From Raw Data to Physics: Reconstruction and Analysis

Reconstruction: Tracking Analysis: Measuring a lifetime

Why does tracking need to be done well?

- 1) Tells you particles were created in an event
- 2) Allows you to measure their momentum
 - Direction and magnitude
 - Combine these to look for decays with known masses
 - Only final particles are visible!

3) Allows you to measure spatial trajectories

• Combine to look for separated vertices, indicating particles with long lifetimes

From Raw Data to Physics

Track Fitting

1D straight line as simple case

Two perfect hits

- Away from interaction point
- With no measurement uncertainty
- Just draw a line through them and extrapolate

Imperfect measurements give less precise results

• The farther you go, the less you know

Smaller errors, more points help constrain the possibilities How to find the best track from a large set of points?

Bob Jacobsen July 24, 2001

Х

How to fit quantitatively?

Parameterize track: $y(x) = \theta x + d$

• Two measurements, two parameters => OK

Best track?

- Consistency with measurements represented by χ Sum of normalized errors squared
- This is directly a function of our parameters:

$$\chi^{2} = \sum_{i=1}^{n_{hits}} \frac{(y_{i} - \theta x_{i} - d)^{2}}{\sigma_{i}^{2}}$$

- The best track has the smallest normalized error
- So minimize in the usual way:

$$\frac{\partial \chi^2}{\partial \theta} = 0 \qquad \qquad \frac{\partial \chi^2}{\partial d} = 0$$

Accuracy of measurement

$$\frac{\partial \chi^2}{\partial \theta} = 2 \sum \frac{(y_i - \theta x_i - d)}{\sigma_i^2} (-x_i)$$

$$0 = \left(\sum \frac{y_i x_i}{\sigma_i^2} \right) - \left(\sum \frac{x_i}{\sigma_i^2} \right) d - \left(\sum \frac{x_i^2}{\sigma_i^2} \right) \theta$$

$$\frac{\partial \chi^2}{\partial d} = 2 \sum \frac{(y_i - \theta x_i - d)}{\sigma_i^2} (-1)$$

$$0 = \left(\sum \frac{y_i}{\sigma_i^2} \right) - \left(\sum \frac{1}{\sigma_i^2} \right) d - \left(\sum \frac{x_i}{\sigma_i^2} \right) \theta$$

<u>Two</u> equations in <u>two</u> unknowns

• Terms in () are constants calculated from measurement, detector geometry Generalizes nicely to 3D, helical tracks with 5 parameters

• Five equations in five unknowns

With a little more work, can calculate expected errors on θ , d

"Most likely" that <u>real</u> d (Y intercept) is within this band of $\pm \sigma_d$ Similar θ error, where θ_{real} is most likely within $\pm \sigma_{\theta}$ of best value

Typical size of errors

Error on position is about ±10 microns

By similar triangles

Error on angle is about ±0.1 milliradians (±0.002 degrees)

Satisfyingly small errors!

Allows separation of tracks that come from different particle decays

But how to we "see" particles?

- Charged particles pass through matter,
- ionize some atoms, leaving energy
- which we can sense electronically.

More ionization => more signal => more precision

=> more energy loss

Multiple Scattering

Charged particles passing through matter "scatter" by a random angle

$$\sqrt{\langle \theta_{ms}^2 \rangle} = \frac{15 \, MeV \, / c}{\beta p} \sqrt{\frac{\text{thickness}}{X_{rad}}}$$

300 μ Si RMS \bigstar 0.9 milliradians / β p 1mm Be RMS \bigstar 0.8 milliradians / β p

Also leads to position errors

Fitting points 3 & 4 no longer measures angle at IP

Track already scattered by random angles $\theta_1, \theta_2, \theta_3$

Track has more parameters

$$y(x) = d + \theta x + \theta_1 (x - x_1) \Theta(x - x_1)$$

+ $\theta_2 (x - x_2) \Theta(x - x_2) + \theta_3 (x - x_3) \Theta(x - x_3) + \dots$

If we knew $\theta_1, \theta_{2,...}$ we'd know entire trajectory Can we measure those angles?

 θ_2 roughly given by y_1, y_2, y_3 Just a more complex χ^2 equation? $\sqrt{\langle \theta_{ms}^2 \rangle}$ acts like a measurement "I'd be surprised if it was larger than $0 \pm \frac{15 MeV / c}{\beta p} \sqrt{\frac{L}{X_{rad}}}$

"Add information" to fit by adding new terms to χ^2

$$\chi^2 = \chi^2_{old} + \sum_i \frac{\theta_i^2}{\sigma_{ms}^2}$$

N measurements from planes (say 100)

N+2 unknowns (d, θ , plus N scattering angles)

Can't see first, last scattering angles; can only extrapolate outside Hence ignore θ_1, θ_N Now all we have to do is solve 100 equations in 100 unknowns...

