1. Show that the normalization of states:

$$
\left\langle k \mid k^{\prime}\right\rangle=(2 \pi)^{3} \cdot 2 E \cdot \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right)
$$

is invariant under a Lorentz boost in the x-direction.
2. Show that the Lorentz invariant measure

$$
\frac{d^{3} k}{(2 \pi)^{3}} \cdot \frac{1}{2 E}
$$

can be written in the mainifestly Lorentz covariant form:

$$
\frac{d^{4} k}{(2 \pi)^{4}} \cdot(2 \pi) \delta\left(k^{2}-m^{2}\right) \theta\left(k^{0}\right)
$$

where

$$
\theta(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x>0\end{cases}
$$

3. A contravariant tensor has an upper Lorentz index and transforms under a Lorentz transformation like

$$
x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu} .
$$

Therefore, the Lorentz transformation matrix can be expressed

$$
\Lambda_{\nu}^{\mu}=\frac{\partial x^{\mu}}{\partial x^{\nu}}
$$

a. Show that the partial derivative operator,

$$
\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}
$$

does not change under Lorentz transformations in this way, but instead transforms like

$$
\partial_{\mu}^{\prime}=\left(\Lambda^{-1}\right)_{\mu}{ }^{\nu} \partial_{\nu}
$$

Tensors that transform in this way are called covariant tensors, and have a lower Lorentz index. b. Illustrate by means of an example using a Lorentz transformation in the x-direction only, that

$$
\left(\Lambda^{-1}\right)_{\mu}{ }^{\nu}=g_{\mu \sigma} g^{\nu \rho} \Lambda_{\rho}^{\sigma}
$$

c. Show that the components of the momentum operator, P^{μ} can be represented in coordinate space by

$$
P^{\mu}=i \hbar \partial^{\mu}
$$

4. The 4 -vectors for the electromagnetic potential and the electric current are

$$
\begin{aligned}
A^{\mu} & =(\Phi, \boldsymbol{A}) \\
j^{\mu} & =(\rho, \boldsymbol{j})
\end{aligned}
$$

where $\Phi(x)$ is the electromagnetic scalar potential, $\boldsymbol{A}(x)$ is the electromagnetic vector potential, $\rho(x)$ is the charge density and $\boldsymbol{j}(x)$ is the current density. Show that Maxwell's equations

$$
\begin{aligned}
\nabla \cdot \boldsymbol{E} & =\rho \\
\nabla \times \boldsymbol{B}-\frac{\partial \boldsymbol{E}}{\partial t} & =\boldsymbol{j} \\
\nabla \cdot \boldsymbol{B} & =0 \\
\nabla \times \boldsymbol{E}+\frac{\partial \boldsymbol{B}}{\partial t} & =0
\end{aligned}
$$

can be written

$$
\begin{aligned}
\partial_{\mu} F^{\mu \nu} & =j^{\nu} \\
\partial^{\mu} F^{\nu \lambda}+\partial^{\nu} F^{\lambda \mu}+\partial^{\lambda} F^{\mu \nu} & =0
\end{aligned}
$$

where

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

Recall that

$$
\begin{aligned}
\boldsymbol{E} & =-\nabla \Phi-\frac{\partial \boldsymbol{A}}{\partial t} \\
\boldsymbol{B} & =\nabla \times \boldsymbol{A}
\end{aligned}
$$

