Physics 56400 Assignment \#2 - Due September $10^{\text {th }}$

1. The elements of the Lorentz transformation matrix for a boost in the $+x$ direction can be written:

$$
L_{v}^{\mu}=\left(\begin{array}{cccc}
\gamma & \gamma \beta & 0 & 0 \\
\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(a) Show that $L^{\rho}{ }_{\mu} g_{\rho \sigma} L^{\sigma}{ }_{v}=g_{\mu \nu}$.
(b) Show that $a^{\prime} \cdot b^{\prime}=a \cdot b$ where $a^{\prime \mu}=L^{\mu}{ }_{\rho} a^{\rho}$ and $b^{\prime \nu}=L^{\nu}{ }_{\sigma} b^{\sigma}$.
(c) Use the results from (a) and (b) to argue that expressions of the form $a \cdot b$ are Lorentz invariant.
2. Suppose an unstable particle A is moving in the $+z$ direction and decays into two other particles, $A \rightarrow a+b$.
(a) If particle a is emitted with an polar angle θ^{*} with respect to the $+z$ axis in the rest frame of particle A , calculate the value of θ^{*} that will result in the largest angle, θ, with which particle a makes with the $+z$ axis in the lab frame?
(b) What is the minimum velocity of particle A for which particle a must always be travelling in the $+z$ direction in the lab frame?

