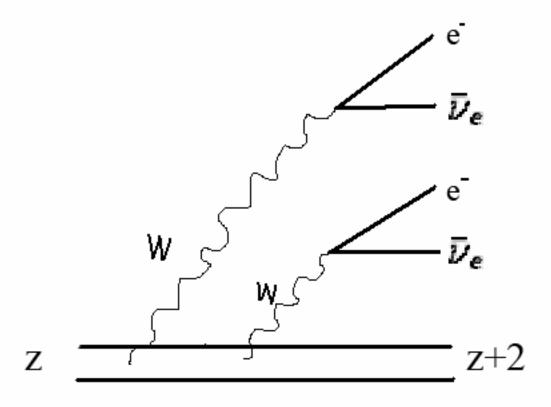

# Neutrinoless Double Beta Decay

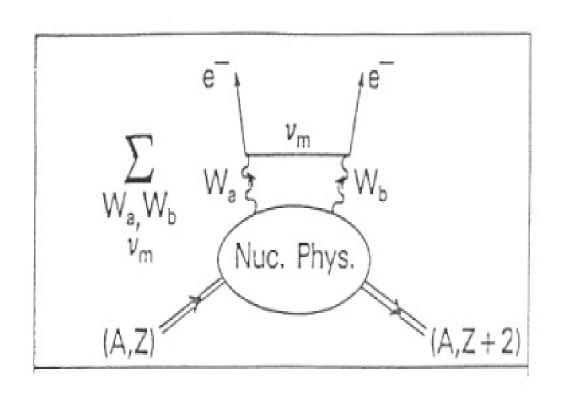
By Shigeharu Kihara

#### Normal Beta Decay


• 
$$(Z,A) \rightarrow (Z+1,A) + e^{-} + \bar{\nu}_{e}$$

• Ex. 
$$n \rightarrow p + e^- + \bar{\nu}_e$$




#### Double Beta Decay ββ(2v)

$$(Z,A) \rightarrow (Z+2, A) + e^{-} + e^{-} + \bar{\nu}_e + \bar{\nu}_e$$

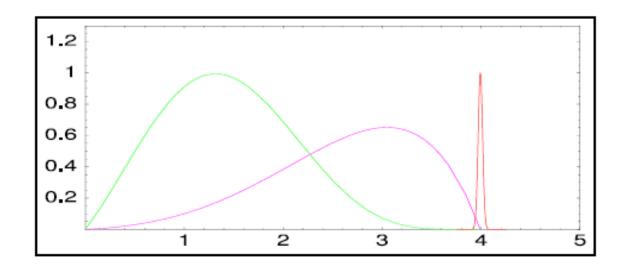


#### Neutrinoless Double Beta decay ββ(0v)

$$(Z,A) \rightarrow (Z+2, A) + e_1^- + e_2^-$$



#### **Criteria**


$$2.M_{v} \neq 0$$

#### So, if we could observe $\beta\beta(0v)...$

- Neutrino=antineutrino
- We'll have more to figure out about neutrinos.
- Earlier neutrino oscillation experiments showed that neutrinos have a finite mass.
  - $\rightarrow$  This is encouraging for the search of  $\beta\beta(0v)$  decay

#### How can we observe $\beta\beta(0v)$

Theoretical Energy spectrum for 0v decay is different from 2v decay



#### Half-Life of $\beta\beta(0v)$

$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} |M^{0\nu}|^2 < m_{\nu} >^2$$

G0v = two electron phase space integral

M0v=The scattering amplitude

<mv> =effective mass of neutrino

## Calculated half-lives corresponding to <mv>=50meV

**TABLE 2**  $\beta\beta(0\nu)$  half-lives in units of  $10^{26}$  y corresponding to  $\langle m_{\nu} \rangle = 50$  meV for nuclear matrix elements evaluated in the references indicated

|                                | References |      |      |      |          |      |  |
|--------------------------------|------------|------|------|------|----------|------|--|
| Nucleus                        | (20)       | (80) | (81) | (82) | (24, 83) | (84) |  |
| <sup>48</sup> Ca               | 12.7       | 35.3 | _    | _    | _        | 10.0 |  |
| <sup>76</sup> Ge               | 6.8        | 70.8 | 56.0 | 9.3  | 12.8     | 14.4 |  |
| <sup>82</sup> Se               | 2.3        | 9.6  | 22.4 | 2.4  | 3.2      | 6.0  |  |
| $^{100}\mathrm{Mo}$            | _          | _    | 4.0  | 5.1  | 1.2      | 15.6 |  |
| <sup>116</sup> Cd              | _          |      |      | 1.9  | 3.1      | 18.8 |  |
| <sup>130</sup> Te              | 0.6        | 23.2 | 2.8  | 2.0  | 3.6      | 3.4  |  |
| <sup>136</sup> Xe              | _          | 48.4 | 13.2 | 8.8  | 21.2     | 7.2  |  |
| $^{150}Nd^a$                   | _          | _    | _    | 0.1  | 0.2      | _    |  |
| <sup>160</sup> Gd <sup>a</sup> | _          | _    | _    | 3.4  | _        | _    |  |

adeformed nucleus; deformation not taken into account.

#### Experimental Criteria

$$< m_{\nu} > = (2.67 * 10^{-8} eV) \left[ \frac{W}{f x \varepsilon G^{0\nu} |M^{0\nu}|^2} \right]^{1/2} \left[ \frac{b\Delta E}{MT} \right]^{1/4}$$

To reach <mv>~ 50meV, approximately a ton of isotope will be required.

