Physics 56400 Assignment #2 – Due September 6th

- 1. A particle with mass M_A is moving with momentum p_A along the z-axis and decays into two particles with masses m_a and m_b . What is the minimum momentum p_A that will guarantee that both final state particles are also moving in the +z direction?
- 2. The PEP-II storage ring collided electrons with energy $E_{e^-} = 9.0 \ GeV$ and positrons with energy $E_{e^+} = 3.1 \ GeV$. Calculate the energy of the collisions in the center-of-mass frame. What is the velocity of the center-of-mass frame when observed from the stationary lab frame?
- 3. The SPEAR storage ring at SLAC collided electrons and positrons with a center-of-mass energy of 8 GeV and produced pairs of D^{\pm} mesons. If the mass of a D^{\pm} meson is 1.870 GeV, what is the maximum transverse momentum with which they can be produced? If the proper lifetime of a D^{\pm} meson is $\tau_D = 1.04 \ ps$, calculate their mean transverse decay length in the lab frame.
- 4. Fermilab experiment E687 produced D^{\pm} mesons in fixed target collisions of a photon beam with a beryllium target. If the typical energy of D^{\pm} mesons produced in this way was 200 GeV, calculate the mean decay length in the lab frame.