1. Show that the total cross section for $e^{+} e^{-} \rightarrow f \bar{f}(f \neq e)$ at $\sqrt{s}=M_{Z}$ can be written

$$
\sigma_{f \bar{f}}=\frac{12 \pi \Gamma_{e} \Gamma_{f}}{M_{Z}^{2} \Gamma_{Z}^{2}}
$$

where

$$
\Gamma_{f}=N_{c} \frac{G_{F} M_{Z}^{3}}{6 \pi \sqrt{2}}\left(\left(c_{V}^{f}\right)^{2}+\left(c_{A}^{f}\right)^{2}\right)
$$

2. Prepare a graphs showing $A_{F B}$ as a function of \sqrt{s} for the following processes:

$$
\begin{align*}
& e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \tag{1}\\
& e^{+} e^{-} \rightarrow b \bar{b} \tag{2}\\
& e^{+} e^{-} \rightarrow c \bar{c} \tag{3}
\end{align*}
$$

For each graph, assume the following three different values of $\sin ^{2} \theta_{W}: 0.231,0.22$ and 0.24 , so as to demonstrate the sensitivity of these measurements in the determination of $\sin ^{2} \theta_{W}$. What experimental complications would one encounter when trying to measure $A_{F B}$ for these three processes? Which would be the easiest to measure? Which would be the most difficult?