Nobody cares about θ_N But θ_1 effects accuracy of d

 $θ_{ms} \Rightarrow 1.2 \text{ milliradian/βp error on } θ$ @10 cm, leads to 120µ/βp error on d

In spite of

N=100 chambers, complicated programs and inverting 100x100 matrices

$$\sigma_d \approx 10\mu \oplus \frac{120\,\mu}{\beta p}$$

From Raw Data to Physics

"Kalman fit"?

(ref: Brillion)

Computational expensive to calculate solutions with 100 angles Computer time grows like O(N³), with N large **And we're not really interested in all those angles anyway**

Instead, approximate, working inward N times:

"Kalman fit"?

(ref: Brillion)

Computational expensive to calculate solutions with 100 angles Computer time grows like O(N³), with N large **And we're not really interested in all those angles anyway**

Instead, approximate, working inward N times:

"Kalman fit"?

(ref: Brillion)

Computational expensive to calculate solutions with 100 anglesComputer time grows like O(N³), with N largeAnd we're not really interested in all those angles anyway

Instead, approximate, working inward N times:

This is O(N) computations

May need to repeat once or twice to use good starting estimate Each one a little more complex But still results in a large net savings of CPU time

Moral: Consider what you <u>really</u> want to know

Analysis: Lifetime measurement

Why bother?

Standard model contains 18 parameters, a priori unknown Particle lifetimes can be written in terms of those

"Measure once to determine a parameter

Measure in another form to check the theory"

Measure lots of processes to check overall consistency

A model of how physics is done.

The imperfect measurement of a (set of) interactions in the detector

A unique happening: Run 21007, event 3916 which contains a J/psi -> ee decay

Specific lifetimes, probabilities, masses, branching ratios, interactions, etc

A small number of general equations, with specific input parameters (perhaps poorly known)

B lifetime: What we measure at BaBar:

Unfortunately, we can't measure Δz perfectly:

From Raw Data to Physics

First, you have to find the B vertex

To reconstruct a B, you need to look for a specific decay mode

(Un)fortunately, there are lots!

$\overline{\text{B0}}$ ->	D*+ pi-
	D*+ rho-
	D*+ a1-
	D+ pi-
	D+ rho-
	D+ a1-
	J/Psi K*0bar
	<u>B0</u> ->

D*+ -> D0 pi+ D*0 -> D0 pi0

D0 -> K- pi+, K- pi+ pi0, K- pi+ pi- pi+, K0S pi+ pi-D+ -> K- pi+ pi+, K0S pi+ K0S -> pi+ pia1- -> rhoo(-> pi+ pi-) pirho- -> pi- pi0 pi0 -> gamma gamma

Psi(2S) -> J/Psi pi+ pi-, mu+ mu-, e+ e-J/Psi -> mu+ mu-, e+ e-

K*0bar -> K- pi+,

And some will be wrong:

Have to correct for effects of these when calculating the result

Including a term in systematic error for limited understanding

Next, have to understand the resolution:

Studies of resolution seen in Monte Carlo simulation:

But how do you know the simulation is right?

- Find ways to compare data and Monte-Carlo predictions
- Watch for bias in your results!

Combined fit to the data gives the lifetime:

Note that systematic errors are not so much smaller than statistical ones: 2001 data reduces the statistical error; only improved understanding reduces systematic

From Raw Data to Physics

What about the computing behind this?

BaBar records about 30k B events per day

- Hidden in 3 million events recorded/day
- Take data about 340 days per year

'Prompt processing'

- Want data available in several days
- Reconstruction takes about 3 CPU seconds/evt
- Processed multiple times
 - E.g. new algorithms, constants, etc

We have about 100 million simulated events to study

- About half in specific decay modes
- Half 'generic' decays to all modes

About 4 million lines of code in simulation and reconstruction programs

• Plus the individual analyses

Traditional flow of data - real and simulated

Processing real data

Partitioning production system into programs

Speed, simplify simulation by crossing levels

From Raw Data to Physics

Why do we do this?

Detailed simulations are part of HEP physics

- Simulations are present from the beginning of an experiment Simple estimates needed for making detector design choices
- We build them up over time

Adding/removing details as we go along

• We use them in many different ways

Detector performance studies

Providing efficiency, purity values for analysis

Looking for unexpected effects, backgrounds

Why do we use such a structure?

- Flexibility we have different versions of the pieces Comparison forms an important cross check
- Efficiency

We build up collections of data at each step for repeated study

"I found this background effect in the Spring dataset..."

• Manageability

Large programs are hard to build, understand, use

Day 2 summary:

Track fitting as a sample reconstruction problem

- How to make "oh, just draw a line" more quantitative
- How realities of detector, computation effect solution

B lifetime as a sample analysis

- What it tells you
- What you need to know to make the measurement
- The roles of real and simulated data

Offline computing

- Why it's not trivial
- A typical system organization

Tomorrow:

- How we try to tell particles apart
- What to do when theory isn't precise
- Summary