Physics 536 - Summary of ODE's for RLC circuits.

The RLC circuit discussed in class led to the integral-differential equation

$$
\begin{equation*}
L \frac{d i}{d t}+R i(t)+\frac{1}{C}\left(Q_{0}+\int_{0}^{t} i(t) d t\right)=V \tag{1}
\end{equation*}
$$

but by differentiating once we obtained

$$
\begin{equation*}
L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{1}{C} i(t)=0 \tag{2}
\end{equation*}
$$

which is a linear, second-order, homogeneous differential equation with constant coefficients. One can hypothesize that a solution to this differential equation might be of the form $i(t)=e^{\alpha t}$ which can be substituted into the equation to discover what conditions the constant α must satisfy. Thus,

$$
\begin{align*}
\frac{d i}{d t} & =\alpha i(t) \tag{3}\\
\frac{d^{2} i}{d t^{2}} & =\alpha^{2} i(t) \tag{4}
\end{align*}
$$

and therefore, $\left(L \alpha^{2}+R \alpha+1 / C\right) i(t)=0$. Since $i(t) \neq 0, \alpha$ must be a root of the polynomial

$$
\begin{equation*}
L \alpha^{2}+R \alpha+1 / C=0 \tag{5}
\end{equation*}
$$

These roots are

$$
\begin{align*}
& \alpha_{+}=\frac{-R}{2 L}+\sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}} \tag{6}\\
& \alpha_{-}=\frac{-R}{2 L}-\sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}} \tag{7}
\end{align*}
$$

and a general solution to the differential equation is

$$
\begin{equation*}
i(t)=A e^{\alpha_{+} t}+B e^{\alpha_{-} t} \tag{8}
\end{equation*}
$$

where A and B are constants of integration.
The algebraic sign of the expression $R^{2} / 4 L^{2}-1 / L C$ determins whether the roots are purely real or whether they are complex numbers.

If $R^{2} / 4 L^{2} \ll 1 / L C$, then $\alpha_{ \pm} \approx-\gamma \pm i \omega_{0}$ where

$$
\begin{align*}
\gamma & =\frac{R}{2 L} \tag{9}\\
\omega_{0} & =\sqrt{\frac{1}{L C}} \tag{10}
\end{align*}
$$

and the general solution can be expressed in the form

$$
\begin{equation*}
i(t)=A e^{-\gamma t} \cos \omega_{0} t+B e^{-\gamma t} \sin \omega_{0} t \tag{11}
\end{equation*}
$$

The constants of integration can be determined by substituting this form of the solution into the original equation and solving for A and B so as to satisfy the initial conditions. In the case where the current is initially zero and $Q_{0}=0$, we have

$$
\begin{equation*}
L B \omega_{0}=V \tag{12}
\end{equation*}
$$

from which we obtain $B=V / L \omega_{0}=V \sqrt{C / L}$. Thus, the complete solution is

$$
i(t)=\left\{\begin{array}{cc}
0 & \text { for } t<0 \tag{13}\\
V \sqrt{\frac{C}{L}} e^{-\gamma t} \sin \omega_{0} t & \text { for } t>0
\end{array}\right.
$$

