Physics 565-Fall 2010, Assignment \#3, Due Feburary 17 ${ }^{\text {th }}$

1. Consider the current operator $j^{\mu}(x)=\bar{\psi} \gamma^{\mu} \psi$ which is constructed from Dirac field operators $\bar{\psi}(x)$ and $\psi(x)$.
(a) Show that $\partial_{\mu} j^{\mu}(x)=0$ and hence, that $j^{\mu}(x)$ is a conserved current with an associated charge $Q=\int d^{3} x j^{0}(x)$.
(b) Using the representation of the Dirac fields,

$$
\begin{aligned}
\psi(x) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{m}{\omega_{k}} \sum_{\lambda=1,2}\left[u^{(\lambda)}(k) b_{\lambda}(k) e^{-i k \cdot x}+v^{(\lambda)}(k) d_{\lambda}^{\dagger}(k) e^{i k \cdot x}\right] \\
\bar{\psi}(x) & =\int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} \frac{m}{\omega_{k^{\prime}}} \sum_{\lambda^{\prime}=1,2}\left[\bar{u}^{\left(\lambda^{\prime}\right)}\left(k^{\prime}\right) b_{\lambda^{\prime}}^{\dagger}\left(k^{\prime}\right) e^{i k^{\prime} \cdot x}+\bar{v}^{\left(\lambda^{\prime}\right)}\left(k^{\prime}\right) d_{\lambda^{\prime}}^{\dagger}\left(k^{\prime}\right) e^{-i k^{\prime} \cdot x}\right]
\end{aligned}
$$

express $Q=\int d^{3} x j^{0}(x)$ in terms of creation and annihilation operators in normal order.
(c) Show that the states $b_{\lambda}^{\dagger}(k)|0\rangle$ and $d_{\lambda}^{\dagger}(k)|0\rangle$ are eigenstates of Q with eigenvalues +1 and -1 , respectively.
2. In the chiral representation, the matrix $\frac{1}{2} \vec{\Sigma} \cdot \hat{k}$ can be written

$$
\frac{1}{2} \vec{\Sigma} \cdot \hat{k}=\frac{1}{2|\vec{k}|}\left(\begin{array}{cc}
\vec{\sigma} \cdot \vec{k} & 0 \tag{1}\\
0 & \vec{\sigma} \cdot \vec{k}
\end{array}\right) .
$$

(a) Using the chiral representation, show that

$$
\begin{equation*}
\frac{1}{2} \vec{\Sigma} \cdot \hat{k} u(k)=\frac{1}{2} \gamma^{5} u(k) \tag{2}
\end{equation*}
$$

in the limit $E \gg m$, where $u(k)$ can be expressed in terms of a particle at rest using

$$
u(k)=\frac{1}{\sqrt{2 m(E+m)}}\left(\begin{array}{cc}
E+m+\vec{\sigma} \cdot \vec{k} & 0 \\
0 & E+m-\vec{\sigma} \cdot \vec{k}
\end{array}\right) u(0)
$$

(b) Show that the projection operators

$$
P_{ \pm}=\frac{1 \pm \gamma^{5}}{2}
$$

select only the components of $\psi(x)$ that transform under Lorentz transformations as $e^{ \pm \vec{\sigma} / 2 \cdot \vec{\phi}}$.
(c) If $\frac{1}{2} \vec{\Sigma} \cdot \hat{k}$ is interpreted as an operator that gives the projection of the spin along an axis that points in the direction of the momentum vector, show that $P_{+} \psi(x)$ represents a field with positive helicity and that $P_{-} \psi(x)$ represents a field with negative helicity.

