
 A Little C++ 81 

6   A Little C++  
This chapter introduces you to some useful insights into C++, to allow you to use of the most advanced features 
in ROOT. It is in no case a full course in C++. 

Classes, Methods and Constructors 
C++ extends C with the notion of class. If you’re used to structures in C, a class is a struct that is a group of 
related variables, which is extended with functions and routines specific to this structure (class). What is the 
interest? Consider a struct that is defined this way: 
struct Line { 
    float x1; 
    float y1; 
    float x2; 
    float y2; } 

This structure represents a line to be drawn in a graphical window. (x1,y1) are the coordinates of the first 
point, (x2,y2) the coordinates of the second point. In the standard C, if you want to draw effectively such a 
line, you first have to define a structure and initialize the points (you can try this): 
Line firstline; 
firstline.x1 = 0.2; 
firstline.y1 = 0.2; 
firstline.x2 = 0.8; 
firstline.y2 = 0.9; 

This defines a line going from the point (0.2,0.2) to the point (0.8,0.9). To draw this line, you will have to 
write a function, say LineDraw(Line l) and call it with your object as argument: 
LineDraw(firstline); 

In C++, we would not do that. We would instead define a class like this: 
class TLine { 
 Double_t x1; 
 Double_t y1; 
 Double_t x2; 
 Double_t y2; 
 TLine(int x1, int y1, int x2, int y2); 
 void Draw(); 
} 

Here we added two functions, that we will call methods or member functions, to the TLine class. The first 
method is used for initializing the line objects we would build. It is called a constructor. The second one is the 
Draw method itself. Therefore, to build and draw a line, we have to do: 
TLine l(0.2,0.2,0.8,0.9); 
l.Draw(); 

The first line builds the object l by calling its constructor. The second line calls the TLine::Draw() method of 
this object. You don’t need to pass any parameters to this method since it applies to the object l, which knows 
the coordinates of the line. These are internal variables x1, y1, x2, y2 that were initialized by the constructor. 

Inheritance and Data Encapsulation 
We have defined a TLine class that contains everything necessary to draw a line. If we want to draw an arrow, 
is it so different from drawing a line? We just have to draw a triangle at one end. It would be very inefficient to 
define the class TArrow from scratch. Fortunately, inheritance allows a class to be defined from an existing 
class. We would write something like: 
class TArrow : public TLine { 
 int ArrowHeadSize; 
 void Draw(); 
 void SetArrowSize(int arrowsize); } 

The keyword "public" will be explained later. The class TArrow now contains everything that the class TLine 
does, and a couple of things more, the size of the arrowhead and a function that can change it. The Draw 



82 A Little C++  

method of TArrow will draw the head and call the draw method of TLine. We just have to write the code for 
drawing the head! 

Method Overriding 
Giving the same name to a method (remember: method = member function of a class) in the child class 
(TArrow) as in the parent (TLine) does not give any problem. This is called overriding a method. Draw in 
TArrow overrides Draw in TLine. There is no possible ambiguity since, when one calls the Draw() method; 
this applies to an object which type is known. Suppose we have an object l of type TLine and an object a of 
type TArrow. When you want to draw the line, you do: 

l.Draw() 

Draw() from TLine is called. If you do: 

a.Draw() 

Draw() from TArrow is called and the arrow a is drawn. 

Data Encapsulation 
We have seen previously the keyword "public". This keyword means that every name declared public is seen 
by the outside world. This is opposed to "private" that means only the class where the name was declared 
private could see this name. For example, suppose we declare in TArrow the variable ArrowHeadSize 
private. 
private: 
     int ArrowHeadSize; 

Then, only the methods (i.e. member functions) of TArrow will be able to access this variable. Nobody else will 
see it. Even the classes that we could derive from TArrow will not see it. On the other hand, if we declare the 
method Draw() as public, everybody will be able to see it and use it. You see that the character public or 
private does not depend of the type of argument. It can be a data member, a member function, or even a class. 
For example, in the case of TArrow, the base class TLine is declared as public: 

class TArrow : public TLine { ... 

