)
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What wasn’t covered
Details on track fitting, Kalman filters
Secondary Vertex finding
Alignment
Particle Identification
Calibration techniques, “in-situ” methods
Particle/Energy flow
Trigger menus, their studies
more details on parameter fitting, 
eg. lifetime and mass measurements
how to estimate systematic errors
Databases, persistent data storage
Programming languages in use (F77, C, C++, JAVA, ...)
.....
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