### Best reported limits on T<sub>1/2</sub> ov

**TABLE 3** Best reported limits on  $T_{1/2}^{0\nu}$ 

| Isotope               | $T_{1/2}^{0\nu}$ (y)                                                               | $\langle \mathbf{m}_{\nu} \rangle$ (eV) | Reference    |
|-----------------------|------------------------------------------------------------------------------------|-----------------------------------------|--------------|
| <sup>48</sup> Ca      | >9.5 × 10 <sup>21</sup> (76%)                                                      | <8.3                                    | (98)         |
| <sup>76</sup> Ge      | $>1.9 \times 10^{25}$<br>$>1.6 \times 10^{25}$                                     | <0.35<br><0.33–1.35                     | (57)<br>(99) |
| <sup>82</sup> Se      | >2.7 × 10 <sup>22</sup> (68%)                                                      | <5                                      | (60)         |
| $^{100}\mathrm{Mo}$   | $>$ 5.5 $\times$ 10 <sup>22</sup>                                                  | <2.1                                    | (100)        |
| <sup>116</sup> Cd     | $> 7 \times 10^{22}$                                                               | < 2.6                                   | (73)         |
| <sup>128,130</sup> Te | $\frac{T_{1/2}(130)}{T_{1/2}(128)} = (3.52 \pm 0.11) \times 10^{-4}$ (geochemical) | <1.1-1.5                                | (75)         |
| <sup>128</sup> Te     | $>7.7 \times 10^{24}$                                                              | <1.1-1.5                                | (75)         |
| <sup>130</sup> Te     | $> 1.4 \times 10^{23}$                                                             | <1.1-2.6                                | (101)        |
| $^{136}\mathrm{Xe}$   | $>4.4 \times 10^{23}$                                                              | <1.8-5.2                                | (102)        |
| $^{150}\mathrm{Nd}$   | $> 1.2 \times 10^{21}$                                                             | <3                                      | (68)         |

<sup>&</sup>lt;sup>a</sup>The  $\langle m_{\nu} \rangle$  limits and ranges are those deduced by the authors using their choices of matrix elements in the experimental papers cited. All are quoted at the 90% confidence level except as noted. The range of matrix elements that relate  $T_{1/2}^{0\nu}$  to  $\langle m_{\nu} \rangle$  can be found in Table 2.

#### Gotthard Tunnel Experiment

- 62.5%enriched<sup>136</sup>Xe was used
- Detector tracked two-electrons, indicating of double beta decay.
- The energy resolution at the ββ(0v) endpoint(2.481Mev) was ~165keV (6.6%).
- The dominant background was Comptonscattered electrons from natural gamma activities.

#### DOUBLE BETA DECAY

**TABLE 5** Proposed or suggested future  $\beta\beta(0\nu)$  experiments, grouped by the magnitude of the proposed isotope mass<sup>a</sup>

Future experiments

| Experiment     | periment Source Detector description |                                                                                         | Sensitivity to $T_{1/2}^{0\nu}$ (y) |
|----------------|--------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|
| COBRA (111)    | <sup>130</sup> Te                    | 10 kg CdTe semiconductors                                                               | $1 \times 10^{24}$                  |
| DCBA (112)     | <sup>150</sup> Nd                    | 20 kg <sup>enr</sup> Nd layers between<br>tracking chambers                             | $2 \times 10^{25}$                  |
| NEMO-3 (113)   | <sup>100</sup> Mo                    | 10 kg of $\beta\beta(0\nu)$ isotopes (7 kg Mo) with tracking                            | $4 \times 10^{24}$                  |
| CAMEO (114)    | <sup>116</sup> Cd                    | 1 t CdWO4 crystals in liquid scintillator                                               | $> 10^{26}$                         |
| CANDLES (115)  | <sup>48</sup> Ca                     | several tons of CaF <sub>2</sub> crystals in liquid<br>scintillator                     | $1 \times 10^{26}$                  |
| CUORE (116)    | <sup>130</sup> Te                    | 750 kg TeO <sub>2</sub> bolometers                                                      | $2 \times 10^{26}$                  |
| EXO (73)       | $^{136}\mathrm{Xe}$                  | 1 t <sup>enr</sup> Xe TPC (gas or liquid)                                               | $8 \times 10^{26}$                  |
| GEM (117)      | <sup>76</sup> Ge                     | 1 t <sup>enr</sup> Ge diodes in liquid N                                                | $7 \times 10^{27}$                  |
| GENIUS (118)   | <sup>76</sup> Ge                     | 1 t 86% <sup>enr</sup> Ge diodes in liquid N                                            | $1 \times 10^{28}$                  |
| GSO (119, 120) | <sup>160</sup> Gd                    | 2 t Gd <sub>2</sub> SiO <sub>5</sub> :Ce crystal scintillator<br>in liquid scintillator | $2 \times 10^{26}$                  |
| Majorana (121) | <sup>76</sup> Ge                     | 0.5 t 86% segmented enrGe diodes                                                        | $3 \times 10^{27}$                  |
| MOON (122)     | $^{100}\mathrm{Mo}$                  | 34 t nat Mo sheets between plastic scintillator                                         | $1 \times 10^{27}$                  |
| Xe (123)       | $^{136}\mathrm{Xe}$                  | 1.56 t of en Xe in liquid scintillator                                                  | $5 \times 10^{26}$                  |
| XMASS (124)    | $^{136}\mathrm{Xe}$                  | 10 t of liquid Xe                                                                       | $3 \times 10^{26}$                  |
|                |                                      |                                                                                         |                                     |

This document was created with Win2PDF available at <a href="http://www.daneprairie.com">http://www.daneprairie.com</a>. The unregistered version of Win2PDF is for evaluation or non-commercial use only.