This means that all methods of TArrow will be able to access all methods of TLine, but this will be also true for 
anybody in the outside world. Of course, this is true if TLine accepts the outside world to see its methods/data 
members. If something is declared private in TLine, nobody will see it, not even TArrow members, even if 
TLine is declared as a public base class. 
What if TLine is declared "private" instead of "public"? Well, it will behave as any other name declared 
private in TArrow: only the data members and methods of TArrow will be able to access TLine, its methods 
and data members, nobody else. This may seem a little bit confusing and readers should read a good C++ book 
if they want more details. Especially since, besides public and private, a member can be protected. Usually, one 
puts private the methods that the class uses internally, like some utilities classes, and that the programmer does 
not want to be seen in the outside world. 
With "good" C++ practice (which we have tried to use in ROOT), all data members of a class are private. This is 
called data encapsulation and is one of the strongest advantages of Object Oriented Programming (OOP). 
Private data members of a class are not visible, except to the class itself. So, from the outside world, if one 
wants to access those data members, one should use so called "getters" and "setters" methods, which are 
special methods used only to get or set the data members. The advantage is that if the programmers want to 
modify the inner workings of their classes, they can do so without changing what the user sees. The user does 
not even have to know that something has changed (for the better, hopefully). For example, in our TArrow 
class, we would have set the data member ArrowHeadSize private. The setter method is SetArrowSize(), 
we do not need a getter method: 
class TArrow : public TLine { 
private: 
 int ArrowHeadSize; 
public: 
 void Draw(); 
 void SetArrowSize(int arrowsize); 
} 

To define an arrow object you call the constructor. This will also call the constructor of TLine, which is the 
parent class of TArrow, automatically. Then we can call any of the line or arrow public methods: 
root[] TArrow *myarrow = new TArrow(1,5,89,124); 
root[] myarrow->SetArrowSize(10); 
root[] myarrow->Draw(); 



 A Little C++ 83 

Creating Objects on the Stack and Heap 
To explain how objects are created on the stack and on the heap we will use the Quad class. You can find the 
definition in $ROOTSYS/tutorials/quadp/Quad.h and Quad.cxx. The Quad class has four methods. The 
constructor and destructor, Evaluate that evaluates ax**2 + bx +c, and Solve which solves the quadratic 
equation ax**2 + bx +c = 0. 
Quad.h: 
class Quad { 
 public: 
     Quad(Float_t a, Float_t b, Float_t c); 
    ~Quad(); 
     Float_t Evaluate(Float_t x) const; 
     void Solve() const; 
   private: 
     Float_t fA; 
     Float_t fB; 
     Float_t fC; 
}; 

Quad.cxx: 
#include <iostream.h> 
#include <math.h> 
#include "Quad.h" 
  
Quad::Quad(Float_t a, Float_t b, Float_t c) { 
    fA = a; 
    fB = b; 
    fC = c; 
} 
Quad::~Quad() { 
  Cout <<"deleting object with coeffts: "<< fA << "," << fB << "," << fC << endl; 
} 
Float_t Quad::Evaluate(Float_t x) const { 
  return fA*x*x + fB*x + fC; 
} 
void Quad::Solve() const { 
  Float_t temp = fB*fB - 4.*fA*fC;    
  if ( temp > 0. ) { 
    temp = sqrt( temp ); 
    cout << "There are two roots: " << ( -fB - temp ) / (2.*fA) 
         << " and " << ( -fB + temp ) / (2.*fA) << endl; 
  } else { 
    if ( temp == 0. ) { 
      cout << "There are two equal roots: " << -fB / (2.*fA) << endl; 
    } else { 
      cout << "There are no roots" << endl; 
    } 
  }     
} 

Let us first look how we create an object. When we create an object by:  
root[] Quad my_object(1.,2.,-3.); 

We are creating an object on the stack. A FORTRAN programmer may be familiar with the idea; it is not unlike a 
local variable in a function or subroutine. Although there are still a few old timers who do not know it, FORTRAN 
is under no obligation to save local variables once the function or subroutine returns unless the SAVE statement 
is used. If not then it is likely that FORTRAN will place them on the stack and they will "pop off" when the 
RETURN statement is reached. To give an object more permanence it has to be placed on the heap. 
root[] .L Quad.cxx  
root[] Quad *my_objptr = new Quad(1.,2.,-3.); 

The second line declares a pointer to Quad called my_objptr. From the syntax point of view, this is just like all 
the other declarations we have seen so far, i.e. this is a stack variable. The value of the pointer is set equal to  
new Quad(1.,2.,-3.); 

new, despite its looks, is an operator and creates an object or variable of the type that comes next, Quad in this 
case, on the heap. Just as with stack objects it has to be initialized by calling its constructor. The syntax 
requires that the argument list follow the type. This one statement has brought two items into existence, one on 
the heap and one on the stack. The heap object will live until the delete operator is applied to it.  



