Physics 565 - Spring 2011, Assignment #5, Due March 7th

1. Consider the Lagrangian density for a charged scalar field coupled to an electromagnetic field, with additional source terms:

$$\mathcal{L} = (\partial^{\mu}\phi^{*})(\partial_{\mu}\phi) + m^{2}\phi^{*}\phi + \frac{1}{4}(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu})(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})$$
$$-ieA^{\mu}\phi^{*}\partial_{\mu}\phi + ieA^{\mu}(\partial_{\mu}\phi^{*})\phi + e^{2}A^{\mu}A_{\mu}\phi^{*}\phi$$
$$+J^{*}\phi + J\phi^{*} + J^{\mu}A_{\mu}$$

(a) If $e \to 0$, the Lagrangian describes independent, free fields coupled to source terms. Using Lagrange's equation, determine the equations of motion for the fields ϕ , ϕ^* and A^{μ} , in the limit $e \to 0$.

(b) Write the equations of motion in the case when e is not vanishingly small.

(c) Express the fields, $\phi_{(0)}$, $\phi_{(0)}^*$ and $A^{\mu}_{(0)}$, expanded to zero-th order in e, as integrals over the Green's functions G(x - x'), $G^*(x - x')$ and $G^{\mu\nu}(x - x')$.

(d) The following representations can be used to express the Green's functions:

$$G_{k}(x-x') = \frac{-1}{(2\pi)^{4}} \int d^{4}k \frac{e^{-ik \cdot (x-x')}}{k^{2}-m^{2}+i\epsilon}$$
$$G_{k}^{*}(x-x') = \frac{-1}{(2\pi)^{4}} \int d^{4}k \frac{e^{ik \cdot (x-x')}}{k^{2}-m^{2}-i\epsilon}$$
$$G_{k}^{\mu\nu}(x-x') = \frac{-g^{\mu\nu}}{(2\pi)^{4}} \int d^{4}k \frac{e^{-ik \cdot (x-x')}}{k^{2}+i\epsilon}$$

where the subscript reminds you which variable was used for the momentum integration. Find expressions for $\partial_{\mu}\phi_{(0)}(x)$ and $\partial_{\mu}\phi^*_{(0)}(x)$ in terms of the appropriate representations of the Green's functions.

(e) By considering the field $A^{\mu}_{(1)}(x)$, expanded to first order in e, show that the vertex factor for the following diagram is $-ie(k_1 + k_2)_{\mu}$.

