From Raw Data to Physics: Reconstruction and Analysis

Reconstruction: Particle ID

How we try to tell particles apart

Analysis: Measuring α_s in QCD

What to do when theory doesn't make clear predictions

Alignment

We know what we designed; is it what we built?

Summary

From Raw Data to Physics: Reconstruction and Analysis

Reconstruction: Particle ID

How we try to tell particles apart

Analysis: Measuring α_s in QCD

What to do when theory doesn't make clear predictions

Alignment

We know what we designed; is it what we built?

Summary

Somewhere, something went terribly wrong

From Raw Data to Physics

Particle ID (PID)

Track could be e, μ , π , K, or p; knowing which improves analysis

- Vital for measuring B->K π vs B-> $\pi\pi$ rates
- Mistaking a π for e, μ , K or p increases combinatoric background

Leptons have unique interactions with material

- e deposits energy quickly, so expect E=p in calorimeter
- μ deposits energy slowly, so expect penetrating trajectory

But hadronic showers from π , K, p all look alike

Can't you measure mass from m²=E²-p²? For p=2GeV/c, pion energy = 2.005 GeV, kaon energy = 2.060 GeV Calorimeters are not that accurate

(We usually cheat and calculate E from p and m)

<u>dE/dx</u>

Charged particles moving through matter lose energy to ionization Loss is a function of the speed, $\beta = \frac{v}{c}$ so a function of mass and momentum

Its hard to make this precise

Minimize material -> small loses

• Hard to measure dE well

Geometry of tracking is complex

• Hard to measure dx well

Typical accuracy is 5-10%

•"2 sigma separation"

Fig. 8: Scatter plot of the ionisation measurement for a large set of hadronic Z_0 decays

During analysis, can choose

- efficiency
- purityBut can't have both!

From Raw Data to Physics

Another velocity-dependent process: Cherenkov light

Particles moving faster than light in a medium (glass, water) emit light

- Angle is related to velocity
- Light forms a cone

Focus it onto a plane, and you get a circle:

Radius of the reconstructed circle give particle type:

generic B Bbar events

From Raw Data to Physics

How to make this fit?

Bad news: Rings get messy due to ambiguities in bouncing

From Raw Data to Physics

Simple event with five charged particles:

Brute-force circle-finding is an O(N⁴) problem

Realistic solution?

Use what you know:

- Have track trajectories, know position and angle in DIRC bars
- All photons from a single track will have the same angle w.r.t. track No reason to expect that for photons from other tracks

For each track, plot angle between track and every photon

- Don't do pattern recognition with individual photons
- Instead, look for overall pattern

Will do better as we understand more

From Raw Data to Physics

The imperfect measurement of a (set of) interactions in the detector

A unique happening: Run 21007, event 3916 which contains a J/psi -> ee decay

Specific lifetimes, probabilities, masses, branching ratios, interactions, etc

A small number of general equations, with specific input parameters (perhaps poorly known)

Analysis: Measuring α_s in QCD

QCD predicts a set of basic interactions:

• You can measure the strong coupling constant by the relative rates

Unfortunately, QCD only makes exact predictions at high energy

• Low energy QCD, e.g. making hadrons, must be "modeled"

Compare models to observations in lots of different variables

Over time, new models get created and old ones improve

Figure 5: Charged multiplicity distribution measured by the L3 collaboration [28]. The points with error bars are the experimental data, the curves are model predictions.

Groups of particles probably come from the underlying quarks and gluons

But how to make this more quantitative?

- Don't want people "guessing" at whether there are two or three jets
- Need a jet-finding algorithm

Simple one:

- Take two particles with most similar momentum and combine into one
- Repeat, until you reach a stopping value "y_{cut}"

From Raw Data to Physics

What about that arbitrary cut?

Nature doesn't know about it

- If your model is right, your simulation should reproduce the data at any value of the cut
- Pick one (e.g. 0.04), and use the number of 2,3,4, 5 jet events to determine α_s .
- Then check consistency at other values, with other models

Figure 8: Jet rates determined by the ALEPH-collaboration [29] as function of the jet resolution parameter y_{ext} . The experimental results are compared to model calculations. Note that neighbouring points are highly correlated.

<u>Many ways to measure α_s </u>

If the theory's right, all get same value because all are measuring same thing

If the values are inconsistent, perhaps a more complicated theory is needed

Or maybe we just made a mistake...

Figure 12: Measurements of the strong coupling constant from event shape variables based on second order QCD predictions.

Alignment & Calibration

How do you know the gain of each calorimeter cell?

- What's the relationship between ADC counts and energy?
- You designed it to have a specific value; does it?

How do you know where the tracking hits are in space?

• Need to know Si plane positions to about 5 microns

Start with

- Test beam information
- Surveys during construction
- Simulations and tests

But it always comes down to calibrating/aligning with real data

Example: BaBar vertex detector alignment

Approach 1: Take 10⁵ tracks

Calculate sum of track χ^2 sFor each of 4200 constants, generate equation from
Solve 4200 equations in 4200 unknowns $\frac{\partial \chi^2}{\partial c_i} = 0$

Computationally infeasible

• Even worse, non-linear fit won't converge

Instead, break problem into pieces:

- Two mechanical halves $\Rightarrow 2x6$ "global alignment constants"
- "local" constants within the halves

Do local alignment iteratively

- Look at pairs of adjacent wafers, and try to position them
- Then use tracks to position entire layers

• And iterate as needed

Iterative, sensitive process

- Manually guided from initial knowledge to final approximation
- Requires judgement on when to stop, how often to redo

Summary

Reconstruction and analysis is how we get from raw data to physics papers

Throughout, you deal with:

- Too little information
- Too much detail
- Little prior knowledge

You have to count on

- Lots of cross checks
- Prior art
- Tuning and evolutionary improvement

But you can generate wonderful results from these instruments!