84 A Little C++  

There is no FORTRAN parallel to a heap object; variables either come or go as control passes in and out of a 
function or subroutine, or, like a COMMON block variables, live for the lifetime of the program. However, most 
people in HEP who use FORTRAN will have experience of a memory manager and the act of creating a bank is 
a good equivalent of a heap object. For those who know systems like ZEBRA, it will come as a relief to learn 
that objects do not move, C++ does not garbage collect, so there is never a danger that a pointer to an object 
becomes invalid for that reason. However, having created an object, it is the user's responsibility to ensure that 
it is deleted when no longer needed, or to pass that responsibility onto to some other object. Failing to do that 
will result in a memory leak, one of the most common and most hard-to-find C++ bugs. 
To send a message to an object via a pointer to it, you need to use the "->" operator e.g.: 
root[] my_objptr->Solve(); 

Although we chose to call our pointer my_objptr, to emphasize that it is a pointer, heap objects are so 
common in an object-oriented program that pointer names rarely reflect the fact - you have to be careful that 
you know if you are dealing with an object or its pointer! Fortunately, the compiler won't tolerate an attempt to 
do something like: 
root[] my_objptr.Solve(); 

Although this is a permitted by the CINT shortcuts, it is one that you are strongly advised not to follow! As we 
have seen, heap objects have to be accessed via pointers, whereas stack objects can be accessed directly. 
They can also be accessed via pointers:  
root[] Quad stack_quad(1.,2.,-3.); 
root[] Quad *stack_ptr = &stack_quad; 
root[] stack_ptr->Solve(); 

Here we have a Quad pointer that has been initialized with the address of a stack object. Be very careful if you 
take the address of stack objects. As we shall see soon, they are deleted automatically, which could leave you 
with an illegal pointer. Using it will corrupt and may well crash the program!  
It is time to look at the destruction of objects. A destructor is a special C++ function that releases resources for 
(or destroy) an object of a class. It is opposite of a constructor that create the object of a class when is called. 
The compiler will provide a destructor that does nothing if none is provided. We will add one to our Quad class 
so that we can see when it is called. The class names the destructor but with a prefix ~ which is the C++ one's 
complement i.e. bit wise complement, and hence has destruction overtones! We declare it in the .h file and 
define it in the .cxx file. It does not do much except print out that it has been called (still a useful debug 
technique despite today's powerful debuggers!).  
Now run root, load the Quad class and create a heap object: 
root[] .L Quad.cxx 
root[] Quad *my_objptr = new Quad(1.,2.,-3.); 

To delete the object: 
root[] delete my_objptr; 
root[] my_objptr = 0; 

You should see the print out from its destructor. Setting the pointer to zero afterwards is not strictly necessary 
(and CINT does it automatically), but the object is no more accessible, and any attempt to use the pointer again 
will, as has already been stated, cause grief. So much for heap objects, but how are stack objects deleted? In 
C++, a stack object is deleted as soon as control leaves the innermost compound statement that encloses it. 
Therefore, it is singularly futile to do something like: 
root[] {  Quad my_object(1.,2.,-3.); } 

CINT does not follow this rule; if you type in the above line, you will not see the destructor message. As 
explained in the Script lesson, you can load in compound statements, which would be a bit pointless if 
everything disappeared as soon as it was loaded! Instead, to reset the stack you have to type: 
root[] gROOT->Reset(); 

This sends the Reset message via the global pointer to the ROOT object, which, amongst its many roles, acts 
as a resource manager. Start ROOT again and type in the following: 
root[] .L Quad.cxx 
root[] Quad my_object(1.,2.,-3.); 
root[] Quad *my_objptr = new Quad(4.,5.,-6.); 
root[] gROOT->Reset(); 

You will see that this deletes the first object but not the second. We have also painted ourselves into a corner, 
as my_objptr was also on the stack. This command will fail. 
root[] my_objptr->Solve(); 

CINT no longer knows what my_objptr is. This is a great example of a memory leak; the heap object exists 
but we have lost our way to access it. In general, this is not a problem. If any object will outlive the compound 
statement in which it was created then a more permanent pointer will point to it, which frequently is part of 
another heap object. See Resetting the Interpreter Environment in the chapter “CINT the C++ Interpreter”. 
 


