Physics 565 - Fall 2010, Assignment \#5, Due March 10 ${ }^{\text {th }}$

1. Show that the flux factor,

$$
\begin{equation*}
F=4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}} \tag{1}
\end{equation*}
$$

can be expressed as $F=4 p_{1}^{*} \sqrt{s}$ in the center-of-mass frame and as $F=4 m_{2} p_{1}^{\text {lab }}$ in the lab frame.
2. Calculate the differential cross section, $d \sigma / d y$ for elastic scattering of pions from a target composed of spin-0 nuclei of mass M. That is, evaluate the invariant amplitude corresponding to the Feynman diagram:

and calculate the differential cross section,

$$
\begin{equation*}
\frac{d \sigma}{d y}=-2 E M \frac{d \sigma}{d t} \tag{2}
\end{equation*}
$$

where $y=\left(E-E^{\prime}\right) / E$ is the fractional energy loss of the scattered pion.
3. Calculate the differential and total cross section for pion production in photon-photon collisions by evaluating the invariant amplitude corresponding to the Feynman diagrams:

That is, calculate the differential cross section for observing a π^{+}scattered into an element of solid angle $d \Omega$ in the center-of-mass frame of the colliding photons. Assume that the photon beams are unpolarized.

